

Exercises 1: Polynomial Interpolation I-II

The problems are solvable without a computer, normally. There are rare exceptions. The symbol | means "or", the symbol * "optional", the symbol ** "optional and advanced" and the symbol © means that a computer is required or helpful.

1. [Schaum 8.6] Compute the divided differences up to order 3 for the data:

x_k	0	1	2	4
y _k	1	-1	2	5

- **2.** [Schaum 8.7] Show by computation that $y(x_0, x_1) = y(x_1, x_0)$ for first order divided differences.
- **3. [Schaum 8.8]** Prove the symmetry of the 2nd order divided difference $y(x_0, x_1, x_2)$ by logical reasoning.

<u>*Hint*</u>: The second-order difference $y(x_0, x_1, x_2)$ is the leading coefficient (number) of the power x^2 in the interpolating parabola p of the three (x, y)-data points $\{(x_0, y_0), (x_1, y_1), (x_2, y_2)\}$. Does p depend on the order of the three data points?

4. a) [Schaum 8.23] Compute the divided differences up to order 3 for the data ...

\dot{x}_k	0	1	4	6
y _k	1	-1	1	-1

b) [Schaum 8.25] ... and then those for the data:

x_k	4	1	6	0
<i>y</i> _{<i>k</i>}	1	-1	-1	1

Check your computations against the symmetry statement in Exercise 3.

- 5. [Schaum 8.29] Carefully check the statements about the divided differences below by logical reasoning or short (!) computations for the specific model function
 - $y(x) = (x x_0)(x x_1) \cdots (x x_n)$ for fixed arguments $x_0, x_1, \dots, x_n \in \mathbb{R}$.
 - **a)** $y(x_0, x_1, ..., x_p) = 0$ for p = 0, 1, ..., n
 - **b)** $y(x_0, x_1, ..., x_n, x) = 1$ for any $x \in \mathbb{R} \{x_0, x_1, ..., x_n\}$

1

c) $y(x_0, x_1, ..., x_n, x, z) = 0$ for any $x, z \in \mathbb{R} - \{x_0, x_1, ..., x_n\}, x \neq z$

<u>*Hints*</u>: The specific model function y(x) corresponds to the Newton polynomial $\pi_{n+1}(x)$ and this is zero for $x = x_0, x = x_1, ..., x = x_p$. For **b**) consider x as a further argument different from $x_0, x_1, ..., x_n$. For **c**) or alternatively for b) use a formula representing divided differences as higher derivatives.

6. [Schaum 8.31] For equally spaced arguments ($x_{k+1} - x_k = h = \text{const.}$) develop the difference formula below by induction starting with the case k = 0, then going to k = 1, k = 2 a.s.o. :

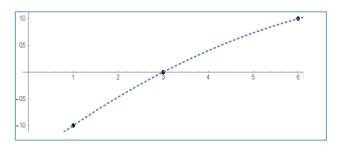
$$y(x_0, x_1, \dots, x_k) = \frac{\Delta^k y_0}{h^k k!}$$

The symbol Δ denotes the difference operator, thus $\Delta y_k = y_{k+1} - y_k$, and the formula Δ^m abbreviates the *m*-fold composition (nested application) of Δ .

- 7. © [Schaum 2.9] The model function $y(x) = \cos(\frac{1}{2}\pi x)$ has to be interpolated linearly within the arguments x = 0;1 by a polynomial p(x). Estimate the absolute maximum error $\max_{x \in [0,1]} |y(x) p(x)|$ by a simple expression and check your estimation at the position $x = \frac{1}{2}$ by comparing with the exact interpolation error.
- 8. © [Schaum 2.14 2.18] The model function $y(x) = \sin(\frac{1}{2}\pi x)$ has to be interpolated using the arguments x = 0; 1; 2 by a quadratic polynomial p(x).
 - **a)** Give a formula for the interpolation error y(x) p(x) $(x \in [0,2])$ using higher derivatives.
 - **b)** Estimate the absolute maximum error $\max_{x \in [0,2]} |y(x) p(x)|$ by a simple expression and check your estimation at the position $x = \frac{1}{2}$ by comparing with the exact interpolation error.
 - c) Compare the derivatives y'(x) und p'(x) at the position $x = \frac{1}{2}$.
 - **d)** Compare the second derivatives y''(x) und p''(x) at the position $x = \frac{1}{2}$.

e) Compare the integrals
$$\int_{0}^{2} y(x) dx$$
 und $\int_{0}^{2} p(x) dx$.

9. Example to the Aitken-Neville-Recursion formula. Compute the polynomials $p_0 = y_0, p_1 = y_1, p_2 = y_2$ (constants) as well as p_{01}, p_{12} (straight lines) and p_{012} (interpolating parabola) for the (x, y)-data points $\{(1,-1),(3,0),(6,1)\}$.



Sketch the configuration including the polynomials $p_0, p_1, p_{2}, p_{01}, p_{12}$.