

Exercises 1: Polynomial Interpolation I-II

The problems are solvable without a computer, normally. There are rare exceptions. The symbol | means "or", the symbol * "optional", the symbol ** "optional and advanced" and the symbol © means that a computer is required or helpful.

1. [Schaum 8.6] Compute the divided differences up to order 3 for the data:

- **2. [Schaum 8.7]** Show by computation that $y(x_0, x_1) = y(x_1, x_0)$ for first order divided differences.
- **3. [Schaum 8.8]** Prove the symmetry of the 2nd order divided difference $y(x_0, x_1, x_2)$ by logical reasoning.

Hint: The second-order difference $y(x_0, x_1, x_2)$ is the leading coefficient (number) of the power x^2 in the interpolating parabola p of the three (*x*, *y*)-data points $\big\{(x_0,y_0), (x_1,y_1), (x_2,y_2)\big\}$. Does *p* depend on the order of the three data points?

4. a) [Schaum 8.23] Compute the divided differences up to order 3 for the data …

b) [Schaum 8.25] … and then those for the data:

Check your computations against the symmetry statement in Exercise 3.

5. [Schaum 8.29] Carefully check the statements about the divided differences below by logical reasoning or short (!) computations for the specific model function

$$
y(x) = (x - x_0)(x - x_1) \cdots (x - x_n)
$$
 for fixed arguments $x_0, x_1, \ldots, x_n \in \mathbb{R}$.

- **a)** $y(x_0, x_1, \ldots, x_n) = 0$ for $p = 0, 1, \ldots, n$
- **b)** $y(x_0, x_1, \ldots, x_n, x) = 1$ for any $x \in \mathbb{R} \{x_0, x_1, \ldots, x_n\}$

1

c)
$$
y(x_0, x_1,...,x_n, x, z) = 0
$$
 for any $x, z \in \mathbb{R} - \{x_0, x_1, \dots, x_n\}$, $x \neq z$

Hints: The specific model function $y(x)$ corresponds to the Newton polynomial $\pi_{n+1}(x)$ and this is zero for $x = x_0, x = x_1, ..., x = x_p$. For **b**) consider *x* as a further argument different from x_0, x_1, \ldots, x_n . For c) or alternatively for b) use a formula representing divided differences as higher derivatives.

6. [Schaum 8.31] For equally spaced arguments ($x_{k+1} - x_k = h = \text{const.}$) develop the difference formula below by induction starting with the case $k = 0$, then going to $k = 1$, $k = 2$ a.s.o. :

$$
y(x_0, x_1, \ldots, x_k) = \frac{\Delta^k y_0}{h^k k!}
$$

.

The symbol Δ denotes the difference operator, thus $\Delta y_k = y_{k+1} - y_k$, and the formula Δ^m abbreviates the *m*-fold composition (nested application) of ∆.

- **7.** \quad © **[Schaum 2.9]** The model function $y(x) = cos(\frac{1}{2}\pi x)$ has to be interpolated linearly within the arguments $x = 0$;1 by a polynomial $p(x)$. Estimate the absolute maximum error $\max\limits_{x\in[0,1]} \bigl|y(x)-p(x)\bigr|$ by a simple expression and check your estimation at the position x = ½ by comparing with the exact interpolation error.
- **8.** © **[Schaum 2.14 2.18]** The model function $y(x) = \sin(\frac{1}{2}\pi x)$ has to be interpolated using the arguments $x = 0$; 1; 2 by a quadratic polynomial $p(x)$.
	- **a)** Give a formula for the interpolation error $y(x) p(x)$ $(x \in [0,2])$ using higher derivatives.
	- **b)** Estimate the absolute maximum error $\max_{x \in [0,2]} |y(x) p(x)|$ by a simple expression and check your estimation at the position $x = \frac{1}{2}$ by comparing with the exact interpolation error.
	- **c)** Compare the derivatives $y'(x)$ und $p'(x)$ at the position $x = \frac{1}{2}$.
	- **d)** Compare the second derivatives $y''(x)$ und $p''(x)$ at the position $x = \frac{1}{2}$.

e) Compare the integrals ∫ 2 \int_0 *y*(*x*)*dx* und \int_0 2 $\mathbf{0}$ *p*(*x*)*dx* .

9. Example to the **Aitken-Neville-Recursion formula**. Compute the polynomials $p_0 = y_0, p_1 = y_1, p_2 = y_2$ (constants) as well as p_{01}, p_{12} (straight lines) and p_{012} (interpolating parabola) for the (*x*, *y*)-data points $\{(1, -1), (3, 0), (6, 1)\}\.$

Sketch the configuration including the polynomials $p_0, p_1, p_2, p_{01}, p_{12}$.

2