

Exercises 2: Polynominterpolation III

The problems are solvable without a computer, normally. There are rare exceptions. The symbol | means "or", the symbol * "optional", the symbol ** "optional and advanced" and the symbol © means that a computer is required or helpful.

1. [Schaum 10.3] The points (0,0) and (4,2) are to be connected by a low degree polynomial p(x). The tangents drawn in the figure are horizontal. Compute the connecting polynomial p and indicate its *x*-range.

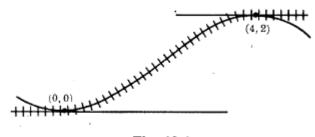


Fig. 10-1

Hint: What is the expected low degree of *p* ?

2. * [Schaum 10.6] Write down a symbolic expression representing a low-degree polynomial interpolating the symbolic data:

x_0	y_0	Уó	<i>y</i> ″
x_0 x_1	y_1	y'1-	. y''_1

3. [Schaum 10.10] Compute an interpolating low-degree polynomial for the data:

x _k	y _k	y' _k	<i>y</i> _{<i>k</i>} "
0	0	0	0
1	1	1	0

Additionally, bound the interpolating error assuming that $\max_{0 \le x \le 1} |y^{(6)}(x)| \le M = 10$. Give an algebraic and a numerical bound, respectively.

4. [Schaum 10.12] Compute two fourth-degree (!) polynomials, $p_1(x)$ and $p_2(x)$, meeting the constraints below:

$$p_1(0) = p_1'(0) = p_1''(0) = 0$$

1

$$p_2(4) = 2, p_2'(4) = p_2''(4) = 0$$
 and $p_1''(2) = 0, p_2''(2) = 0$.

Moreover, the two polynomials should meet smoothly at the point (2,1) without a crinkle (with a common tangential line).

<u>*Hint*</u>: Use a symbol, e.g. *a*, for the unknown derivative $p_1'(2) = p_2'(2)$. Finally, note that the degree of both of the polynomials is 4.

5. [Schaum 10.15-10.16] Compute low-degree polynomials interpolating the data sets below:

```
a)
```

x_k	y _k	y'k	
0	1	0	
1	0	—	
2	9	24	

b)

x_k	y _k	y' _k	<i>y</i> ″ _k
0	1	-1	0
1	2	7	· <u> </u>

© Additionally, bound the interpolating errors assuming that $|y^{(5)}(x)| \le M = 100$ in the corresponding *x*-range. Give algebraic and a numerical bounds, respectively.

6. Represent the divided differences below as higher derivatives:

a)
$$y(\underbrace{x_0, x_1, \dots, x_n, x}_{n+2})$$
 $x \neq x_k$ $(k = 0, \dots, n)$
b) $y(\underbrace{x_n, x_1, x, x_2, \dots, x_{n-1}}_{n+1})$ $x \neq x_k$ $(k = 1, \dots, n)$
c) $y(\underbrace{x_0, x_0, \dots, x_0}_{n+1})$

- 7. © The model function $y(x) = \cos(\frac{1}{2}\pi x)$ has to be interpolated within the arguments x = 0;1by a low degree polynomial p(x) including the values of the first derivatives at the boundaries x = 0;1 (osculation problem). Estimate the absolute maximum error $\max_{x \in [0,1]} |y(x) - p(x)|$ by a simple expression and check your estimation at the position $x = \frac{1}{2}$ by comparing with the exact interpolation error.
- **8.** What are advantages versus disadvantages when using Chebyshev arguments for polynomial interpolation?