

Solutions 14: Numeric Ordinary Differential Equations IV

1. Solution from the classroom:

$$\begin{array}{c} \text{Hinh} & \Lambda \\ \begin{pmatrix} x^{2} = -x - y \\ y^{2} = x - y \end{pmatrix} \longleftrightarrow \\ \begin{pmatrix} x^{3} \\ y \end{pmatrix} = \begin{pmatrix} x - 4 \\ (x) \\ (y) \end{pmatrix} = \begin{pmatrix} -A - 4 \\ (y) \\ (y) \end{pmatrix} \\ \begin{pmatrix} x^{(0)} = A \\ (y) \end{pmatrix} = \begin{pmatrix} -A - 4 \\ (y) \end{pmatrix} \\ \begin{pmatrix} y^{(0)} \\ (y) \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} = \begin{pmatrix} -A - 4 \\ (y) \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} x^{(0)} \\ (y) \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix}$$

2. Cf. P20.6 from Schaum's Outline of Numerical Analysis, Chapter 20.

Let
$$x' = u$$
, $y' = v$, $z' = w$ be the velocity components. Then
 $u' = f_1(t, x, y, z, u, v, w)$ $v' = f_2(t, x, y, z, u, v, w)$ $w' = f_3(t, x, y, z, u, v, w)$
There six equations are the required first-order system. Other systems of higher-order equations may be

These six equations are the required first-order system. Other systems of higher-order equations may be treated in the same way.

The dimension of the first-order ODE-system is 6.

3. Cf. P20.4 from Schaum's Outline of Numerical Analysis, Chapter 20.

Let the second-order equation be y'' = f(x, y, y'). Then introducing p = y' we have at once y' = p, p' = f(x, y, p). As a result of this standard procedure a second-order equation may be treated by system methods if this seems desirable.

The initial conditions fort he vector (p, y) are: $p(x_0) = y_1, y(x_0) = y_0$.

1

4. From the script we know that the estimation of the error is equal to $\vec{e}_k = \frac{1}{2}h_k(\vec{k}_2 - \vec{k}_1)$ and the step-size adaptation is ruled by the formula $h_{new} = h_k \left\| \frac{\vec{e}_n}{\varepsilon_a + \varepsilon_r \vec{y}_n} \right\|^{-1/2}$ with $\varepsilon_a = 10^{-1}$, $\varepsilon_r = 10^{-2}$.

x	У	h	$\mathbf{e}_{\mathbf{k}}$	$\ \frac{\mathbf{e}_k}{\mathbf{e}_{k+Y}\mathbf{e}_{T}}\ $	h _{neu}	Status	k1
0	(_1.000000000) (_1.000000000)	0.001000000000	$(\frac{-5.00000000 \times 10^{-7}}{2.999001000 \times 10^{-7}})$	469.0415760	0.4690415760	Proceed	(-1.00)
0.001000000000	(^{0.9989995000}) (-1.000999700 ⁾	0.4690415760	(-0.1099339890) (0.06059334319)	1.000254693	0.4691610377	Proceed	(-1.0)
0.4700415760	(^{0.4195550341}) (-1.409166461)	0.4691610377	(^{-0.07173212952}) 0.1337985989)	0.9234240375	0.4332345797	Reject	$\binom{-1.4}{-0.65}$
0.4700415760	(^{0.4195550341}) (-1.409166461)	0.4332345797	(^{-0.06116684426}) 0.1119369002)	1.009579027	0.4373845456	Proceed	(-1.4)
0.9032761557	(^{-0.2521114495}) -1.579602423)	0.4373845456	(^{-0.004182800260}) 0.2080474579 ⁾	0.7460460194	0.3263089992	Reject	(-0.04
0.9032761557	$({-0.2521114495\atop -1.579602423})$	0.3263089992	(^{-0.002328082473}) 0.1109948425 ⁾	1.021398991	0.3332916827	Proceed	(-1.)
1.229585155	(^{-0.7698780179}) -1.482876770)	0.3332916827	(^{0.03605134912}) (^{0.1277328531)}	0.9481434422	0.3160083232	Reject	$\binom{-1.48}{0.649}$

The next plots show the vector coordinates $\{z, v\}$ of the solution evolving in time (100 sec) and the evolution of total (414) and proceeded (303) step-sizes.

2

5. Cf. P20.2 from Schaum's Outline of Numerical Analysis, Chapter 20.

$k_1 = hf_1(x_n, y_n, p_n) $	$k_3 = hf_1(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2, p_n + \frac{1}{2}l_2)$			
$l_1 = hf_2(x_n, y_n, p_n)$	$l_3 = hf_2(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2, p_n + \frac{1}{2}l_2)$			
$k_2 = hf_1(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1, p_n + \frac{1}{2}l_1)$	$k_4 = hf_1(x_n + h, y_n + k_3, p_n + l_3)$			
$l_2 = hf_2(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1, p_n + \frac{1}{2}l_1)$	$l_4 = hf_2(x_n + h, y_n + k_3, p_n + l_3)$			
$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$				
$p_{n+1} = p_n + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4)$				

6. Cf. P20.7 from Schaum's Outline of Numerical Analysis, Chapter 20.

An equivalent first-order system is

$$y' = p = f_{1}(t, y, p)$$

$$p' = -y + (.1)(1 - y^{2})p = f_{2}(t, y, p)$$
The Runge-Kutta formulas for this system are

$$k_{1} = hp_{n}$$

$$l_{1} = h[-y_{n} + (.1)(1 - y_{n}^{2})p_{n}]$$

$$k_{2} = h\left(p_{n} + \frac{1}{2}l_{1}\right)$$

$$l_{2} = h\left\{-\left(y_{n} + \frac{1}{2}k_{1}\right) + (.1)\left[1 - \left(y_{n} + \frac{1}{2}k_{1}\right)^{2}\right]\left(p_{n} + \frac{1}{2}l_{1}\right)\right\}$$

$$k_{3} = h\left(p_{n} + \frac{1}{2}l_{2}\right)$$

$$l_{3} = h\left\{-\left(y_{n} + \frac{1}{2}k_{2}\right) + (.1)\left[1 - \left(y_{n} + \frac{1}{2}k_{2}\right)^{2}\right]\left[p_{n} + \frac{1}{2}l_{2}\right)\right\}$$

$$k_{4} = h(p_{n} + l_{3})$$

$$l_{4} = h(-(y_{n} + k_{3}) + (.1)[1 - (y_{n} + k_{3})^{2}](p_{n} + l_{3})]$$
and
$$y_{n+1} = y_{n} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$p_{n+1} = p_{n} + \frac{1}{6}(l_{1} + 2l_{2} + 2l_{3} + l_{4})$$
Choosing $h = .2$, computations produce the following results to three places:

$$k_{1} = (.2)(0) = 0$$

$$l_{1} = (.2)[-1 + (.1)(1 - 1)(0)] = -.2$$

$$k_{2} = (.2)(-.1) = -.02$$

$$l_{2} = (.2)[-1 + (.1)(1 - 1)(-.1)] = -.2$$

$$k_{3} = (.2)(-.1) = -.02$$

$$l_{3} = (.2)[-.99 + (.1)(.02)(-.1)] = -.198$$

$$k_{4} = (.2)(-.198) = -.04$$

$$l_{4} = (.2)[-(.98) + (.1)(.04)(-.198)] \approx -.196$$
These values now combine into
$$y_{1} = 1 + \frac{1}{6}(-.2 - .4 - .396 - .196) \approx -.199$$

3