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Numerical Ordinary Differential Equations

Introductory outline of methods

1. First-order initial value problems

A first-order initial value problem is a differential equation of the form

|y'(x) = f(x, y(x))| with initial condition |y(x,) = ¥, (1.1)

The function f often is called the r.h.s.-function of the equation and often is subject to constraints like
continuity (C°) or continuous differentiability (C', C?, CB ...).

Example 1.1: Angle function of Keplerian Earth orbit from Keplers 2™ law

From Kepler's second law it follows (cf. appendix) that the angle-time function ¢(¢) ' fulfills the first-
order differential equation

o0 =2"2" (1‘“;52("’(”)) p(0)=0 (12)

Na*-b?
a

merical eccentrity (in case of an elliptic orbit 0 <& <1)and p =a(l - ,92) the (elliptic) parameter.
The angle @ denotes the polar angle (s. Figure 1.1a below).

Here a and b denote the elliptic semi-axes (a > b), T the orbital time period, ¢ = the nu-

Figure 1.1a: Elliptic orbit with gravita-
tional center in focus F1 (center of polar
coordinate system). The polar equation
V4

1—-&cos(p)

of the ellipse is (@) =

and the cartesian equations follow as
x =r(p)cos(p), y =r(p)sin(p) .

A “simple” formula? for ¢(¢) thus would

yield formulas for the cartesian coordi-
nates of the orbit and the velocity.

" This angle is named eccentric anomaly in celestial mechanics
2 There is no elementary formula in closed form for ¢(¢) . A rather advanced representation is the
following. For the circumcircle center angle @ there is an infinite Fourier series

~ t 4 > 2 . 4
(0(272'?) = 27ZF+ Z—JH (ne)sin(n- 272';) with J, denoting the Bessel functions of the first kind:
n

n=1
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Abbreviating the constant ¢ := 2 (1.2) has the shorter form

Q'= c(l —-¢ cos(go))2 »(0)=0 (1.2)

with right-hand side function f(z,¢) = c(l -& cos((z)))2 only depending on ¢ .

Time—Angle ]
12t Figure 1.1b: Some real data
0 diagrams of Earth orbit.
Time-Area is a straight line by
81 Keplers 2M law, but Time-Angle
6L is not a straight line as the the
angles derivative is not constant.
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1 T
J, (x)= —jcos(nr —xsin(z'))dr (cf. H. Heuser, Gewdhnliche Differentialgleichungen, 5t edition,
7 0
Teubner).

From ¢ one can deduce r(t) = \/(ea + acos(g?(z‘)))2 + (b sin(gZ(z‘)))2 and from this the time-

dependent formulas @(t) = arccos y_p , (OStSZ) and
£ r(t) 2

o(t) = arccos l P +7, (Z <t<T), respectively.
£ r(t) 2




3 Numerical Analysis
OST,{.. Dr. Bernhard Zgraggen

1.1 Explicit methods

If the r.h.s.-function f* in (1.1) fulfills smoothness conditions then solutions for (1.1) have smoothness
properties, too. The Taylor expansion and the multi-variate chain rule for differentiation play a key role
in the development of explicit methods. More precisely:

Property 1.1: Differentiability order for solutions and Taylor expansions

If the r.h.s. function f in (1.1) has continuous partial derivatives up to order p_> 1 in an open
neighbourhood U’ of (x,,y,) then a solution? y of (1.1)

(a) is continuously differentiable with respect to x in a neighbourhood of X, up to order p+1, and

(b) for x, x+h in a neighbourhood of x, has Taylor expansions of the form

y(x+h)=
' " " 4) (p) (p+) =
y(x)+y(x)h+y (x)h2+y (x)h3+y (x)h4+.“+y (x)hp+y (é)hpﬂ
1! 2! 3| 41 ! (p+1)
s L 5(@) -
1(of(x, 8 X,
2! ox
o’ 8 0
,[ L2 L0 fe v+ f( TIED .y’ +( F(x ”J S ey +
3! 6x y (1_3)
o (x.y) 6f(x,y)J e
ox Oy
1 4) 4 1 (p) 1 (p+D) +1
— X h'++— Pl (x h? + —— r h?
R e R
Expressions in w Expressions in w Expressions in M
otx. ! otx. ! dtx !
with ‘a‘s4—l with ‘a‘Sp—l with ‘a‘Sp
: tr 8 , xv ) 8 , .Y, y '
Y0 =V (5, 3)-(Ly ) = L T
OoxX oy
' A typical situation is a rectangular neighbourhood “around” (xo, yo) :
U ={x,~h <x<xgth Ay, —h <y <y, +h}.
- e . o Of(xy) .
0 be more precise: If /' is continuous and has a continuous partial derivative 8— in U, then there is a
y

unique (local) solution for (1.1) in a neighbourhood of (xo, yo) . This is the Picard-Lindel6f theorem.

If £ is continuous in U then there is a local solution for (1.1) in a neighbourhood of (X, ;) . This is the Peano

theorem. For the proofs cf. H. Heuser, Gewohnliche Differentialgleichungen, 5" edition, Teubner, or Schaum’s
Outline of Numerical Analysis, 15t ed., Problem 19.7 (Picard-Lindel6f theorem).
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1.1.1 Explicit Euler method

From Property 1.1b the explicit Euler method can be deduced when setting the order p = 1:

7@,
)

Yx+h) = y(x)+y (h+222

) = 30+ £ b+ L (@‘(5 U, EE)
Y

f (s‘,y(cf))]h2 (1.3A)

Applying (1.3A) iteratively for x =x, +kh (k =0,...,n) with a fixed step-size / yields the following
scheme for computing a discrete sequence of y-values:

= y(x,)
Y(xg+h) =y =y + [ (x5, yo)h = y(x4) + ¥'(x)h
Y +h) =y, =y + f(x,y)h= y(x)+y'(x)h
: (1.3A")
: Vi =V + f(x,y0)h
y(xn_l +h) RV, =V +f(x,,_1,yn_1)h ~ y(xn_1)+y'(xn_1)h

y(xn +h)zyn+l :yn+f(xn’yn)hzy(xn)+y'(xn)h

This scheme is called explicit Euler method. The size of 4 is called step size. It has not necessarily to
be constant and thus may have an index £, too.

Example 1.2: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2" law

According to (1.2’) the time differential equation for the angle function is ¢'= c(l - e;"cos((o))2 with

initial value @(0) = 0. The right-hand side function is f(¢,¢) = c(l -& cos((z)))2 only depending on
@ . The scheme (1.3A’) takes the following form:
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9, =0 £=0
@ =0y + [ty 0)h=0+c(l-&)h
0, =+ f(t,p)h=c(l—ef h+ c(l —gcos(c(l-&f h))zh

Oen =0+ [t 0)h =90, +C(1 _ECOS(%))Zh
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Figure 1.2a: Figure 1.2b: Figure 1.2c:
c=1,6=025h=1.6,n=4 c=1,=025h=0.5n=9 c=1,6=0.25h=0.1,n=59

Obviously, there are errors between the approximation values y; and the “true” solution values y(xx) .
The explicit Euler method is rather inaccurate since it assumes that the derivative remains constant
per step. In spite of that the method is convergent if the r.h.s-function f* is continuous in a neighbour-

hood of the initial point. Convergence means that for x = x, =x, , +h,, (k€ N) in an appropriate

neighbourhood of X, the maximum difference

IOE?%‘J% ~y(x)| >0 (h=maxh, —0) (1.4)

This quantitiy is called global error'. (Fixing x = x, means that k£ — oo if maxh, —0.)

1

The explicit Euler method is a special case of the Taylor method: It is an iterative application of Prop-
erty 1.1b when setting the order p to 1. Setting p to higher values yields higher-order Taylor methods.

' The local error or single-step error of a p-th order local Taylor method is defined as

_ ' " (p)
7,(x,)= y(x, + h}z yoa) (¥ (1)'6”) 42 ;)'C”) h' -i----+y—('x”)h"’_1 or multiplied by the step-size
! ! p!

has ht,(x,)=y(x, +h)—y(x,)— . Assuming that the

' " (p)
y(xn)h+y (x”)h2+"'+y (xn)hp
I ! P!

initial value of the current step is exactly correct, i.e. y, = y(xn) , the local error hrh (xn) is equal to

= y(x, + h)—y,,, whichis intuitively

' " (»)
y(x, +h)— yn+y(l)'cn)h+y () oy 200 ('x")h”

2!

Yn+l

the meaning of a local error.
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1.1.2 Higher-order local Taylor methods

From Property 1.1b the explicit Euler method was deduced from the Taylor method by setting the or-
der p equal to 1. This was a truncation of the Taylor expansion after the first derivative. Using Property
1.1b again but truncating not before the p th derivative yields a generic scheme of order p:

H " (4) (p)
y(x, +h) =~ y(xk)+y( k) ;)'Ck)hk2+y ;xk)h,f —4('xk)h 4oeg? ('xk)hkp
! p!
which in short form is written as
Vo = ¥(xy)
' " " (4) (p) 15)
_ Vi Y 2 Yk 3 Vi 4, yk » (
YVimm =V + I h, + ol h,” + 3 h,” + 41 h, + ! h,

The disadvantage of this method are the costs of the computations of higher-order derivatives, as:

) = (@‘(x, My, I o y("”j o i (af(xk,m LI yk)j
ox oy ox oy

y%ﬂ[?éf”naaﬂ’”ﬂ,ﬂ»+ SN g, (»4{“@”}f@ﬂﬂﬂ

oxQ o
CACRILACIONDN
ox Oy
e (a f(@xkz,yk)l Nk f(xk,mf( R f(xkz,mf(xk,yk)z+(af<xk,yk>] P+
X ox0y oy oy
o (x5 0) Of (x, 34)
ox oy

a.s.o....

Example 1.3: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2" law

According to (1.2’) the time differential equation for the angle function is ¢'= c(l - e;“cos((p))2 with

initial value @(0) = 0. The right-hand side function is f(¢,¢) = c(l - cos((z)))2 only depending on
@ . In order to implement the scheme (1.5) we need the partial derivatives of f.

%f =0, aif = 2c(1 — gcos(p) e sin(p) = 2cesin(@) — ce” sin(29)
()

0
From this it is already obvious that any partial derivative containing the operation — is 0 and only

derivatives with respect to ¢ have to be considered:
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2
o’
83
op’
64
op*

f =2cecos(p)—ce’2cos(2p)
[ ==2cesin(p)+ce*2’ sin(2¢)

f==2cecos(p)+ce’2’ cos(2p)

For order p = 2 the scheme in (1.5) with constant step size /, =/ takes the following form:

(00:0

@p =0, +c(1—gcos(p,) ) h+ %(26’8 sin(p, ) — c&” sin(2¢p, ))c(l —gcos(p,)) h’

The next figures show a number of steps with constant step-size. They should be compared with

Figure 1.2ab.
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Figure 1.3a: Local Taylor method of order 2 | Figure 1.3b: Local Taylor method of order 2
with c=1,6=0.25,h=1.6,n=4 with c=1,6=025h=05n=9

For the proof of the convergence in formula (1.4) we need a special notion of continuity called Lip-

schitz-continuity.

Property 1.2: Lipschitz continuity of derivatives up to order p-1.

If the r.h.s. function f* in (1.1) has continuous partial derivatives up to order p > 1 in a compact
convex set K then there is a constant L >0 such that

a ata, ata,

0
ox“1 0y Jey) ox“oy”

if o +a,<p-1.

zf(x’)?)SL|y_.)7| (x’yayEK) (1.6)
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The constant L >0 is called Lipschitz constant. The set K often is a rectangular neighbourhood
around a central point.

x,y,yeK NERY
LIRS Aoy +a,
Ox% oy f (Xw )) - O o™ f (~\45 }"’) 5 petas | ’
: : —| o S (%,6)
‘ Y — f-‘ (’3\' 6‘\’“1 (/\“1;[/: . >
S, €(,y) <p

Q oy +ay

(@ (@ . .

a ( A% Ay, ,f(.\', )‘)]
oy\ ox oy -

v

Theorem 1.1: Convergence rate of global error for local Taylor methods

Assuming that the r.h.s. function /" in (1.1) has continuous partial derivatives up to orderp > 1 in a
rectangular compact set R around the central point (x,, y,) and that (1.1) has a solution y in R.

Then the local Taylor method (1.5) of order p is convergent with order p:

h? eM(xk—xw -1
max|y, — y(x,)| < B =0h") (h—>0 1.7
OS_SkIy, y(x,)| Dl M (h?) (h—0) (1.7)
with constants B, M and & = max#, .
0<i<k

1.1.3 Explicit Runge-Kutta methods

As mentioned above the local Taylor methods have rather high costs arising from computions of high-
er-order derivatives. On the other hand, as an advantage the order of convergence rate is the same as
the order of the highest derivative (cf. Theorem 1.1 or (1.7)).

The explicit Runge-Kutta methods are devised so as to keep a high-order convergence rate while
avoiding the computations of high-order derivatives. Instead, these methods use additional (intermedi-
ate) evaluations of the r.h.s. function f. The next subsection gives the idea behind the methods:

1.1.3.1 Explicit Runge-Kutta methods of order 2 (Heun, Midpoint)
We are to find coefficients a, b and m, n such that the (so-called 2-stage Runge-Kutta) formulas

ky=hf(x,y)
k,=hf(x+mh,y+mk))

} 2 stages

(1.8)
y(x+h) = y(x)+ak, + bk,

duplicate the Taylor series of the solution y through the (second-order) term in h* . The last formula of
(1.8), though not a polynomial expression, is then near the Taylor polynomial of order 2.



9 Numerical Analysis
Dr. Bernhard Zgraggen

Introducing the usual abbreviations for f'and its partial derivatives we get from (1.5):

y(x+h)zy(x)+fh+l(fx wf +% Sa* 20 S+ LS+ LS+ ST (1.82)

A ——
B e 1A

Multi-variate Taylor expansions for the k-values produce:

ky=hf

1 1
k, = h(f + f.mh+ fymk1+5 " m’h + Sy (mh)(mk;) +5 yymzklz +j

= h(f + fomh+ f mhf +% - mh’ + S (mh)(mhf) +%fyymz(hf)2 +j (1.8b)

=h f+m(f, +fyf)h+%m2(fxx+2fxyf+fyyf2)h2+~--

B £y

Combining the expressions in (1.8b) as suggested in (1.8) yields
y(x+h) = y(x)+(a+b)hf +(bm)Fh’.
Comparing coefficients with (1.8a) up to order 2 then gives a redundant system of equations:

a+b=1,bm:%. (1.8¢)

1
A (possible) solutionis a =b = E ,m=1 and then

y(x+h) = y(x) +%hf(x, ) +%hf(x +1h,y+1hf (x,y)).

This is called Heun’s method. Its recursive scheme in the discrete sense of (1.5) is:

Yo = y(x,)

1 (1.9a)
Vi = Vi +Ehk(f(xk7yk)+f(xk+l7yk +hkf(xk’yk)))

with x,,, = x, + A, and step-size i, >0 (k=0,,...).

1
Another (possible) solutionis a=0,b=1,m= 5 and then

y(x+h)= y(x)+hf(x+%h,y+%hf(x,y)j.

It is not possible to match the whole cubic #3-coefficient of (1.8a) with 2 stages: The best thing to achieve would

1 1
be to match the Fz-part with the additional condition Ebm2 = R This would determine b=3/4,m=2/3

1
uniquely. But in any case the part g(fyfx + nyzf) remains unmatched.
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The latter is called explicit midpoint method. Its recursive scheme is:

Yo = y(x,)

1 1 (1.9b)
YVia =W Hh| f(x, +Ehk7yk +Ehkf(xk7yk))

with x,,, = x, + A, and step-size i, >0 (k=0,,...).

Due to redundancy in the system (1.8c) an infinite number of solutions is possible. Yet another solu-

1 3 2
tion often used is a=—,b :Z ,m =§ (cf. footnote to 1.8c for the optimality of this). Its recursive
scheme is
Yo = Y(x0)

2 (1.9¢)

1 3 2
Vi = Vi +thf(xkayk)+zhk(f(xk +§hkayk +§hkf(xk7yk))j

with x,,, = x, + A, and step-size 4, >0 (k=0,L...).

The convergence rate of the Runge-Kutta methods of order 2 is 2 if the conditons of Theorem 1.1 are
met. This is not a surprise, since the Runge-Kutta methods duplicate the local Taylor polynomial up to
order 2 they duplicate the convergence rate, too.

1.1.3.2 The classical Runge-Kutta method of order 4

A classical and often used Runge-Kutta method generalizes the ideas of the previous section to order
4 in a straightforward way.

Theorem 1.2: Common Runge-Kutta method of order 4

Assuming that the r.h.s. function /" in (1.1) has continuous partial derivatives up to orderp =4 in a
rectangular compact set R around the central point (x,, y,) and that (1.1) has a solution y in R.

The 4-stage Runge-Kutta formulas

kl =hf(x,y)

k,=h f(x+mh,y+mk,)

ky=h f(x+nh,y+nk,) (1.10a)
ky="hf(x+ ph,y+ pk;)

y(x+h) = y(x)+ak, + bk, + ck, + dk,

duplicate the Taylor polynomial in (1.5) up to order p = 4 if the following (redundant) system of 8
equations is fulfilled:
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a+b+c+d = 1 cmn+dnp = %
bm+cn+dp = % cmn® +dnp® = %
1.10b
s S (1:100)
bm” +cn” +dp” = 3 cm'n+dn"p = o
1 1
bm’ +cn’ +dp> = — dmn = —
P 4 P 24

The rate of convergence then is of order p=4, i.e. o(h*) (h—0).

Example 1.4: Classical Runge-Kutta method of order 4

1 1
The classical solution to (1.9b) is m=n=—,

2 6

i)
Il
)
I
S”
I
I
S
I

1
c=§ leading to the

Runge-Kutta formulas

kl :hf(xay)
1 1
k2 :hf(X‘f‘Eh,y‘f‘Ekl)

1 1
ky=h +—hy+—k
3 S(x > Y ) 2)

ky=hf(x+hy+k;)

(1.10¢c)

y(x+h)~ y(x)+%(k1 + 2k, + 2k, +k,)

It is remarkable that for a (continuous) r.h.s-function /"= f{x) not depending on y the classical Runge-
Kutta formulas (1.9¢) turn into an integral approximation formula (Simpson’s rule):

T s =y 1) = ()~ %h(f(x) . 4f(xo + gj +f iy + h)] (1.100)
Yo y'(x)

Example 1.5: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2 law

According to (1.2") the time differential equation for the angle function is ¢'= c(l —5cos(qo))2 with

initial value @(0) = 0. The right-hand side function is f(¢,¢) = c(l — Ecos((z)))2 only depending on
Q.

The classical Runge-Kutta 4-stage formulas turn into the following recursion:
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k, = hkc(l -& cos(gok))2
2
k, = hkc(l —&cos(p, +— kl)j
) 4 stages
ky = hkc(l —&gcos(p, + kz)j
k, = hkc(l —ecos(p, + k3))2

Dy =(p(l‘0)=¢)(0)=0
1 :
go_m=¢j+g(k1+2k2+2k3+k4) (j=0,1,..)

Figure 1.4: Fixed step size & = 0.5.
The figure compares the classical
Runge-Kutta method (red points) with
the explicit Euler method (gray points)
and a high-precision reference solution
(dashed curve) for c =1, =0.25.

~
/' * Tk Classzsical Runge-Kutta ExplicitEuler
A 0. 0.
e 0.5 0.283747 0.z8l1z5
Rt 1. 0.583133 0.565%%15
.2 1.5 0.5917255 0.881581
/x’ = . 1.31255 1.23524
g = .5 1.80856 1.6563
Peiel 3. 2.4443 2.17788
=7 ~ 3.5 3.20243 2.83087
2 4 14, 2.94783 2.5%97
4.5 456027 4.34673
S, S.032737 4.9401z2
5.5 S.4z1z26 5.38527
& S5.7484¢ 5.7416
Pl = £ A A = BN

Tables 1.1ab: Numerical comparisons of globar errors for different
step sizes: (h=0.5, h =0.1)

L=

Classical Runge-EKutta

ExplicitEuler
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[ d = 3y 20 Oy 2 s =0 0 s Oy ED

. 1o-18

oo ooOooooo oo oD
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o c b D gy [ WD cocm W0 S L in o [
[ C s s s WD s B -1 D O R
[l b= B (0 O G (2 D L G s 0
[ 0 0 = O G s 0 0 = MO G ] LD




13 Numerical Analysis
Dr. Bernhard Zgraggen

1.1.3.3 A general framework for Runge-Kutta methods (Butcher tableaus)

In this subsection the method and computations of the previous section will be extended. The general-
ization of formula (1.9a) is the s-stage Runge-Kutta procedure:

k= f(x+ch,y+hY a k)
Jj=1

81

ky=f(x+c,h,y+hY a, k)
Jj=1

&2

k, =f(x+c3h,y+h2a3’jkj) s stages
=1

&3

ks = f(x + csh’ y + h‘zasa!’k./)
Jj=1

&s

Y+ h) = y(0) + h[ibjkjj

(1.11a)
Astep from x,to x,,, =x,+h  (n=0,,...) inthe general Runge-Kutta method then is
ky=f(x,+ch,y, +hn2a1’jkj)
Jj=1
k,=f(x,+ch,,y, +hn2a2,jkj)
Jj=1
&
ky=f(x,+c5h,,y, +hn2a3,jkj) s stages
. (1.11b)
&3
ks :f(xn +cshn’yn +hnzas,jkj)
J=
g‘i

yn+1 = yn +hn zb/k/

J=1

The numbers ¢, ;,b, and ¢, (i,j=1,2,...,s) - usually called a-numbers, b-numbers or c-numbers,

respectively - are laid out in a Butcher tableau:
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C1 | 11 12 s
Cp | 21 22 (s
Cg flgq flgg ... lgg

For explicit Runge-Kutta methods it is required that ¢, = 0,,, = 0 and that the matrix of a-numbers is

strictly lower triangular: @; =0 (j 21i). The Butcher tableau then specializes to

cylazr O - 0

Cg | 5,1 52 s 5-

(1.11¢c)

i-1
Moreover, it is common to require the row-sum-property: ¢, = Zay = Zau

(i=2,..5) (1.11d)

J=1 J=1

Property 1.3 : Consistency condition for explicit Runge-Kutta methods

+h
The local error of a step is defined as 7,(x,) = y(x, ) y(x,) (z j (1.12a)

Assuming that the r.h.s. function f in (1.1) has continuous partial derivatives in a rectangular com-
pact set R around the central point (x,, y,) and that (1.1) has a solution y in R, then

max(r, (x,)| =0 (h=maxh, —0)

(1.12b)

provided that ij =1.

VO, 4B = 95, + £ G y(e ) et o) = 2Ca D ZIE) )~ o)

h —
y'(x,)

k=f, k,=f+o) (j=2,..5)
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_y(x, +h)-y(x,) B
h

/.jf—( “ b,}o(l)

[;/?,»(.f'+()(1))]:

j=l1

The property (1.12) of the local error is named consistency condition.

Example 1.6: Butcher tableaus for some explicit Runge-Kutta methods

0 o‘
0
12112 ’T 2/3(2/3
12la a8z e
1 o o 1 0|
1/6 1/3 1/3 1/6 L2112

[¥¥]

Explicit Euler method (cf. 1.3A")
Explicit Midpoint method (1.9b)

Classical Runge-Kutta of

order 4 (cf. 1.10c) 1.9¢)

Yet another method (cf.

Example 1.7: FSAL-Schemes

A interesting class of explicit Runge—Kutta methods, used in modern implem

entations, are those

for which the coefficients have a special structure known as First Same As Last (FSAL):

a;=b, (j=l..,s-1)and b, =0.

For consistent FSAL schemes (cf. Property 1.3) the Butcher tableau has the form:

0 0 0

ez | A3y 0
Cr—1 | @s—1,1 512

1 Fal b9 £

s—1
with » b, =1.
Jj=l
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An advantage of FSAL methods is that the function value &, at the end of one step is the same as the
first function value k1 at the next integration step. The most important examples for FSAL-schemes are
the embedded Dormand-Prince adaptive Runge-Kutta method of orders 5 and 4, respectively, also
known as RKDP5(4), or the Bogacki-Shampine 5(4) method, also known as RKBS5(4).
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1.1.4 Adaptive explicit methods

Standard implementations of numerical solvers for differential equations support features for step-size
(h«) adaption. This means that there is a need of some sort of generic quantitative criteria and norms
allowing the computation (i.e. adaption) of an “optimal” step size. Most common implementations use
estimates of the local error (1.12a) to control the step size.

1.1.4.1 Embedded pairs of explicit Runge-Kutta methods
An embedded pair of explicit Runge-Kutta methods consists of two Runge-Kutta schemes of different
orders p and p that share the same coefficient matrix and hence function values. A commonly used

notation is p(p) typically with p = p—1 or p = p+1. This constitutes an efficient means of obtain-

ing local error estimates for adaptive step-size control. The combined Butcher tableaus of an embed-
ded pair has the form (cf 1.11.c):

0 0 0 0 0
cy | azl 0 -+ 0 0
A
Cs—1 | s-1,1 As-12 0 0
Cs as. 1 as2 - dgs—1 0
by b bs—1 bs

by by - byy by (1.13a)

From this scheme two solutions are given according to (1.11.b):
yn+l = yn +hnzbjkj
- (1.13b)
j}n-%—l = yn +hnzbjkj
Jj=1

In modern codes the solution normally is evolved with the higher order formula so that p = p —1 (so-
called local extrapolation mode).

From the difference in (1.13b) we get a measure for the local error (in the current step):

€n = hni:,(bj _Ej)]‘j = e = hni}(bj _Ej)]‘j (1.13¢)
J= J=

The double bar indicates that a norm function is used. This yields a scalar measure and will be useful
for the case of systems of differential equations® when y = y(x) is a vector solution function (then, of

course, k =k and e,=é, are vectors, too).

" An m-dimensional system of differential equations generalizes (1.1) to

¥'(x) = £ (x, 5(x)) = (f,(x, 5(x)), f,(x, 5(x)), -+, £, (x, $(x))) with initial vector condition J'(x,) = ¥, -
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The classical step-size control uses the formula’:

—_

=t
3]
< -

By =h| = =h|— p=min{p, p}+1 (1.13d)

n

The tolerance parameter & commonly considers absolute and relative tolerances (accuracy and pre-
cision):

E=¢g,+¢,

Vs (1.13¢)

Given accuracy and precision goals, ag and pg, respectively, the absolute and relative tolerances are
computed as &, =10"* and &, =10""*, respectively. Typical settings for these goals are 8, 16, 24,

32 a.s.o. Accuracy of a number is defined as the effective number of digits to the right of the decimal
point. Precision of a number is defined as the effective number of digits?.

In modern implementations non-classical extensions of the step-size formula (1.13d) are widely used.
The next formula is known as scaled proportional integral step control.

h,, =sh

n+l n

P =min{p, p}+1 (1.13f)

n

' In the case of an m- dimensional system of differential equations the norm in (1.13d) generalizes to a scaled

p

e(l) (2) (m)

. h — h n en en . . .
vectornorm: 1, =n, ik I = with the super-scripts in round
ga +8r y?‘l ga +8r y?‘l ga +8r yn
w Wy Wi

brackets indicating vector components. The double bar denotes a scaled g-norm (g > 1 with typical cases ¢=1 or
q=2) or the infinity norm, i.e.

1
1 & PR
O, = Sl | or s s, . = .
i=1

1<i<m

1

2 With (absolute) uncertainty dx = &, the accuracy of a number x is equal to log(d—) = —log(dx) and thus
X

the absolute uncertainty &, is equal to 107%™ The precision of a number x # 0 is equal to

X dx dx _ precisi
log(a) = —10g(7) and thus the relative uncertainty o = ¢, isequalto 107"

A typical value for the precision is a 53-Bit representation: precision(1.0) = % =15.95458977... (machine

precision).
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The numbers ¢; and ¢, are step-size control parameters and si,s, are step-size safety parameters. For
Typical settings are {ci, c2} = {1, 0} together with {si, s»} = {0.85,0.9} or {ci, ez} = {0.3, 0.4} together
with {s1, s2} = {0.85, 0.9}.

Another additional feature is step-size ratio bounding: By two ratio bounds {ri, r»} the ratio of step-

the first integration step it is taken that |le, || = |l

n—1

n+l

sizes is bounded as 7 < <r,.Atypical setting is {0.125, 4} .

n

Example 1.8: Heun-Euler 2(1) method

The combined Butcher tableau for Heun-Euler is (cf. 1.9a):

Heun-method (single step)

0
111 Yo = y(x,)
1/2 1/2 1
1 0 Vit ® Vi +§hk Sy )+ g+, v+ f(x,040))

oc ky oc ky
Euler (single step)
Vin =V + S (x, 0h,

where x,,, =x, +h, and step-size i, >0

So by (1.13c) we get a simple local error estimate in the form of e, =y, — V..,

1 1 1
—Ehkk1+—hkk2:—hk(kz—kl)and the classical step-size control formula (1.13d) equals

&)

The most basic use of (1.13d) is as follows:

Py = 2

n

—j is > 1 then the step is rejected, i.e. repeated with unal-

= |f the scaled error norm expression (
&

1
. -
tered values of x, and y, but with a new decreased step-size h,,, = h,| — | <h,.
&

e
= If [—"J is < 1then x, > x,,,=x,+h and y, > y,,, . The next step is processed with
£
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U ~= | Figure 1.5a: Comparison of em-
‘-_.a--“ bedded adaptive Heun-Euler 2(1)
6 - E _‘___,-" method (gray) with non-adaptive
e Heun method (red points) with
5[ ,f'f fixed step-size 4 = 0.1.
R ”
A e The embedded method has been
’ ..-;/ run with 169’832 steps and step-
J,—)-’ size safety factors {1,1}, step-size
°r - control parameters {1,0} and step-
Ve size ratio bounds between 0 and .
s
1k 0.00026 +
ﬁ ! A 0.00024 |
0.00022 -
0.0002 +
0.00018 +
0.0 1.0 1.5 2.0 2.5

Figure 1.5b: Variable step-size plot...

Tables 1.2ab: Numerical comparison of the methods in Example 1.8. The adaptive embedded
method Heun-Euler 2(1) is not always more accurate (cf. left table). Its costs are very high due to the
large number (169832) of small steps. The accuracy goal is 4, the precision goal is 4, too.

ty Heun-Euler 2(1) Heun Reference Tk Heun-Euler 2(1) Heun Reference
2.412441.71258 1.71262  1.71319 1.09801 0.6451I93 0.645298 0.645173
2.41269 1.71285 1.7129 1.71346 1.09827 0.645358 0.645462 0.645337
2.41294 1.71312 1.71317 1.71373 1.09853 0.645522 0.645627 0.645502
2.41319 1.71339 1.71344 1.714 1.09878 0.645687 0.645791  0.645667
2.41345 1.71367 1.71371  1.71427 1.09904 0.645851 0.645956 0.645831
2.4137 1.71394 1.71398 1.71454 1.0993 0.646016 0.646121 0.645996
2.41395 1.71421 1.71425 1.71482 1.09956 0.646181 0.646285 0.646l61
2.41421 1.71448 1.71452  1.71509 1.09981 0.646345 0.64645 0.646325
2.41446 1.71475 1.71479 1.71536 1.10007 0.64651 0.646615 0.64649
2.41471  1.71502 1.71507 1.71563 1.10033 0.646674 0.646779 0.646655
2.41497 1.7153 1.71534 1.7159 1.10058 0.646839 0.646944 0.646819
2.41522  1.71557 1.71561 1.71618 1.10084 0.647004 0.647109 0.646984
2.41547 1.71584 1.71588 1.71645 1.1011 0.647169 0.647273 0.647149
2.41573 1.71611 1.71615 1.71672 1.10135 0.647333 0.647438 0.647314
2.41598 1.71638 1.71642  1.71699 1.10161 0.647498 0.647603 0.647478
2.41623 1.71665 1.7167 1.71726 1.10187 0.647663 0.647768 0.647643
2.41648 1.71692 1.71697 1.71753 1.10213 0.647828 0.647932 0.647808
2.41674 1.7172 1.71724  1.71781 1.10238 0.647992 0.648097 0.647973
2.41699 1.71747 1.71751 1.71808 1.10264 0.648157 0.648262 0.648138
2.41724  1.71774 1.71778 1.71835 1.1029 0.648322 0.648427 0.648303
2.4175 1.71801 1.71805 1.71862 1.10315 0.648487 0.648592 0.648468

In the next subsections some widely used embedded pairs are presented.
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1.1.4.1.1 Bogacki-Shampine-Ralston 3(2) '

The Bogacki-Shampine-Ralston methods are implemented in Matlab as ode23, TI-85 and RKSuite.
Because of the relatively low orders they are not the first choice for high accuracy or precision. Their
prime advantage is speed.

The combined Butcher tableaus (cf. 1.13a) are:

0 0

1/2|1/2 1/2|1/2

3/4(0 3/4 3/40 3/4

112/9 1/3 4/9 1 12/9 1/3 4/9
2/9 1/3 4/90 2/9 1/3 4/90
7/24 1/4 1/31/8 -5/72 1112 1/9 -1/8

The first row of h-numbers is of order 3 (due to Ralston) and the second (embedded) method is of
order 2.

Obviously it is a 4-stage FSAL-scheme (cf. Example 1.7) and uses only three function evaluations per
step.

1.1.4.1.2 Sofroniou-Spaletta 3(2) 2

The Sofroniou-Spaletta-method is implemented in Mathematica (NDSolve). By the relatively low or-
ders it is not the first choice for high accuracy or precision. Its prime advantage is speed.

The combined Butcher tableau (cf. 1.13a) is:

0
1 !
2 2
1 -1 2
| 1 2 1
6 3 6
1 2 1 0
6 3 6
1 1 1 1
5 (V82 —10) = (10-V82) —-(28-V82) (V82 -1

The first row of b-numbers is of order 3 and the second (embedded) method is of order 2.

" Bogacki, Przemyslaw; Shampine, Lawrence F. (1989), "A 3(2) pair of Runge—Kutta formulas”, Applied Mathe-
matics Letters 2 (4): 321-325

Shampine, Lawrence F.; Reichelt, Mark W. (1997), "The Matlab ODE Suite", SIAM Journal on Scientific Compu-
ting 18 (1): 1-22
2 Sofroniou, M. and G. Spaletta. "Construction of Explicit Runge—Kutta Pairs with Stiffness Detection." Mathemati-

cal and Computer Modelling, special issue on The Numerical Analysis of Ordinary Differential Equations, 40, no.
11-12 (2004): 1157-1169
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Obviously it is a 4-stage FSAL-scheme (cf. Example 1.7) and uses only three function evaluations per

step. It has the additional property that ¢, , =c, =1. For this the method is suitable for stiffness de-
tection.

Example 1.9: Comparison of 3(2) methods

The accuracy and precision goal is set to 4.
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Figure 1.6a: Bogacki-Shampine-Ralston 3(2) with step-size log-plot (rotated)
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Figure 1.6b: Sofroniou-Spaletta 3(2) with step-size log-plot (rotated)
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tx Bogacki-Shampine-Ralston 3(2) Reference | ty Sofroniou-Spaletta 3(2) Reference
0. 1.51937x10°%0 0. 0. 9.95264x 10721 0.
0.001 0.0005625 0.0005625 | 0.001 0.0005625 0.0005625
0.344349 0.194508 0.194508 0.63687 0.363458 0.363436
0.706688 0.40464 0.404633 1.17523 0.6952 0.695109
1.0701 0.627373 0.627351 1.57025 0.968519 0.968182
1.41839  0.859346 0.859248 1.90386 1.23061 1.23039
1.74965  1.10501 1.10484 2.19969 1.49656 1.4966
2.06869  1.37407 1.37413 2.47425 1.78007 1.78054
2.38772  1.68616 1.68683 2.74397 2.10001 2.10001
2.70969  2.05661 2.05699 3.01369 2.46396 2.46499
3.06934  2.544 2.54567 3.30319 2.89604 2.89794
3.31883  2.92013 2.92203 3.67422 3.47228 3.47235
3.55802  3.29291 3.29325 3.99103 3.93565 3.93338
3.79721  3.65761 3.65674 4.28567 4.3165 4.31573
4.05906  4.02811 4.02601 4.5803 4.64531 4.64521
4.40418 4.45458 4.45466 4.88659 4.93915 4.9391
4.84056  4.89767 4.89765 5.23133 5.22427 5.22422
5.27694  5.25916 5.25908 5.64254 5.51918 5.51934
5.73068 5.57777 5.57776 6.17127 5.85234 5.85245
6.24242  5.89481 589472 6.97127 6.31066 6.31098
6.826 6.22937 6.22924 7.77127 6.77322 6.77344
7.413 6.56194 6.56181 8. 6.91541 6.91568
8. 6.9158 6.91568
Table 1.3a: 22 steps with adaptive step-size Table 1.3b: 21 steps with adaptive step-size
Method| Steps Costs Error Method Steps Costs Error
BSR32 | {22, 35} 173 |0.0000177355 BSR32 | {426, 338} | 2294 |2.02487x107°

Ss32 | {21, 36} | 173 [0.0000390222 ss32 | {374, 337} | 2135 |5.30919%x107

Method Steps Costs Error
BSR32 |{195814, 155801} [1054847 |1.2843x1071°
SS32 | {171083, 149301} | 961154 |1.2843x10716

Tables 1.4abc: Comparisons for accuracy and precision goals 4,8 and 16. The second number in
the step-column is the number of rejected steps. The costs-column indicates the number of func-
tion evaluations and the error-column indicates the final (global) minimum of the relative and abso-
lute error.

1.1.4.1.3 Bogacki-Shampine 5(4) '

The Bogacki-Shampine 5(4)-method is fast and relatively accurate. It is the default explicit Runge-
Kutta-method of order 5 with embedded order 4 in Mathematica (NDSolve) . The combined Butcher
tableau (cf. 1.13a) is given below.

The first row of b-numbers is of order 5 and the second (embedded) method is of order 4.

This is a 8-stage FSAL-scheme which has the additional property that ¢, =c, =1. For this the
method is suitable for stiffness detection.

1 Bogacki, P. and L. F. Shampine. "An Efficient Runge—Kutta (4, 5) Pair." Report 89-20, Math. Dept. Southern
Methodist University, Dallas, Texas, 1989.
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Fachh schule
0
[
6 6
2 2z 4
9 27 27
318 e 1053
7 1372 343 1372
2 &8 _4 2 1960
3 297 11 143 3861
3 597 81 63099 58653 4617
4 22528 352 585728 366080 20480
1 174197 30942 8152137 666 106 _ 29421 482048
959244 79937 19744439 1039181 29068 414219
| 587 0 4440339 24353 387 2152 7267
8064 15491 840 124800 44800 5985 94080
587 0 4440339 24353 387 2152 7267 0
8064 15491 840 124800 44800 5985 94080
3817 _ 140181 4224731 8557 57928 23930231 3293
1959552 15491840 272937600 403200 4363065 4366535040 556956

1.1.4.1.4 Dormand-Prince 5(4) '

The Dormand-Prince 5(4)-method is fast and relatively accurate, too. It is the default explicit Runge-
Kutta-method of order 5 with embedded order 4 in Matlab (ode45) . The combined Butcher tableau

(cf. 1.13a) is:

0

1

5 5

3 3 9

10 40 40

4 4 _ 3 32

5 45 15 9

8 19372 25360 64448 212

9 6561 2187 6561 729

| Q17 355 46732 49 _ 5103
3168 33 5247 176 18656

B S0 15 2187 11
384 1113 192 6784 84
S S0 125 287 1L g
384 1113 192 6784 84
7 71 71 17253 22 1
57600 16695 1920 339200 525 40

The first row of b-numbers is of order 5 and the second (embedded) method is of order 4.

As before, this is a FSAL-scheme (7 stages) which has the additional property that ¢, , =c, =1. So

again, this is suitable for stiffness detection.

T Dormand, J. R. and P. J. Prince. "A Family of Embedded Runge—Kutta Formulae." J. Comp. Appl. Math. 6

(1980): 19-26
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Example 1.10: Comparison of 5(4) methods (higher accuracy and precision)

As in the previous example (1.9) the outputs of different 5(4)-methods are compared with respect
to costs, step-sizes and error. But the accuracy and precision goals now are set to 8.

6

8

2 4

6

8

oL

Figure 1.7b: Bogacki-Shampine 5(4) with step-size log-plot (rotated)
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ty Dormand-Prince 5(4) Reference tx Bogacki-Shampine 5(4) Reference
8 001000000000 3'58822%288511908_0 8 0005625000198| J 1.259961500 ¢ 10 !
9-9919900999 9-0095822999 9-0993622099 0.001000000000 0.0005625000198 0.0005625000198
0 Ed360a27es 0 3360552435 073360579500 0.3114536671 0.1757925955 0.1757925937
7 156847245 0 2850537185 0 2850852358 0.7885025102 0.4534865990 0.4534639697
: : : 1.226695364 0.7289452829 0.7289451212
1.491310525 0.9110238579 0.9108547784
1.815182659 1.157357470 1.157212157 1.649281086 1.027455611 1.027229834
2.078859641 1.383346335 1.383363876 2.071866808 1.377000287 1.377012682
2.314459499 1.610141936 1.610596021 2.380097951 1.678203236 1.678770652
2.529996757 1.842478439 1.843092763 2.644418397 1.976658679 1.977068109
%;33%32% %gg;%ggg%g %2?3%%2}38 2.889618660 2.291093426 2.291239768
3.136635090 2.643214077 2.645109856 3131818923 2- 800013243 2-002401759
3-128822989 28t eata 2-89289285¢ 3.399036312 3.044942213 3.046183650
3 2e0550508 5 281409084 5 4Tes005a 3.653303577 3.440389824 3.440372009
37917917585 37584184644 37583604620 3.907570841 3.818422680 3.816478442
31945305606 31871913037 3.869764701 4.170976584 4.174529993 4.172856311
4.165066261 4.166998028 4.165279893 4.434382328 4.488594312 4.488594112
4.452788705 4.509003023 4.509001927 4.706739431 4.771865773 4.771877870
4.740511149 4.804371522 4.804390752 5.019819319 5.054246549 5.054273413
5.041167423 5.072084236 5.072106524 5.414460706 5.360592745 5.360731538
g%%ég%;% g g%%%%ggz gg%%gggggg 6.006986598 5.752876048 5.752877709
LTI el Seheens | Gommmal b ¢z es
6.574808839 6.087136848 6.087154495 77625725857 ¢ 686151414 6 68611637
7.035753712 6.347278421 6.347273302 87050066000 e 912875713 2o iEToTee
7.517876856 6.622693833 6.622673953 . . .
8.000000000 6.915679697 6.915679756
Table 1.5a: 27 steps with adaptive step-size Table 1.5b: 23 steps with adaptive step-size
Method Steps Costs Error Method Steps Costs Error
DP5432 | {27, 23} | 302 |8.51259x10°° DP5432 | {930, 842} 10634 | 1.2843x10716
BS54 | {23, 31} | 380 | 1.9442x107° BS54 | {775, 624} | 9795 |2.56859x 10716

Tables 1.6ab: Comparisons for accuracy and precision goals 8 and 16. The second number in the
step-column is the number of rejected steps. The costs-column indicates the number of function
evaluations and the error-column indicates the final (global) minimum of the relative and absolute
error.



