

Exercises 4: Spline Interpolation I (Univariate Spline Interpolation)

The problems are solvable without a computer, normally. There are rare exceptions. The symbol | means "or", the symbol * "optional", the symbol ** "optional and advanced" and the symbol © means that a computer is required or helpful.

1. © The data below was generated by the sine function (y = sin(x)):

x _i	0	$\pi/3$ $2\pi/3$		π
y _i	0	$\sqrt{3}/2$	$\sqrt{3}/2$	0

- a) Compute the cubic natural spline interpolation S for the range $[0, \pi]$.
- **b)** Compute the cubic "clamped" spline interpolation S for the range [0, π].
- c) For ab) give maximum estimations for the following error quantities |y(x) S(x)|, |y'(x) S'(x)| and |y''(x) S''(x)|.
- 2. Write down a system of linear equations for the *c*-coefficients of the cubic natural spline interpolation of the data listed below (but do not solve the system) :

ſ	x _i	0	2	2.5	3	3.5	4	4.5	5	6
ſ	y _i	0	2.9	3.5	3.8	3.5	3.5	3.5	2.6	0

3. a) Calculate the derivatives of order 0 up to 3 at the "left" argument positions x_i for the cubic spline patch $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$ (i = 0, 1, ..., n - 1)

b) Calculate the derivatives of order 0 up to 3 at the "right" argument positions x_{i+1} for the cubic spline patch $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$ (i = 0, 1, ..., n - 1)

4. a) The data below comes from one single straight line. Find (!) or compute the "cubic" natural spline interpolation in the range [-1, 3]. <u>*Hint*</u>: By logical reasoning computations can be reduced significantly.

х	-1	0	1	3
у	0	1	2	4

b) The data below comes from the parabola $y(x) = x^2$. Why does the cubic natural spline interpolation not reproduce the parabola ? No computations required here.

x	-1	0	1	3
у	1	0	1	9

1

c) What values will be expected for the *c*- and *d*-coefficients for a natural cubic spline interpolation if the data points (x_i, y_i) (i = 0, 1, ..., n) come from one single straight line? <u>*Hint*</u>: A spline interpolation generally is unique. Consider the right hand side of the system of equations for a natural spline interpolation.

5. ** The natural cubic spline interpolation minimizes the mean total curvature $\int_{x_0}^{x_0} |f''(x)|^2 dx$ (a

measure of "energy") among all interpolating C^2 functions f in the range $[x_0, x_n]$. This fact is called Holladay theorem and its proof is not an easy exercise at all.

Hint: Schaum's Outline of Numerical Analysis 2nd ed., Problem 9.17

6. ** The piecewise linear spline interpolation *S* minimizes the mean total slope $\int_{x}^{x_n} |f'(x)|^2 dx$

among all interpolating continuous function f in the range $[x_0, x_n]$ that are piecewise C' (per patch). The proof of this fact is not an easy exercise.

<u>*Hint*</u>: Repeat the reasoning in Schaum's Outline of Numerical Analysis 2nd ed., Problem 9.17, starting with the expression $\int_{x_0}^{x_n} |f'(x)|^2 dx - \int_{x_0}^{x_n} |S'(x)|^2 dx.$

2