
 Numerical Analysis

 Dr. Bernhard Zgraggen

27

1.1.5 Stability of explicit methods

The concept of stability refers to the evolution of relative global errors (cf. 1.4) during the run of a nu-
merical scheme for a fixed (finite) step-size h. Stability requires that the relative global error remains
bounded.

Reliable estimates for the relative global error may be difficult or impossible – in many cases where
differential equations are solved numerically there is barely knowledge about “true” values of the solu-
tion. Even if some analysis leading to estimates on the bounds of the relative global error is possible,
it is highly probable that this is very specific for the given differential equation (i.e. the right hand side
function f and maybe the initial conditions). Such an analysis thus would explore what is called inher-
ent stability or instability.

A common approach to explore stability of a numerical method is to restrict the analysis to a simple
linear model of constant growth called Dahlquist equation:

1)0(' yAyy (1.14)

with CA or A a constant matrix in the case that yy

 is vector-valued.

Of course, the system (1.14) is very simple and its exact solutions are easily found to be Axey 1.

For CiAAA

ImRe the solution is an oscillation:

xie

xA xixey

)sin()cos(Re
 (1.14a)

with exponential real amplitude function xAeRe
.

A numerical scheme and the boundedness of relative errors are analysed with respect to (1.14). This
will lead to the concept of absolute stability.

Example 1.11: Absolute stability analysis for the Heun-method

The Heun-method is a Runge-Kutta method of order 2 with 2 stages (cf. 1.9a):

)),(,(),(

2

1

1)0()(

1

00

kkkkkkkk yxhfyhxfyxfhyy

yxyy

Applied to the Dahlquist system (1.14) with its simple r.h.s. function Ayyxf),(the recursive

scheme above simplifies to

 k

zFhAFFunction

kkkkk yhAhAhAyyAAyhyy

y

)()(

2
1

0

2

1
1

2

1

1

 (1.15)

1 In the case that yy

 Is vector-valued the solution is given by the matrix exponential function defined by the

matrix power series

0 !k

k
k

xA A
k

x
ey

.

 Numerical Analysis

 Dr. Bernhard Zgraggen

28

In condensed form (1.15) reads as kk yzFy)(1 with 2

2

1
1)(zzzF and hAz : . The

function)(zF is called linear stability function.

Another representation then is k
zFi

k yezFy)(arg
1)(
 . (1.15a)

Three cases are to be distinguished:

(1) ReA < 0: The solution’s amplitude (cf. 1.14a) is exponentially decaying. So it is required by sta-

bility that the approximate values ,...)2,1,0(kyk in (1.15) exponentially decay, too. But this

implies that 1)(zF .

(2) ReA = 0: The solution’s amplitude (cf. 1.14a) is constantly 1. So it is required by stability that the

approximate values ,...)2,1,0(kyk in (1.15) have the same constant amplitude, too. But

this implies that 1)(zF .

(3) ReA > 0: The solution’s amplitude (cf. 1.14a) is exponentially increasing. So it is required by

stability that the approximate values ,...)2,1,0(kyk in (1.15) exponentially increase, too.

But this implies that 1)(zF .

Cases (2 and (3) are always true assuming that ImA = 01, only the first case is critical as is shown

by the following contour plot of the complex region 1)(zFCz .

Figure 1.8: Region of absolute stability

 1)(zFCz for the Heun-method.

For negative values of A it is required that

-2 < hReA < 0 .

This constitutes a stability constraint on the
step-size h.

Obviously, the region 1)(zFCz

does not intersect the right half plane

 0Re zCz . So the cases (2) and (3)

are always true and there are no stability
constraints on the step-size in these cases
assuming that ImA = 0.

The example above is representative for any explicit Runge-Kutta method (cf. 1.11c) and the next
theorem is only a matter of generalization.

1 This means that there are no frequencies in the solution. If ImA ≠ 0 then case (2) is unstable because

1)(zF and case (1) is unstable if () 1F z , i.e. ImA is too high (frequency !). Note that

Re Imz h A h j A .

 Numerical Analysis

 Dr. Bernhard Zgraggen

29

Theorem 1.3: Linear stability polynomial for explicit Runge-Kutta methods1

The linear stability function for an explicit s-stage Runge-Kutta method with corresponding Butcher
tableau (cf. 1.11c) is a polynomial depending on the a-numbers and b-numbers:

)()()(1)(2211 zkbzkbzkbzF ss (1.16a)

With recursively defined polynomials

)()()()(1)(

)(

,133,122,111,11

1

zkazkazkazkazzk

zzk

jjjjjjj

 (1.16b)

for 1,...,2,1 sj .

(Proof: By definition of an s-stage Runge-Kutta method 1 1 1 2 2k k s sy y hb k hb k hb k .

Using the special r.h.s. function (,)f x y Ay the following computations are straightforward:

1 1 1

2 2,1 1 2,1 2 2,1 2,1 1 2

3 3,1 1 3,2 2 3,1 3,2 2,1

3 3,1 3,2 2,1 3,1 1 3,2 2

: ()

(1) (1 ()) : ()

(1 ((1))) (1 () ())

k k k

k k k k k

k k k k k

k

k Ay hk z y k z y

k A y ha k A y ha Ay hk z a z y z a k z k z y

k A y h a k a k A y h a Ay a A y ha Ay

hk z z a a a z y z a k z a k z

 3: ()k ky k z y

This shows (1.16b) for the first three stages. The general proof is straightforward, too:

1 2

1 1,1 1 1,2 2 1, 1,1 1 1,2 2 1,

1,1 1 1,2 2 1,

: () : () : ()

1,1 1 1,2 2 1,

(, ())

() () ()

k k j k

j k k j j j j j k j j j j j

k j j j j j

k z y k z y k z y

k j k j k j j j

k f x y h a k a k a k A y h a k a k a k

A y a hk a hk a hk

Ay a Ak z y a Ak z y a Ak z y

1

1 1,1 1 1,2 2 1,
: .

1,1 1 1,2 2 1,

1,1 1 1,2 2 1,

: ()

() () ()

() () ()

1 () () ()

j

k

j k j k j k j j j k
z z

j j j j j k

j j j j j k

k z

hk Ah y a Ah k z y a Ahk z y a Ahk z y

z a zk z a zk z a zk z y

z a k z a k z a k z y

This proves (1.16b)

)

1 The linear stability function of a general (not necessarily explicit) Runge-Kutta method (cf. 1.11ab) is given by

the formula
)det(

)det(

zAI

bjzzAI

. Here A denotes the matrix of a-number, b the vector of b-numbers and j is

the vector consisting of 1s. This expression generally is rational in z. But in the case of an explicit method with
strictly lower triangular A-matrix it is polynomial because the denominator is 1 (the matrix I – zA is lower triangular
with 1s in the diagonal).

 Numerical Analysis

 Dr. Bernhard Zgraggen

30

A method with linear stability function F is defined to be A-stable if the region of absolute stability

 1)(zFCz includes the left complex half plane 0Re zCz .

Corollary 1.1: Explicit Runge-Kutta methods are not A-stable

(Proof: By Theorem 1.3 the linear stability function F of an explicit Runge-Kutta method is a poly-
nomial. As a polynomial of degree > 0 F is unbounded for x < 0 (on the negative x-axis) because

lim ()x F x)

Example 1.12: Linear stability functions and regions of absolute stability for Bogacki-Shampine-
Ralston 3(2)

The Butcher tableaus are:

 0

 1/2 1/2

 3/4 0 3/4

 1 2/9 1/3 4/9

 2/9 1/3 4/9 0

 7/24 1/4 1/3 1/8

 0

 1/2 1/2

 3/4 0 3/4

 1 2/9 1/3 4/9

 2/9 1/3 4/9 0

 -5/72 1/12 1/9 -1/8

According to Theorem 1.3 (1.16b):

)))
2

1
1(

4

3
01(

9

4
)

2

1
1(

3

1

9

2
1()(

))
2

1
1(

4

3
01()(

)
2

1
1()(

)(

4

3

2

1

zzzzzzzzzk

zzzzzk

zzzk

zzk

For the first rows of b-numbers (of order 3) in the r.h.s. tableau:

)(
9

4
)(

3

1
)(

9

2
1)(3211 zkzkzkzF =

62
1

32 zz
z

and for the second (embedded) row:

)(
8

1
)(

9

1
)(

12

1
)(

72

5
1)(43212 zkzkzkzkzF =

4848
1

43 zz
 .

 Numerical Analysis

 Dr. Bernhard Zgraggen

31

Figure 1.9: Regions of absolute stability

 1)(2,1 zFCz for the BSR3(2)

method.

For negative values of ReA it is required
that

-2.51275< hReA < 0.

These conditions constitute stability con-
straints on the step-size h in the first meth-
od.

Example 1.13: Linear stability functions and regions of absolute stability for some widely used Runge-
Kutta methods

Figure 1.10a: Sofroniou-Spaletta method SS3(2)

62
1)(

32

1

zz
zzF

43
2)8216(

288

1
)828(

288

1
1)(zzzF

For negative values of ReA it is required that

-2.51275< hReA < 0.

These conditions constitute stability constraints on the
step-size h in the first method.

 Numerical Analysis

 Dr. Bernhard Zgraggen

32

Figure 1.10b: Dormand-Prince 5(4)

6001202462
1)(

65432

1

zzzzz
zzF

2400040000

13

120000

97
1)(

755

2

zzz
zF

For negative values of ReA it is required that

-3.30657 < hReA < 0.

These conditions constitute stability constraints on the
step-size h in the first method.

Figure 1.10c: Bogacki-Shampine BS5(4)

1379840

269

12418560

17291

1202462
1

765432 zzzzzz
z

1
65 477 z5

1286568 360

4415 797 z6

192 127541760

38728 973 z7

6916 591503360

885817 z8

768510167040

For negative values of ReA it is required that

-3.98793 < hReA < 0.

These conditions constitute stability constraints on the
step-size h in the first method.

 Numerical Analysis

 Dr. Bernhard Zgraggen

33

xk Classical RungeKutta ExplicitEuler Reference Exact
0. 3.410611013 1.193491015 0. 0.
0.1 289.993 9.9 0.904792 0.904792
0.2 84650.4 80.1421 0.818731 0.818731
0.3 2.46335107 729.384 0.740818 0.740818
0.4 7.16835109 6557.13 0.67032 0.67032
0.5 2.085991012 59020.8 0.606531 0.606531
0.6 6.070231014 531181. 0.548812 0.548812
0.7 1.766441017 4.78063106 0.496585 0.496585
0.8 5.140331019 4.30257107 0.449329 0.449329
0.9 1.495841022 3.87231108 0.40657 0.40657
1. 4.352881024 3.48508109 0.367879 0.367879
1.1 1.266691027 3.136571010 0.332871 0.332871
1.2 3.686061029 2.822921011 0.301194 0.301194
1.3 1.072641032 2.540621012 0.272532 0.272532
1.4 3.12141034 2.286561013 0.246597 0.246597
1.5 9.083261036 2.057911014 0.22313 0.22313
1.6 2.643231039 1.852121015 0.201897 0.201897
1.7 7.69181041 1.66691016 0.182684 0.182684
1.8 2.238311044 1.500211017 0.165299 0.165299
1.9 6.513491046 1.350191018 0.149569 0.149569

xk Classical RungeKutta ExplicitEuler Reference Exact
1. 0.367879 0.367879 0.367879 0.367879
1.1 0.370437 0.331091 0.332871 0.332871
1.2 11.2669 0.3156 0.301194 0.301194
1.3 3191.32 0.14142 0.272532 0.272532
1.4 928596. 1.42528 0.246597 0.246597
1.5 2.70221108 10.3862 0.22313 0.22313
1.6 7.863441010 95.685 0.201897 0.201897
1.7 2.288261013 859.166 0.182684 0.182684
1.8 6.658841015 7734.3 0.165299 0.165299
1.9 1.937721018 69607.1 0.149569 0.149569
2. 5.638771020 626465. 0.135335 0.135335
2.1 1.640881023 5.63819106 0.122456 0.122456
2.2 4.774971025 5.07437107 0.110803 0.110803
2.3 1.389521028 4.56693108 0.100259 0.100259
2.4 4.043491030 4.11024109 0.090718 0.090718
2.5 1.176661033 3.699211010 0.082085 0.082085
2.6 3.424071035 3.329291011 0.0742736 0.0742736
2.7 9.964041037 2.996361012 0.0672055 0.0672055
2.8 2.899541040 2.696731013 0.0608101 0.0608101
2.9 8.437651042 2.427051014 0.0550232 0.0550232

1.1.6 Stiffness

The phenomenon of stiffness is a serious challenge for numerical solvers for differential equations
because it normally has negative impacts on the stability of a numerical scheme and enforces very
small step-sizes leading to high computational costs – especially with explicit methods. Handling stiff-
ness in a numerical scheme is a rather complex task: It requires that stiffness or non-stiffness (!) is
detected and that the numerical solver may switch between more appropriate methods depending on
the results of stiffness detection1 or non-stiffness detection on runtime.

Stiffness occurs often in engineering sciences when a solution function of a differential equation is a
composition (e.g., a superposition) of terms with strongly distinctive scales. Typical examples of such
scales are frequencies and damping factors in amplitudes. Often, the scale is a timing scale and the
solution has oscillatory components for the short time scale that are damped away in the long time
scale. In many cases stiffness is a transient phenomenon.

Example 1.14: A simple one-dimensional equation leading to stiffness

The linear inhomogenuous equation xeyy 99100' has the solutions

)(100 Rcecey xx and particularly xx eey 100 for the initial condition 0)0(y .

Tables 1.7ab: Failure of clas-
sical Runge-Kutta method for
fixed step-size h = 0.1.

(The reference solution is
computed with working preci-
sion 32 and stiffness switching
algorithms.)

The second attempt was made
with initial condition redefined

to 1001)1(eey .

The rather large partial deriva-
tive

100yf takes the role of

ReA in the absolute stability
analysis (cf. Example 1.11).

The linear stability function of
the classical Runge-Kutta
method is:

2462

1)(
432 zzz

zzF

and the boundary of the region
of absolute stability intersects
the negative real x-axis at -
2.78529 and 0. From this the

condition 027859.0
100

78529.2
0010078529.2 hh is deduced, and obviously,

1 Cf. http://reference.wolfram.com/mathematica/tutorial/NDSolveStiffnessTest.html for a real expert reference.

 Numerical Analysis

 Dr. Bernhard Zgraggen

34

the step-size h = 0.1 is far beyond this range. For the explicit Euler method a similar computation
leads to

02.0001002 hh .

The next tables show attempts with h = 0.015, h = 0.02 and h = 0.025 starting from initial coordi-

nates),1(1001 eeyx .

xk Classical RungeKutta ExplicitEuler Reference Exact
1. 0.367879 0.367879 0.367879 0.367879
1.015 0.362405 0.362361 0.362402 0.362402
1.03 0.357011 0.356987 0.357007 0.357007
1.045 0.351696 0.351662 0.351692 0.351692
1.06 0.34646 0.346431 0.346456 0.346456
1.075 0.341302 0.341271 0.341298 0.341298
1.09 0.33622 0.336192 0.336216 0.336216
1.105 0.331215 0.331186 0.331211 0.331211
1.12 0.326283 0.326255 0.32628 0.32628
1.135 0.321426 0.321398 0.321422 0.321422
xk Classical RungeKutta ExplicitEuler Reference Exact
19.87 2.34733109 2.34712109 2.3473109 2.3473109

19.885 2.31238109 2.31218109 2.31235109 2.31235109

19.9 2.27795109 2.27776109 2.27793109 2.27793109

19.915 2.24404109 2.24384109 2.24401109 2.24401109

19.93 2.21063109 2.21044109 2.2106109 2.2106109

19.945 2.17772109 2.17753109 2.17769109 2.17769109

19.96 2.14529109 2.14511109 2.14527109 2.14527109

19.975 2.11336109 2.11317109 2.11333109 2.11333109

19.9875 2.08709109 2.08696109 2.08708109 2.08708109

20. 2.06116109 2.06102109 2.06115109 2.06115109

Tables 1.7cd:

h = 0.015

xk Classical RungeKutta ExplicitEuler Reference Exact
1. 0.367879 0.367879 0.367879 0.367879
1.02 0.360607 0.360522 0.360595 0.360595
1.04 0.353471 0.353456 0.353455 0.353455
1.06 0.346473 0.346384 0.346456 0.346456
1.08 0.339613 0.339598 0.339596 0.339596
1.1 0.332888 0.332801 0.332871 0.332871
1.12 0.326296 0.326284 0.32628 0.32628
1.14 0.319835 0.31975 0.319819 0.319819
1.16 0.313502 0.313492 0.313486 0.313486
1.18 0.307294 0.307211 0.307279 0.307279
xk Classical RungeKutta ExplicitEuler Reference Exact
19.82 2.46778109 0.0000369069 2.46765109 2.46765109

19.84 2.41891109 0.0000369118 2.41879109 2.41879109

19.86 2.37101109 0.000036907 2.37089109 2.37089109

19.88 2.32406109 0.0000369117 2.32394109 2.32394109

19.9 2.27804109 0.0000369071 2.27793109 2.27793109

19.92 2.23294109 0.0000369116 2.23282109 2.23282109

19.94 2.18872109 0.0000369072 2.18861109 2.18861109

19.96 2.14538109 0.0000369115 2.14527109 2.14527109

19.98 2.1029109 0.0000369072 2.10279109 2.10279109

20. 2.06126109 0.0000369114 2.06115109 2.06115109

Tables 1.7ef:

h = 0.02

xk Classical RungeKutta ExplicitEuler Reference Exact
1. 0.367879 0.367879 0.367879 0.367879
1.025 0.358834 0.358682 0.358796 0.358796
1.05 0.349998 0.349998 0.349938 0.349938
1.075 0.341372 0.3411 0.341298 0.341298
1.1 0.332954 0.333063 0.332871 0.332871
1.125 0.32474 0.324262 0.324652 0.324652
1.15 0.316726 0.317122 0.316637 0.316637
1.175 0.308909 0.307993 0.308819 0.308819
1.2 0.301284 0.302337 0.301194 0.301194
1.225 0.293846 0.29195 0.293758 0.293758
xk Classical RungeKutta ExplicitEuler Reference Exact
19.775 2.58203109 8.0881610127 2.58123109 2.58123109

19.8 2.51828109 1.2132210128 2.5175109 2.5175109

19.825 2.4561109 1.8198410128 2.45534109 2.45534109

19.85 2.39546109 2.7297610128 2.39472109 2.39472109

19.875 2.33631109 4.0946310128 2.33559109 2.33559109

19.9 2.27863109 6.1419510128 2.27793109 2.27793109

19.925 2.22237109 9.2129210128 2.22168109 2.22168109

19.95 2.1675109 1.3819410129 2.16683109 2.16683109

19.975 2.11398109 2.0729110129 2.11333109 2.11333109

20. 2.06179109 3.1093610129 2.06115109 2.06115109

Tables 1.7gh:

h = 0.025

 Numerical Analysis

 Dr. Bernhard Zgraggen

35

Example 1.15: A simple one-dimensional stiff equation (Example 1.14 continued)

The tables below show comparisons of different adaptive methods with various accuracy and pre-
cision goals. The Mathematica method SS3(2) (Sofroniou-Spaletta) looks rather expensive, but the
reason is that stiffness detection is off. SS3(2) is more suitable for stiffness detection and would be
left if stiffness detection would be on (automatic stiffness switching, cf. Table 1.8c).

Method Steps Costs Error
BSR32 758, 506 3794 0.000159676
SS32 759, 554 3941 0.000035481

Method Steps Costs Error

BSR32 1349, 289 4916 3.438651010

SS32 2220, 281 7505 8.580371010

Method Steps Costs Error

BSR32 113329, 42624 467861 6.349521016

SS32 828666, 187280 3047840 6.584271017

Table 1.8a: Comparisons of BSR3(2) and
SS3(2) with accuracy goal = 4|8|16 and
precision goal = 4|8|16.

Method Steps Costs Error

DP54 885, 2 5324 3.456531010

BS54 613, 201 5700 2.17317 107

Method Steps Costs Error

DP54 23466, 2634 156602 1.427021017

BS54 15345, 737 112576 1.313961016

Table 1.8b: Comparisons of DP5(4) and
BS5(4) with accuracy goal = 8|16 and preci-
sion goal = 8|16.

Method Steps Costs Error

BSR32 931, 15 2840 2.58261 109

SS32 1805, 0 5417 1.15295 109

Table 1.8c: Comparison of BSR3(2) and
SS3(2) with accuracy goal = 8 and precision
goal = 8 in the x-interval [1, 9.52509]. At x =
9.52509 stiffness was detected by SS3(2).
The additional costs for SS3(2) are partly
due to the stiffness detection that is on.

1.1.6.1 Stiffness detection

Detection of stiffness or non-stiffness (!) on runtime generally is not an easy task but in the case of
explicit Runge-Kutta methods an elegant and inexpensive approach for stiffness detection is possible.
Recalling the definition of explicit Runge-Kutta methods (cf. 11ab) for the last two k-values

),(),(
1

,
1

,111

1

ss g

s

j
jjsss

g

s

j
jjsss kahyhcxfkkahyhcxfk

the formula

1

1~

ss

ss

gg

kk
 (1.17)

 Numerical Analysis

 Dr. Bernhard Zgraggen

36

5 10 15 20

0.0100

0.0050

0.0020

0.0200

0.0030

0.0300

0.0150

0.0070

gives a good estimate for the partial derivative
y

f
f y

: at the position hx provided that

11 ss cc .

The value ~ takes the role of |ReA| 1 in the absolute stability analysis (cf. Example 1.11). By testing

~h against the absolute boundary values of the absolute stability region stiffness can be detected.

Example 1.16: Stiffness detection with Sofroniou-Spaletta method SS3(2)

From Example 1.13 and Figure 1.10a the linear stability function of SS3(2) is known to be

62
1)(

32

1

zz
zzF with boundary values on the negative x-axis equal to {-2.51275, 0}.

The stiffnest test in this case is 51275.2
~

 sh . The number s is a safety factor (by default

0.8).2

Figure 1.11: Step data plot for Ex-
ample 1.16 with accuracy and pre-
cision goals equal to 8

Since 100
~

 yf the stiffness

test produces .0251275.0h

The step data plot is compatible
with Table 1.8c: Stiffness is detect-
ed at x = 9.52509. Above this x-
value oscillations of the step-size
begin and continue on if the meth-
od SS3(2) is kept running.

Stiffness is not an inherent property of a differential equation. It is a relative concept and the occur-
rence of stiffness generally depends on the numerical method and the associated evolution of the

step-size. Stiffness occurs when the step-size h is such that ~h is near or beyond the bounds of the

absolute stability condition.

1 For vector differential equations generalizing (1.1) to

))(,(,)),(,()),(,())(,()(' 11 xyxfxyxfxyxfxyxfxy m

 with initial vector condition 00)(' yxy

the value ~ is an absolute estimate for the dominant eigenvalue of the Jacobian matrix

),,,(

),,,(

21

21

m

m
f yyy

fff
J

 . Generally, estimates of dominant eigenvalues are rather expensive and are based on

“advanced” methods of linear algebra (cf.
http://reference.wolfram.com/mathematica/tutorial/NDSolveStiffnessTest.html).
2 In modern implementations it is useful to specify the maximum number of successive and total times that the
stiffness test is allowed to fail by a pair of number called maximal repetitions. Typical values are {3,5}.

