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Numerical Ordinary Differential Equations 
 

Introductory outline of methods  

 
1. First-order initial value problems 

A first-order initial value problem is a differential equation of the form 

 

))(,()(' xyxfxy     with initial condition   00 )( yxy   (1.1) 

 

The function f  often is called the r.h.s.-function of the equation and often is subject to constraints like 
continuity (C0) or continuous differentiability (C1, C2, C3 ...). 

 

Example 1.1: Angle function of Keplerian Earth orbit from Keplers 2nd law 

From Kepler’s second law it follows (cf. appendix) that the angle-time function )(t 1 fulfills the first-

order differential equation 
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Here a and b denote the elliptic semi-axes (a > b), T  the orbital time period, 
a

ba 22 
 the nu-

merical eccentrity  (in case of an elliptic orbit 10   ) and )1( 2 ap  the (elliptic) parameter. 

The angle   denotes the polar angle (s. Figure 1.1a below).  

 

Figure 1.1a: Elliptic orbit with gravita-
tional center in focus F1 (center of polar 
coordinate system). The polar equation 

of the ellipse is 
)cos(1
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and the cartesian equations follow as  

 )sin()(),cos()(  ryrx  . 

A “simple” formula2 for )(t  thus would 

yield formulas for the cartesian coordi-
nates of the orbit and the velocity. 

                                                           
1 This angle is named eccentric anomaly in celestial mechanics 
2 There is no elementary formula in closed form for )(t . A rather advanced representation is the 

following. For the circumcircle center angle ~  there is an infinite Fourier series 







1

)2sin()(
2

2)2(~
n

n T

t
nnJ

nT

t

T

t   with nJ  denoting the Bessel functions of the first kind: 
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Abbreviating the constant 
2

2:
Tp

ab
c


  (1.2) has the shorter form  

    0)0()cos(1' 2   c  (1.2’) 

with right-hand side function  2)cos(1),(   ctf only depending on  . 
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)(  (cf. H. Heuser, Gewöhnliche Differentialgleichungen, 5th edition, 

Teubner). 

From ~  one can deduce    22 ))(~sin())(~cos()( tbtaatr    and from this the time-

dependent formulas )
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Figure 1.1b: Some real data 
diagrams of Earth orbit. 

Time-Area is a straight line by 
Keplers 2nd law, but Time-Angle 
is not a straight line as the the 
angles derivative is not constant. 
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1.1 Explicit methods 

If the r.h.s.-function f  in (1.1) fulfills smoothness conditions then solutions for (1.1) have smoothness 
properties, too.  The Taylor expansion and the multi-variate chain rule for differentiation play a key role 
in the development of explicit methods. More precisely: 

 

Property 1.1: Differentiability order for solutions and Taylor expansions 

If the r.h.s. function f  in (1.1) has continuous partial derivatives up to order p  1  in an open 

neighbourhood U1 of ),( 00 yx  then a solution2  y of (1.1)  

(a) is continuously differentiable with respect to x in a neighbourhood of  0x  up to order p+1, and 

(b) for x, x+h  in a neighbourhood of 0x  has Taylor expansions of the form 
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( Proof: By the chain rule of multi-variate calculus   

 ''( ) ( , ) (1, '( ))try x f x y y x   = 
( , ) ( , )

1 '( )
f x y f x y

y x
x y

 


 
    () 

                                                           

1 A typical situation is a rectangular neighbourhood “around” ),( 00 yx : 

 20201010 hyyhyhxxhxU  . 

2 To be more precise: If f  is continuous and has a continuous partial derivative 
y

yxf


 ),(

 in U, then there is a 

unique (local) solution for (1.1) in a neighbourhood of ),( 00 yx . This is the Picard-Lindelöf theorem.  

If f  is continuous in U  then there is a local solution for (1.1) in a neighbourhood of ),( 00 yx . This is the Peano 

theorem. For the proofs cf. H. Heuser, Gewöhnliche Differentialgleichungen, 5th edition, Teubner, or Schaum’s 
Outline of Numerical Analysis, 1st ed., Problem 19.7 (Picard-Lindelöf theorem). 
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This already proves the property (a) for p = 1 since the r.h.s 
( , ) ( , )

1 '( )
f x y f x y

y x
x y

 


 
 ()  is  

Cp-1, which is at least C0. But by ()  again ''( )y x  is Cp-1 and thus y must be Cp+1 . 

The proof of (b) is similar: Iteratively, applying the chain rule in combination with the product rule to 
the equation () gives the expressions in (1.3), e.g.:  
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1.1.1 Explicit Euler method 

From Property 1.1b the explicit Euler method can be deduced when setting the order p = 1: 
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 (1.3A) 

 

Applying (1.3A) iteratively for ),...,0(0 nkkhxx   with a fixed step-size h yields the following 

scheme for computing a discrete sequence of y-values:  
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 (1.3A’) 

 

This scheme is called explicit Euler method. The size of h is called step size. It has not necessarily to 
be constant and thus may have an index k, too. 

 

Example 1.2: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2nd law 

According to (1.2’) the time differential equation for the angle function is  2)cos(1'   c  with 

initial value 0)0(  . The right-hand side function is  2)cos(1),(   ctf only depending on 

 . The scheme (1.3A’) takes the following form: 
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Figure 1.2a: 

4,6.1,25.0,1  nhc   

Figure 1.2b: 

9,5.0,25.0,1  nhc   
Figure 1.2c: 

59,1.0,25.0,1  nhc   

 

Obviously, there are errors between the approximation values yk and the “true” solution values y(xk) . 
The explicit Euler method is rather inaccurate since it assumes that the derivative remains constant 
per step. In spite of that the method is convergent if the r.h.s-function f  is continuous in a neighbour-

hood of the initial point. Convergence means that for )(11 Nkhxxx kkk    in an appropriate 

neighbourhood of 0x  the maximum difference  

  )0max(0)(max
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This quantitiy is called global error1. (Fixing kxx   means that k if  0max i
i

h .) 

The explicit Euler method is a special case of the Taylor method: It is an iterative application of Prop-
erty 1.1b when setting the order p to 1. Setting p to higher values yields higher-order Taylor methods. 

                                                           
1 The local error or single-step error of a p-th order local Taylor method is defined as 
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  which is intuitively 

the meaning of a local error.    
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1.1.2 Higher-order local Taylor methods 

From Property 1.1b the explicit Euler method was deduced from the Taylor method by setting the or-
der p equal to 1. This was a truncation of the Taylor expansion after the first derivative. Using Property 
1.1b again but truncating not before the p th derivative yields a generic scheme of order p: 
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The disadvantage of this method are the costs of the computations of higher-order derivatives, as: 
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Example 1.3: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2nd law 

According to (1.2’) the time differential equation for the angle function is  2)cos(1'   c  with 

initial value 0)0(  . The right-hand side function is  2)cos(1),(   ctf only depending on 

 . In order to implement the scheme (1.5) we need the partial derivatives of f. 
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From this it is already obvious that any partial derivative containing the operation 
t


 is 0 and only 

derivatives with respect to  have to be considered: 
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For order p = 2 the scheme in (1.5) with constant step size hhk   takes the following form: 
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The next figures show a number of steps with constant step-size. They should be compared with 
Figure 1.2ab. 
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Figure 1.3a: Local Taylor method of order 2 
with 4,6.1,25.0,1  nhc   

Figure 1.3b: Local Taylor method of order 2 
with 9,5.0,25.0,1  nhc   

 

For the proof of the convergence in formula (1.4) we need a special notion of continuity called Lip-
schitz-continuity.  

 

Property 1.2: Lipschitz continuity of derivatives up to order p-1. 

If the r.h.s. function f  in (1.1) has continuous partial derivatives up to order p  1  in a compact 
convex set K then there is a constant 0L  such that 
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The constant 0L  is called Lipschitz constant. The set K often is a rectangular neighbourhood 
around a central point. 

( Proof: If , ,x y y K  and y y   then by the mean-value theorem from calculus the ratio 
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with ( , )x y y   . But by continuity this partial derivative of order p  is bounded by 
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Theorem 1.1: Convergence rate of global error for local Taylor methods 

Assuming that the r.h.s. function f  in (1.1) has continuous partial derivatives up to order p  1  in a 

rectangular compact set R around the central point ),( 00 yx and that (1.1) has a solution y in R. 

Then the local Taylor method (1.5) of order p is convergent with order p:  
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with constants B, M and  i
ki

hh
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( Proof: Cf. Problem 19.12 in Schaum’s Outline of Numerical Analysis, 2nd ed. (or Problem 19.18 in 
1st ed., respectively). The key elements in the proof are the Taylor expansions according to Proper-

ty 1.1 and the Lipschitz continuity due to Property 1.2  ) 

 

 

1.1.3 Explicit Runge-Kutta methods 

As mentioned above the local Taylor methods have rather high costs arising from computions of high-
er-order derivatives. On the other hand, as an advantage the order of convergence rate is the same as 
the order of the highest derivative (cf. Theorem 1.1 or (1.7)).  

The explicit Runge-Kutta methods are devised so as to keep a high-order convergence rate while 
avoiding the computations of high-order derivatives. Instead, these methods use additional (intermedi-
ate) evaluations of the r.h.s. function f. The next subsection gives the idea behind the methods: 

 

1.1.3.1 Explicit Runge-Kutta methods of order 2 (Heun, Midpoint) 

We are to find coefficients a, b and m, n such that the (so-called 2-stage Runge-Kutta) formulas 
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duplicate the Taylor series of the solution y through the (second-order) term in 2h . The last formula of 
(1.8), though not a polynomial expression, is then near the Taylor polynomial of order 2. 
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Introducing the usual abbreviations for f and its partial derivatives we get from (1.5): 
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Multi-variate Taylor expansions for the k-values produce: 
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Combining the expressions in (1.8b) as suggested in (1.8) yields 

2
1)()()()( hFbmhfbaxyhxy  . 

Comparing coefficients with (1.8a) up to order 2 then gives a redundant system of equations1:  
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This is called Heun’s method. Its recursive scheme in the discrete sense of (1.5) is: 
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with kkk hxx 1 and step-size ,...)1,0(0  khk . 

Another (possible) solution is 
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1 It is not possible to match the whole cubic h3-coefficient of (1.8a) with 2 stages: The best thing to achieve would 

be to match the F2-part with the additional condition 
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The latter is called explicit midpoint method. Its recursive scheme is: 
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with kkk hxx 1 and step-size ,...)1,0(0  khk . 

Due to redundancy in the system (1.8c) an infinite number of solutions is possible. Yet another solu-

tion often used is 
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scheme is 
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with kkk hxx 1 and step-size ,...)1,0(0  khk . 

 

The convergence rate of the Runge-Kutta methods of order 2 is 2 if the conditons of Theorem 1.1 are 
met. This is not a surprise, since the Runge-Kutta methods duplicate the local Taylor polynomial up to 
order 2 they duplicate the convergence rate, too.  

 

1.1.3.2 The classical Runge-Kutta method of order 4 

A classical and often used Runge-Kutta method generalizes the ideas of the previous section to order 
4 in a straightforward way.  

 

Theorem 1.2: Common Runge-Kutta method of order 4 

Assuming that the r.h.s. function f  in (1.1) has continuous partial derivatives up to order p = 4  in a 

rectangular compact set R around the central point ),( 00 yx and that (1.1) has a solution y in R. 

The 4-stage Runge-Kutta formulas 
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duplicate the Taylor polynomial in (1.5) up to order p = 4 if the following (redundant) system of 8 
equations is fulfilled: 
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The rate of convergence then is of order p=4, i.e. )0()( 4 hho . 

( Proof: The proof is along the same lines as in Subsection 1.1.3.1 for the second-order Runge-
Kutta methods, cf. (1.8). For all the details cf. Schaum’s outline of Numerical Analysis, 2nd ed., 

Problem 19.6    ) 

 

Example 1.4: Classical Runge-Kutta method of order 4 

The classical solution to (1.9b) is 
3

1
,

6

1
,1,

2

1
 cbdapnm  leading to the 

Runge-Kutta formulas 
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It is remarkable that for a (continuous) r.h.s-function f = f(x) not depending on y the classical Runge-
Kutta formulas (1.9c) turn into an integral approximation formula (Simpson’s rule): 
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Example 1.5: Cont. Ex. 1.1: Angle function of Keplerian Earth orbit from Keplers 2nd law 

According to (1.2’) the time differential equation for the angle function is  2)cos(1'   c  with 

initial value 0)0(  . The right-hand side function is  2)cos(1),(   ctf only depending on 

 . 

The classical Runge-Kutta 4-stage formulas turn into the following recursion: 
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Figure 1.4: Fixed step size h  = 0.5. 
The figure compares the classical 
Runge-Kutta method (red points) with 
the explicit Euler method (gray points) 
and a high-precision reference solution 
(dashed curve) for 25.0,1  c . 

 

 

 

Tables 1.1ab: Numerical comparisons of globar errors for different 
step sizes: (h = 0.5, h = 0.1) 
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1.1.3.3 A general framework for Runge-Kutta methods (Butcher tableaus) 

In this subsection the method and computations of the previous section will be extended. The general-
ization of formula (1.9a) is the s-stage Runge-Kutta procedure: 
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 (1.11a) 

 

A step from nx to ,...)1,0(1  nhxx nnn   in the general Runge-Kutta method then is  
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 (1.11b) 

 

The numbers jji ba ,,  and ),...,2,1,( sjic j   - usually called a-numbers, b-numbers or c-numbers, 

respectively - are laid out in a Butcher tableau: 
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For explicit Runge-Kutta methods it is required that 0,0 11  jac  and that the matrix of a-numbers is 

strictly lower triangular: )(0 ijaij  . The Butcher tableau then specializes to  

 

 (1.11c) 

 

Moreover, it is common to require the row-sum-property: ),...,2(
1
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 (1.11d) 

 

Property 1.3 : Consistency condition for explicit Runge-Kutta methods 

The local error of a step is defined as 
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Assuming that the r.h.s. function f  in (1.1) has continuous partial derivatives in a rectangular com-

pact set R around the central point ),( 00 yx and that (1.1) has a solution y in R, then  

  )0max(0)(max  n
n

nh
n

hhx   (1.12b) 

provided that  



s

j
jb

1

1 .  

( Proof: The proof is along the same lines as the formulas (1.8ab). By a first-order Taylor expan-
sion: 

'( )

( ) ( )
( ) ( ) ( , ( )) ( ) ( , ( )) (1)

n

n n
n n n n n n

y x

y x h y x
y x h y x f x y x h o h f x y x o

h

 
        ()

  

On the other hand, first-order expansions for the k-values produce (cf. 1.8b): 

1 , (1) ( 2,..., )jk f k f o j s      

Combining the expressions as suggested in (1.11bc) yields 
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Setting 
1

s

j
j
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  to 1 yields (1.12) from ()  

 ) 

 

The property (1.12) of the local error is named consistency condition. 

 

Example 1.6: Butcher tableaus for some explicit Runge-Kutta methods 

 

 

 

 

Classical Runge-Kutta of 
order 4 (cf. 1.10c) 

Explicit Euler method (cf. 1.3A’) 

Explicit Midpoint method (1.9b) 

Yet another method (cf. 
1.9c) 

 

 

Example 1.7: FSAL-Schemes 

A interesting class of explicit Runge–Kutta methods, used in modern implementations, are those 
for which the coefficients have a special structure known as First Same As Last (FSAL):  

)1,...,1(  sjba jsj  and 0sb . 

For consistent FSAL schemes (cf. Property 1.3) the Butcher tableau has the form:  

 

    

 

with 
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An advantage of FSAL methods is that the function value ks at the end of one step is the same as the 
first function value k1 at the next integration step. The most important examples for FSAL-schemes are 
the embedded Dormand-Prince adaptive Runge-Kutta method of orders 5 and 4, respectively, also 
known as RKDP5(4), or the Bogacki-Shampine 5(4) method, also known as RKBS5(4). 
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1.1.4 Adaptive explicit methods 

Standard implementations of numerical solvers for differential equations support features for step-size 
(hk) adaption. This means that there is a need of some sort of generic quantitative criteria and norms 
allowing the computation (i.e. adaption) of an “optimal” step size. Most common implementations use 
estimates of the local error (1.12a) to control the step size. 

 

1.1.4.1 Embedded pairs of explicit Runge-Kutta methods 

An embedded pair of explicit Runge-Kutta methods consists of two Runge-Kutta schemes of different  
orders p  and p


 that share the same coefficient matrix and hence function values. A commonly used 

notation is )( pp


 typically with 1 pp


 or 1 pp


. This constitutes an efficient means of obtain-

ing local error estimates for adaptive step-size control. The combined Butcher tableaus of an embed-
ded pair has the form (cf 1.11.c): 

 

0 0 0  0 0
c2 a2,1 0  0 0

    0 
cs1 as1,1 as1,2  0 0

cs as,1 as,2  as,s1 0

b1 b2  bs1 bs

b

1 b


2  b


s1 b


s (1.13a) 

 

From this scheme two solutions are given according to (1.11.b): 
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 (1.13b) 

In modern codes the solution normally is evolved with the higher order formula so that 1 pp


 (so-

called local extrapolation mode). 

From the difference in (1.13b) we get a measure for the local error (in the current step):  
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 (1.13c) 

 

The double bar indicates that a norm function is used. This yields a scalar measure and will be useful 
for the case of systems of differential equations1 when )(xyy


  is a vector solution function (then, of 

course, kk


  and nn ee


  are vectors, too). 

                                                           
1 An  m-dimensional system of differential equations generalizes (1.1) to 

 ))(,(,)),(,()),(,())(,()(' 11 xyxfxyxfxyxfxyxfxy m


  with initial vector condition 00 )(' yxy


  . 
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The classical step-size control uses the formula1: 
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 (1.13d) 

 

The tolerance parameter   commonly considers absolute and relative tolerances (accuracy and pre-
cision):  

 

nra y   (1.13e) 

 

Given accuracy and precision goals, ag and pg, respectively, the absolute and relative tolerances are 

computed as ag
a

10  and pg
r

10 , respectively. Typical settings for these goals are 8, 16, 24, 

32 a.s.o. Accuracy of a number is defined as the effective number of digits to the right of the decimal 
point. Precision of a number is defined as the effective number of digits2. 

 

In modern implementations non-classical extensions of the step-size formula (1.13d) are widely used. 
The next formula is known as scaled proportional integral step control.  
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 (1.13f) 

 

                                                           
1 In the case of an m- dimensional system of differential equations the norm in (1.13d) generalizes to a scaled 

vector norm:  
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with the super-scripts in round 

brackets indicating vector components. The double bar denotes a scaled  q-norm (q  1 with typical cases q=1 or 
q=2 ) or the infinity norm, i.e. 

 
qm

i

q

iqm w
m

www

1

1
21

1
,...,, 








 



  or    i
mi

m wwww


1
21 max,...,, . 

2 With (absolute) uncertainty adx   the accuracy of a number x is equal to )log()
1

log( dx
dx

 and thus 

the absolute uncertainty a is equal to 
)(10 xaccuracy
. The precision of a number 0x  is equal to 

)log()log(
x

dx

dx

x
  and thus the relative uncertainty rx

dx   is equal to 
)(10 xprecision
.  

A typical value for the precision is a 53-Bit representation: precision(1.0) = 7...15.9545897 
)10(

53


ld
  (machine 

precision). 
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The numbers c1 and c2 are step-size control parameters and s1,s2 are step-size safety parameters. For 

the first integration step it is taken that 1 nn ee .  

Typical settings are  {c1, c2} = {1, 0}  together with {s1, s2} = {0.85, 0.9}  or  {c1, c2} = {0.3, 0.4}  together 
with {s1, s2} = {0.85, 0.9}. 

Another additional feature is step-size ratio bounding: By two ratio bounds {r1, r2} the ratio of step-

sizes is bounded as 2
1

1 r
h

h
r

n

n   . A typical setting is {0.125, 4} . 

 

Example 1.8: Heun-Euler 2(1) method 

The combined Butcher tableau for Heun-Euler is (cf. 1.9a): 

 

Heun-method (single step) 
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Euler (single step) 

kkkkk hyxfyy ),(ˆ 1   

where kkk hxx 1  and step-size 0kh  

 

So by (1.13c) we get a simple local error estimate in the form of 11 ˆ   kkk yye  = 

)(
2

1

2
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1
1221 kkhkhkh kkk  and the classical step-size control formula (1.13d) equals  
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The most basic use of (1.13d) is as follows:  

 If the scaled error norm expression 









ne
 is > 1 then the step is rejected, i.e. repeated with unal-

tered values of kx and ky but with a new decreased step-size k
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Figure 1.5a: Comparison of em-
bedded adaptive Heun-Euler 2(1) 
method (gray) with non-adaptive 
Heun method (red points) with 
fixed step-size h = 0.1.  

The embedded method has been 
run with 169’832 steps and step-
size safety factors {1,1}, step-size 
control parameters {1,0} and step-
size ratio bounds between 0 and .  

 

 

 

 

               

     

 Figure 1.5b: Variable step-size plot… 

 

 

Tables 1.2ab: Numerical comparison of the methods in Example 1.8. The adaptive embedded 
method Heun-Euler 2(1) is not always more accurate (cf. left table). Its costs are very high due to the 
large number (169832) of small steps. The accuracy goal is 4, the precision goal is 4, too. 

tk HeunEuler 21 Heun Reference
2.41244 1.71258 1.71262 1.71319
2.41269 1.71285 1.7129 1.71346
2.41294 1.71312 1.71317 1.71373
2.41319 1.71339 1.71344 1.714
2.41345 1.71367 1.71371 1.71427
2.4137 1.71394 1.71398 1.71454
2.41395 1.71421 1.71425 1.71482
2.41421 1.71448 1.71452 1.71509
2.41446 1.71475 1.71479 1.71536
2.41471 1.71502 1.71507 1.71563
2.41497 1.7153 1.71534 1.7159
2.41522 1.71557 1.71561 1.71618
2.41547 1.71584 1.71588 1.71645
2.41573 1.71611 1.71615 1.71672
2.41598 1.71638 1.71642 1.71699
2.41623 1.71665 1.7167 1.71726
2.41648 1.71692 1.71697 1.71753
2.41674 1.7172 1.71724 1.71781
2.41699 1.71747 1.71751 1.71808
2.41724 1.71774 1.71778 1.71835
2.4175 1.71801 1.71805 1.71862  

tk HeunEuler 21 Heun Reference
1.09801 0.645193 0.645298 0.645173
1.09827 0.645358 0.645462 0.645337
1.09853 0.645522 0.645627 0.645502
1.09878 0.645687 0.645791 0.645667
1.09904 0.645851 0.645956 0.645831
1.0993 0.646016 0.646121 0.645996
1.09956 0.646181 0.646285 0.646161
1.09981 0.646345 0.64645 0.646325
1.10007 0.64651 0.646615 0.64649
1.10033 0.646674 0.646779 0.646655
1.10058 0.646839 0.646944 0.646819
1.10084 0.647004 0.647109 0.646984
1.1011 0.647169 0.647273 0.647149
1.10135 0.647333 0.647438 0.647314
1.10161 0.647498 0.647603 0.647478
1.10187 0.647663 0.647768 0.647643
1.10213 0.647828 0.647932 0.647808
1.10238 0.647992 0.648097 0.647973
1.10264 0.648157 0.648262 0.648138
1.1029 0.648322 0.648427 0.648303
1.10315 0.648487 0.648592 0.648468  

 

In the next subsections some widely used embedded pairs are presented. 
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1.1.4.1.1 Bogacki-Shampine-Ralston 3(2) 1 

The Bogacki-Shampine-Ralston methods are implemented in Matlab as ode23, TI-85 and RKSuite. 
Because of the relatively low orders they are not the first choice for high accuracy or precision. Their 
prime advantage is speed. 

The combined Butcher tableaus (cf. 1.13a) are: 
 

 0 

 1/2 1/2 

 3/4 0 3/4 

 1 2/9 1/3 4/9  

  2/9 1/3 4/9 0 

  7/24 1/4 1/3 1/8 

 

 0 

 1/2 1/2 

 3/4 0 3/4 

 1 2/9 1/3 4/9  

  2/9 1/3 4/9 0 

  -5/72 1/12 1/9 -1/8 

 

The first row of b-numbers is of order 3 (due to Ralston) and the second (embedded) method is of 
order 2.  

Obviously it is a 4-stage FSAL-scheme (cf. Example 1.7) and uses only three function evaluations per 
step. 

 

1.1.4.1.2 Sofroniou-Spaletta 3(2) 2 

The Sofroniou-Spaletta-method is implemented in Mathematica (NDSolve).  By the relatively low or-
ders it is not the first choice for high accuracy or precision. Its prime advantage is speed. 

The combined Butcher tableau (cf. 1.13a) is: 
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1 1
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1

6
1

6
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1

6
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1

72
 82  10 1

36
10  82  1

144
28  82  1

48
 82  16

 

 

The first row of b-numbers is of order 3 and the second (embedded) method is of order 2.  

                                                           
1 Bogacki, Przemyslaw; Shampine, Lawrence F. (1989), "A 3(2) pair of Runge–Kutta formulas", Applied Mathe-
matics Letters 2 (4): 321–325 

Shampine, Lawrence F.; Reichelt, Mark W. (1997), "The Matlab ODE Suite", SIAM Journal on Scientific Compu-
ting 18 (1): 1–22 
2 Sofroniou, M. and G. Spaletta. "Construction of Explicit Runge–Kutta Pairs with Stiffness Detection." Mathemati-
cal and Computer Modelling, special issue on The Numerical Analysis of Ordinary Differential Equations, 40, no. 
11–12 (2004): 1157–1169 
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Obviously it is a 4-stage FSAL-scheme (cf. Example 1.7) and uses only three function evaluations per 

step. It has the additional property that 11  ss cc . For this the method is suitable for stiffness de-

tection. 

 

Example 1.9: Comparison of 3(2) methods 

The accuracy and precision goal is set to 4.  
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Figure 1.6a: Bogacki-Shampine-Ralston 3(2) with step-size log-plot (rotated) 
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Figure 1.6b: Sofroniou-Spaletta 3(2) with step-size log-plot (rotated) 
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tk BogackiShampineRalston 32 Reference
0. 1.519371020 0.
0.001 0.0005625 0.0005625
0.344349 0.194508 0.194508
0.706688 0.40464 0.404633
1.0701 0.627373 0.627351
1.41839 0.859346 0.859248
1.74965 1.10501 1.10484
2.06869 1.37407 1.37413
2.38772 1.68616 1.68683
2.70969 2.05661 2.05699
3.06934 2.544 2.54567
3.31883 2.92013 2.92203
3.55802 3.29291 3.29325
3.79721 3.65761 3.65674
4.05906 4.02811 4.02601
4.40418 4.45458 4.45466
4.84056 4.89767 4.89765
5.27694 5.25916 5.25908
5.73068 5.57777 5.57776
6.24242 5.89481 5.89472
6.826 6.22937 6.22924
7.413 6.56194 6.56181
8. 6.9158 6.91568  

tk SofroniouSpaletta 32 Reference
0. 9.95264 1021 0.
0.001 0.0005625 0.0005625
0.63687 0.363458 0.363436
1.17523 0.6952 0.695109
1.57025 0.968519 0.968182
1.90386 1.23061 1.23039
2.19969 1.49656 1.4966
2.47425 1.78007 1.78054
2.74397 2.10001 2.10001
3.01369 2.46396 2.46499
3.30319 2.89604 2.89794
3.67422 3.47228 3.47235
3.99103 3.93565 3.93338
4.28567 4.3165 4.31573
4.5803 4.64531 4.64521
4.88659 4.93915 4.9391
5.23133 5.22427 5.22422
5.64254 5.51918 5.51934
6.17127 5.85234 5.85245
6.97127 6.31066 6.31098
7.77127 6.77322 6.77344
8. 6.91541 6.91568  

Table 1.3a: 22 steps with adaptive step-size Table 1.3b: 21 steps with adaptive step-size 

 

 

Method Steps Costs Error
BSR32 22, 35 173 0.0000177355
SS32 21, 36 173 0.0000390222

 

Method Steps Costs Error

BSR32 426, 338 2294 2.02487 109

SS32 374, 337 2135 5.30919 109
 

Method Steps Costs Error

BSR32 195814, 155801 1054847 1.28431016

SS32 171083, 149301 961154 1.28431016
 

Tables 1.4abc: Comparisons for accuracy and precision goals 4,8 and 16. The second number in 
the step-column is the number of rejected steps. The costs-column indicates the number of func-
tion evaluations and the error-column indicates the final (global) minimum of the relative and abso-
lute error. 

 

1.1.4.1.3 Bogacki-Shampine 5(4) 1 

The Bogacki-Shampine 5(4)-method is fast and relatively accurate. It is the default explicit Runge-
Kutta-method of order 5 with embedded order 4 in Mathematica (NDSolve) . The combined Butcher 
tableau (cf. 1.13a) is given below.  

The first row of b-numbers is of order 5 and the second (embedded) method is of order 4. 

This is a 8-stage FSAL-scheme which has the additional property that 11  ss cc . For this the 

method is suitable for stiffness detection. 

  

 

 

 

 

 

 
 
 
                                                           
1 Bogacki, P. and L. F. Shampine. "An Efficient Runge–Kutta (4, 5) Pair." Report 89–20, Math. Dept. Southern 
Methodist University, Dallas, Texas, 1989. 



  Numerical Analysis  

 Dr. Bernhard Zgraggen 
 

 

24 

 

0
1

6

1

6
2

9

2

27

4

27
3

7

183

1372
 162

343

1053

1372
2

3

68

297
 4

11

42

143

1960

3861
3

4

597

22528

81

352

63099

585728

58653

366080

4617

20480

1 174197

959244
 30942
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1 587
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0 4440339

15491840

24353

124800

387

44800

2152
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7267

94080
587

8064
0 4440339

15491840

24353

124800

387

44800

2152

5985

7267

94080
0

3817

1959552
0  140181

15491840

4224731

272937600
 8557

403200

57928

4363065

23930231

4366535040
 3293

556956  

 

1.1.4.1.4 Dormand-Prince 5(4) 1 

The Dormand-Prince 5(4)-method is fast and relatively accurate, too. It is the default explicit Runge-
Kutta-method of order 5 with embedded order 4 in Matlab (ode45) . The combined Butcher tableau 
(cf. 1.13a) is:  
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 56
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32

9
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9

19372
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64448
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 212
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1 9017

3168
 355

33

46732

5247
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 5103

18656

1 35

384
0 500

1113

125

192
 2187

6784

11

84
35

384
0 500

1113

125

192
 2187

6784

11

84
0

71

57600
0  71

16695
71

1920
 17253

339200
22

525
 1

40  

 

The first row of b-numbers is of order 5 and the second (embedded) method is of order 4. 

As before, this is a FSAL-scheme (7 stages) which has the additional property that 11  ss cc . So 

again, this is suitable for stiffness detection. 

 

                                                           
1 Dormand, J. R. and P. J. Prince. "A Family of Embedded Runge–Kutta Formulae." J. Comp. Appl. Math. 6 
(1980): 19–26 



  Numerical Analysis  

 Dr. Bernhard Zgraggen 
 

 

25 

0
2

4
6

8
0.001

0.005

0.010

0.050

0.100

0.500

0
2

4
6

8
0.001

0.005

0.010

0.050

0.100

0.500
Example 1.10: Comparison of 5(4) methods (higher accuracy and precision) 

As in the previous example (1.9) the outputs of different 5(4)-methods are compared with respect 
to costs, step-sizes and error. But the accuracy and precision goals now are set to 8.  
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Figure 1.7a: Dormand-Prince 5(4) with step-size log-plot (rotated) 
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Figure 1.7b: Bogacki-Shampine 5(4) with step-size log-plot (rotated) 
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Method Steps Costs Error

DP5432 27, 23 302 8.51259109

BS54 23, 31 380 1.9442109
 

Method Steps Costs Error

DP5432 930, 842 10634 1.28431016

BS54 775, 624 9795 2.568591016

Tables 1.6ab: Comparisons for accuracy and precision goals 8 and 16. The second number in the 
step-column is the number of rejected steps. The costs-column indicates the number of function 
evaluations and the error-column indicates the final (global) minimum of the relative and absolute 
error. 

 

tk DormandPrince 54 Reference
0 1.259961509 1020 0
0.001000000000 0.0005625000198 0.0005625000198
0.2712656148 0.1529828749 0.1529828487
0.6820045761 0.3900256332 0.3900219380
1.159847445 0.6850937167 0.6850856338
1.491310525 0.9110238579 0.9108547784
1.815182659 1.157357470 1.157212157
2.078859641 1.383346335 1.383363876
2.314459499 1.610141936 1.610596021
2.529996757 1.842478439 1.843092763
2.734019604 2.087280019 2.087446743
2.935327347 2.353735029 2.354174109
3.136635090 2.643214077 2.645109856
3.350964798 2.970106834 2.971675528
3.550530365 3.281409084 3.281629854
3.747917985 3.584184644 3.583604660
3.945305606 3.871913037 3.869764701
4.165066261 4.166998028 4.165279893
4.452788705 4.509003023 4.509001927
4.740511149 4.804371522 4.804390752
5.041167423 5.072084236 5.072106524
5.412131596 5.358912969 5.359050326
5.783095770 5.611763854 5.611860598
6.163982629 5.848057139 5.848088217
6.574808839 6.087136848 6.087154495
7.035753712 6.347278421 6.347273302
7.517876856 6.622693833 6.622673953
8.000000000 6.915679697 6.915679756  

tk BogackiShampine 54 Reference
0 1.259961509 1020 0
0.001000000000 0.0005625000198 0.0005625000198
0.3114536671 0.1757925955 0.1757925937
0.7885025102 0.4534865990 0.4534639697
1.226695364 0.7289452829 0.7289451212
1.649281086 1.027455611 1.027229834
2.071866808 1.377000287 1.377012682
2.380097951 1.678203236 1.678770652
2.644418397 1.976658679 1.977068109
2.889618660 2.291093426 2.291239768
3.134818923 2.640513443 2.642401759
3.399036312 3.044942213 3.046183650
3.653303577 3.440389824 3.440372009
3.907570841 3.818422680 3.816478442
4.170976584 4.174529993 4.172856311
4.434382328 4.488594312 4.488594112
4.706739431 4.771865773 4.771877870
5.019819319 5.054246549 5.054273413
5.414460706 5.360592745 5.360731538
6.006986598 5.752876048 5.752877709
6.599512491 6.101198251 6.101211188
7.251453714 6.469291768 6.469289562
7.625726857 6.686151414 6.686116372
8.000000000 6.915679743 6.915679756  

Table 1.5a: 27 steps with adaptive step-size Table 1.5b: 23 steps with adaptive step-size 


