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Exercises 14: Numeric Ordinary Differential Equations IV 

 

 

The problems are solvable without a computer, normally. There are exceptions.  

The symbol | means „or“, the symbol * „optional“, the symbol ** „optional and advanced“ and the sym-
bol © means that a computer is required or helpful. 

 

 

1. Solve the 2d linear ODE-system below approximately by expanding Taylor series for ( )x t  and 

( )y t  up to order 3: 
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2. The acceleration equations below describe the trajectory ))(),(),(( tztytx  in 3d space of a 

particle: 
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Write down the equivalent ODE-system of 1st order. What is its dimension? 

 

3. Transform the 2nd order scalar ODE 1000 )(',)()',,('' yxyyxyyyxfy    into a first-

order ODE-system taking into account the initial conditions. 

 

4. ©   Solve the van-der-Pol ODE-system 
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numerically by applying the Heun-Euler 2(1) embedded adaptive method with classical step-size 
control until 3 proceeding steps are executed. The initial step-size equals 0.001, the accuracy 
goal (ag) 1 and the precision goal is 2.  

Create a table listing values for (t,  {z, v},  h,  ek , 
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three proceeding steps. 
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Hints: The problem refers to Example 2.4 (script p. 41ff). The order is 2p  . The expression 
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5. Write down the classical Runge-Kutta scheme for the 2d ODE-system 
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6. ©   Carry out numerically the first step with the classical Runge-Kutta scheme for the 2nd order 
differential equation (van der Pol) with step-size h = 0.2: 
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