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1.1.5 Stability of explicit methods

The concept of stability refers to the evolution of relative global errors (cf. 1.4) during the run of a nu-
merical scheme for a fixed (finite) step-size /. Stability requires that the relative global error remains
bounded.

Reliable estimates for the relative global error may be difficult or impossible — in many cases where
differential equations are solved numerically there is barely knowledge about “true” values of the solu-
tion. Even if some analysis leading to estimates on the bounds of the relative global error is possible,
it is highly probable that this is very specific for the given differential equation (i.e. the right hand side
function f and maybe the initial conditions). Such an analysis thus would explore what is called inher-
ent stability or instability.

A common approach to explore stability of a numerical method is to restrict the analysis to a simple
linear model of constant growth called Dahlquist equation:

y'=dy y(0)=1| (1.14)

with 4 € C or A a constant matrix in the case that y =y is vector-valued.

Of course, the system (1.14) is very simple and its exact solutions are easily found to be y = e™ 1.

For A=Re A+Im A i e C the solution is an oscillation:
—

@

y =e""| cos(wx)+isin(wx) (1.14a)

__ jax

with exponential real amplitude function efetr

A numerical scheme and the boundedness of relative errors are analysed with respect to (1.14). This
will lead to the concept of absolute stability.

Example 1.11: Absolute stability analysis for the Heun-method

The Heun-method is a Runge-Kutta method of order 2 with 2 stages (cf. 1.9a):
Yo = ¥(x) = y(0) =1
1
Vit = Vi +Eh(f(xkayk)+f(xk +h,y, +hf(xk7yk)))

Applied to the Dahlquist system (1.14) with its simple r.h.s. function f(x,y)= Ay the recursive
scheme above simplifies to

=1

Vin =V + %h(Ayk + A(y, +hdy,))= [1 +hA+ %(hA)zj ¥, (1.15)

Function F (hA)=F (z)

"In the case that y = )7 Is vector-valued the solution is given by the matrix exponential function defined by the

0 k
= X
matrix power series y = (e“‘): E FAk .
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1
In condensed form (1.15) reads as y,,, = F(z)y, with F(z) :1+z+522 and z:=hA. The

function F'(z)is called linear stability function.

Another representation then is |y, ,, = ([F(z)|ei'argF(Z) )yk . (1.15a)

Three cases are to be distinguished:

(1) Red < 0: The solution’s amplitude (cf. 1.14a) is exponentially decaying. So it is required by sta-
bility that the approximate values y, (k =0,1,2,...) in (1.15) exponentially decay, too. But this
implies that |F(z)| <l1.

(2) ReA4 = 0: The solution’s amplitude (cf. 1.14a) is constantly 1. So it is required by stability that the
approximate values y, (k=0,12,...) in (1.15) have the same constant amplitude, too. But
this implies that |F(z)| =1.

(3) Red > 0: The solution’s amplitude (cf. 1.14a) is exponentially increasing. So it is required by
stability that the approximate values y, (k=0,1,2,...) in (1.15) exponentially increase, too.
But this implies that |F(z)| >1.

Cases (2 and (3) are always true assuming that Im4 = 0%, only the first case is critical as is shown
by the following contour plot of the complex region {z eC | |F(z)| < 1}.

Figure 1.8: Region of absolute stability
af ] {z eC | |F(z)| < 1} for the Heun-method.

For negative values of 4 it is required that
il 1 -2<hRed<0.

This constitutes a stability constraint on the
step-size h.

Obviously, the region {z eC | |F(z)| < 1}
{0 does not intersect the right half plane
i 1 {Z eC | Rez > 0}. So the cases (2) and (3)

are always true and there are no stability
constraints on the step-size in these cases
=2 1 assuming that Im4 = 0.

The example above is representative for any explicit Runge-Kutta method (cf. 1.11¢) and the next
theorem is only a matter of generalization.

" This means that there are no frequencies in the solution. If Im4 # 0 then case (2) is unstable because

|F(Z)| >1 and case (1) is unstable if |F(Z)| >1,i.e. Im4 is too high (frequency !). Note that
z=hReA+hjImA4.
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Theorem 1.3: Linear stability polynomial for explicit Runge-Kutta methods

The linear stability function for an explicit s-stage Runge-Kutta method with corresponding Butcher
tableau (cf. 1.11c) is a polynomial depending on the a-numbers and h-numbers:

F(z)=1+bk(2)+bk,(z)+--+ bk (2) (1.16a)
With recursively defined polynomials
k(z)=z

(1.16b)
kj+1 (2)= Z(l + aj+1,1k1 (z)+ aj+1,2k2(2) + aj+1,3k3(z) +e-t aj+1,jkj(z))

for j=1,2,...,s 1.
Vo =V, +hbk +hb,k, +---+hb k,
S(x,y)=Ay
k,=Ay, = hk, =zy, =k(2)y,
ky = A(y, +hay k) = A(y, +hay, Ay, ) = hk, = 2(1+ ay,2) v, = 2(1+a, k (2)) =k, (2),

ky, = A(y,\ + /7((1»11/(1 + alzkz)) = A(y,\ +/7(a3A1Ay,\, + amA(yA +ha, Ay, ))) =

hky = z(1+z(ay, + a,,(1+a,,2))) y, = z(1+ay k() + a; ,k,(2)) y, = k;(2)y,

k/,1 = f(x., +h(a/._ukl +am‘2k2 +---+a/.”_/.k/. ) = A(y,\, 4—11(51/.”‘11\'1 +a/.”'2kz +---+a/,_|"/k/.))

=A| y,+a,,, hk +a,,, hk, +--+a, 5 hk,
r » —— r tand -~ 2. r
=k (2) ¥, =k, (2) 3, =k (2)y;

= Ay, +a,,, Ak (2)y, +a,, ,Ak,(2)y, +---+a/.+l“/.Ak-/. (2)y, =

hk,., = éﬁ)’/\» T éékl(z)yk +a, ,Ahk,(2)y, +--+a,,, Ahk (2)y,

:(Z+am_lZ/ﬂ(Z)+a,'-1,szz(Z)+"'+a/.|,,'2k/(z)))’/\»

=z (1 ta,,k(2)+a, ,k()+-+a,, ik, (Z)) Y,

j+1,1

=k (2)

" The linear stability function of a general (not necessarily explicit) Runge-Kutta method (cf. 1.11ab) is given by
det(/ — zA+z j|- b)
det(I — zA)

the vector consisting of 1s. This expression generally is rational in z. But in the case of an explicit method with
strictly lower triangular 4-matrix it is polynomial because the denominator is 1 (the matrix 7 — z4 is lower triangular
with 1s in the diagonal).

. Here 4 denotes the matrix of a-number, b the vector of b»-numbers and j is

the formula



30 Numerical Analysis
OST Dr. Bernhard Zgraggen

A method with linear stability function £ is defined to be A-stable if the region of absolute stability
{z eC | |F(z)| < 1} includes the left complex half plane {z eC | Rez < 0}.

Corollary 1.1: Explicit Runge-Kutta methods are not A-stable

F(x)|=o0

lim

>—00

Example 1.12: Linear stability functions and regions of absolute stability for Bogacki-Shampine-
Ralston 3(2)

The Butcher tableaus are:

0 0

1/2|1/2 1/2|1/2

3/4(0 3/4 3/40 3/4

1 1219 13 4/9 1 12/9 1/3 4/9
2/9 13 4/90 2/9 1/3 4/90
7/24 1/4  1/3 1/8 -5/72 1112 1/9 -1/8

According to Theorem 1.3 (1.16b):
k(z)=z

k,(z)=z(1 +%Z)
ky(z)=2z(1 +OZ+%Z(1 +%Z))

k4(Z):Z(l+§Z+%Z(l+%z)+gz(l+OZ+%Z(1+%Z)))

For the first rows of 5-numbers (of order 3) in the r.h.s. tableau:

2 3

2 1 4 z° z
Fl(Z)=1+§kl(z)+§k2(z)+§k3(z)= 1+Z+7+Z

and for the second (embedded) row:

3 4
z

5 1 1 1 z
Fz(z):1—51«1(2)+Ek2(z)+§k3(z)—gk4(z) = I_E_E'
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Figure 1.9: Regions of absolute stability
frec| IF,,(2)] < 1} for the BSR3(2)

method.

For negative values of Red it is required
that

-2.51275< hRed < 0.

These conditions constitute stability con-

/
"

straints on the step-size / in the first meth-
od.

Example 1.13: Linear stability functions and regions of absolute stability for some widely used Runge-

Kutta methods

Figure 1.10a: Sofroniou-Spaletta method SS3(2)

2 3
z z
FE)=1l4+z4+—+—
1(2) > %

1 3 1 4
F. =1+—(8++4/82)z"+——(-16+/82
2 (2) 288( V82)z 288( V82)z

For negative values of ReA it is required that
-2.51275< hReAd < 0.

These conditions constitute stability constraints on the
step-size & in the first method.
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Figure 1.10b: Dormand-Prince 5(4)
2 3 4 5 6

FK@zl+z+£—+£—+£—+£—+ii—

2 6 24 120 600
- 972 N 132° 3 z’

120000 40000 24000

For negative values of ReA it is required that
-3.30657 < hReAd < 0.

These conditions constitute stability constraints on the
step-size & in the first method.

Fy(z)=

g

=7

o

Figure 1.10c: Bogacki-Shampine BS5(4)

22 72 7 172912° 269z’
I4z4+4—+—+—+—+ +
2 6 24 120 12418560 1379840

6547720 4415797 2¢ 38728973 2/ 885817 2°
i . . i
1286568360 192127541760 6916591503360 768510167040

For negative values of Red it is required that
-3.98793 < hReAd < 0.

These conditions constitute stability constraints on the
step-size & in the first method.
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1.1.6 Stiffness

The phenomenon of stiffness is a serious challenge for numerical solvers for differential equations
because it normally has negative impacts on the stability of a numerical scheme and enforces very
small step-sizes leading to high computational costs — especially with explicit methods. Handling stiff-
ness in a numerical scheme is a rather complex task: It requires that stiffness or non-stiffness (!) is
detected and that the numerical solver may switch between more appropriate methods depending on
the results of stiffness detection’ or non-stiffness detection on runtime.

Stiffness occurs often in engineering sciences when a solution function of a differential equation is a
composition (e.g., a superposition) of terms with strongly distinctive scales. Typical examples of such
scales are frequencies and damping factors in amplitudes. Often, the scale is a timing scale and the
solution has oscillatory components for the short time scale that are damped away in the long time
scale. In many cases stiffness is a transient phenomenon.

Example 1.14: A simple one-dimensional equation leading to stiffness

The linear inhomogenuous equation y'=—-100y+99¢™" has the solutions

—100x -x

y=ce +e e '

(c € R) and particularly y =e " — for the initial condition y(0)=0.

Xk Classical Rﬁlgge—Kutta Expllc1tEulei5 Reference Exact Tables 1.7ab: Failure of clas-

0. 3.41061x10 ~1.19349x10 0. 0. )

8% —5896.9093 2 a0 8'203732 8'303722 sical Runge-Kutta method for

.2 -84650.4 280.1421 818731 0818731 ; _

0.3 -2.46335x10’ 729.384 0.740818  0.740818 f1Xed step-size /1= 0.1.

0.4 -7.16835x10° -6557.13 0.67032 0.67032 . .

0.5 -2.08599x10%2 59020.8 0.606531  0.606531| (The refere_nce sqlu’uon IS

0.6 -6.07023x10% -531181. 0.548812 0.548812| computed with working preci-

0.7 —1.76644><10£ 4.78063><1067 0.496585  0.496585 sjon 32 and stiffness switching

0.8 -5.14033x10 -4.30257x10 0.449329  0.449329 :

0.9 -1.49584x10%2 3.87231x108 0.40657 0.40657 algorithms.)

1. -4.35288x10%4 -3.48508x10° 0.367879  0.367879

1.1 -1.26669x1027 3.13657x 1010 0.332871 0.332871

29 11

1.3 -1.07264x10 2.54062x 10 0.272532  0.272532 ith initial dit defined

1.4 -3.1214x10% _2.28656x1013  0.246597  0.246597 WIWN Inital condition redetine

1.5 -9.08326x103° 2.05791x10% 0.22313 0.22313 | to y(l)ze_l —e 10

1.6 -2.64323x10%° -1.85212x101°  0.201897  0.201897

1.7 -7.6918x10% 1.6669x10%6 0.182684 0.182684

1.8 -2.23831x10% -1.50021%x1017  0.165299 0.165299

B 46 18 . .

1.9 -6.51349x10 1.35019x 10 0.149569  0.149569 The rather large partial deriva-

Xk Classical Runge-Kutta ExplicitFuler Reference Exact tive

S SR i

1.2 11.2669 0.3156 0.301194  0.301194 fy =-100 takes the role of

1.3 3191.32 0.14142 0.272532  0.272532 . .

1.4 928596. . 1.42528 0.246597  0.246597 | Red in the absolute stability

1.5 2.70221><1010 -10.3862 0.22313 0.22313 analys|s (Cf Example ’]11)

1.6 7.86344x10 95.685 0.201897  0.201897

1.7 2.28826x10£ -859.166 0.182684  0.182684 | The linear stability function of

1.8 6.65884x10 7734.3 0.165299  0.165299 | 4y lassical Runae-Kutt

1.9 1.93772x10% -69607.1 0.149569  0.149569 eth g.as_sca uhge-futta

2.  5.63877x10%0 626465. 0.135335  0.135335 | MethodIs:

2.1 1.64088x10% -5.63819x10°  0.122456  0.122456 5 3 .

2.2 4.77497x 102 5.07437x 10’ 0.110803  0.110803 z z z

2.3 1.38952x10%8 -4.56693x10%  0.100259  0.100259 Fo)y=l+z+—+—+—

2.4 4.04349x10%° 4.11024x10° 0.090718  0.090718 2 6 24

2.5 1.17666x10°° -3.69921x10'" 0.082085  0.082085 )

2.6 3.42407x10% 3.32029x10"0  0.0742736 0.074273¢] and the boundary of the region

2.7 9.96404x1023 —2.99636x110312 0.0672055 0.0672055 of absolute stability intersects

D' 5 43765 x10" S iar0sx10M 00530232 00350239 € negative real x-axis at -

. . X —Z. X . . .
2.78529 and 0. From this the

2.78529

condition —2.78529 < —-100A <0< 0<h< o0 =0.027859 is deduced, and obviously,

1 Cf. http://reference.wolfram.com/mathematica/tutorial/NDSolveStiffness Test.html for a real expert reference.
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the step-size & = 0.1 is far beyond this range. For the explicit Euler method a similar computation
leads to

-2<-100h<0=0<h<0.02.

The next tables show attempts with 2 = 0.015, & = 0.02 and /& = 0.025 starting from initial coordi-

-1 -100
nates (x=Ly=e —e ).

%y Classical Runge-Kutta ExplicitEuler Reference Exact .
T. 0.367870 0.3678790 0.367879 0.367879 Tables 1.7cd:
1.015 0.362405 0.362361 0.362402 0.362402

1.03 0.357011 0.356987 0.357007 0.357007| | h=0.015
1.045 0.351696 0.351662 0.351692 0.351692

1.06 0.34646 0.346431 0.346456 0.346456

1.075 0.341302 0.341271 0.341298 0.341298

1.09 0.33622 0.336192 0.336216 0.336216

1.105 0.331215 0.331186 0.331211 0.331211

1.12 0.326283 0.326255 0.32628 0.32628

1.135 0.321426 0.321398 0.321422 0.321422

%K Classical Runge-Kutta ExplicitEuler Reference Exact

19.87 2.34733%x107° 2.34712x107%  2.3473x107? 2.3473%x107°

19.885 2.31238%x107° 2.31218x107%  2.31235%x10°% 2.31235x107°

19.9 2.27795%x107° 2.27776x107%  2.27793x10°% 2.27793x107°

19.915 2.24404%x107° 2.24384x107%  2.24401x10°% 2.24401x107°

19.93 2.21063%x107° 2.21044x107%  2.2106x107? 2.2106x107°

19.945 2.17772%x107° 2.17753x107%  2.17769%x10°% 2.17769x107°

19.96 2.14529%x107° 2.14511x107%  2.14527x10°% 2.14527x107°

19.975 2.11336x107° 2.11317x107%  2.11333x10°% 2.11333x107°

19.9875 2.08709x107? 2.08696x107%  2.08708x10°% 2.08708x107°

20. 2.06116x107° 2.06102x107%  2.06115%x10°% 2.06115x107°

< Classical Runge-Kutta ExplicitEuler Reference Exact .
T. 0.3678790 0.3678790 0.3678790 0.367870 Tables 1.7ef.
1.02 0.360607 0.360522 0.360595 0.360595

1.04 0.353471 0.353456 0.353455 0.353455| | 1 =0.02
1.06 0.346473 0.346384 0.346456 0.346456

1.08 0.339613 0.339598 0.339596 0.339596

1.1 0.332888 0.332801 0.332871 0.332871

1.12 0.326296 0.326284 0.32628 0.32628

1.14 0.319835 0.31975 0.319819 0.319819

1.16 0.313502 0.313492 0.313486 0.313486

1.18 0.307294 0.307211 0.307279 0.307279

By Classical Runge-Kutta ExplicitEuler Reference Exact

19.82 2.46778x1079 ~0.0000369069 2.46765x102 2.46765x107°

19.84 2.41891x10° 0.0000369118 2.41879x107°%  2.41879x107?

19.86 2.37101x107°? -0.000036907 2.37089x107°% 2.37089x107?

19.88 2.32406x107° 0.0000369117 2.32394x10°% 2.32394x10°°

19.9  2.27804x107° ~0.0000369071 2.27793x10°? 2.27793x10°?

19.92 2.23294x107° 0.0000369116 2.23282x107%  2.23282x107?

19.94 2.18872x10°° -0.0000369072 2.18861x1077 2.18861x107°

19.96 2.14538x107° 0.0000369115 2.14527x10°% 2.14527x107°

19.98 2.1029x107° ~0.0000369072 2.10279x10°2 2.10279x10°°

20. 2.06126x107? 0.0000369114 2.06115x107% 2.06115x107?

BN Classical Runge-Kutta ExplicitEuler Reference Exact .
T. 0.367870 0.367870 0.367879 0.367879 Tables 1.7gh:
1.025 0.358834 0.358682 0.358796 0.358796

1.05 0.349998 0.349998 0.349938 0.349938| | h =0.025
1.075 0.341372 0.3411 0.341298 0.341298

1.1 0.332954 0.333063 0.332871 0.332871

1.125 0.32474 0.324262 0.324652 0.324652

1.15 0.316726 0.317122 0.316637 0.316637

1.175 0.308909 0.307993 0.308819 0.308819

1.2 0.301284 0.302337 0.301194 0.301194

1.225 0.293846 0.29195 0.293758 0.293758

B Classical Runge-Kutta ExplicitEuler Reference Exact

19.775 2.58203x107° -8.08816x1017 2.58123%x10°% 2.58123x107?

19.8 2.51828x107 1.21322x10128 2.5175x10°%  2.5175x107°

19.825 2.4561x107° -1.81984x10%128  2.45534%x10°% 2.45534x107?

19.85  2.39546x107° 2.72976x 10128 2.39472x10°% 2.39472x10°°

19.875 2.33631x107° -4.09463%x10128  2.33559%10°% 2.33559x107?

19.9 2.27863x107° 6.14195x 10128 2.27793x10°%  2.27793x10°°

19.925 2.22237x107? -9.21292x10128  2.22168x1077 2.22168x107°

19.95  2.1675%x107° 1.38194x10%2%  2.16683x10°% 2.16683x1077

19.975 2.11398x107° -2.07291%x1012% 2.11333x1077 2.11333x107°

20. 2.06179x107° 3.10936x10%2%  2.06115%x10°% 2.06115x107?
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Example 1.15: A simple one-dimensional stiff equation (Example 1.14 continued)

The tables below show comparisons of different adaptive methods with various accuracy and pre-
cision goals. The Mathematica method SS3(2) (Sofroniou-Spaletta) looks rather expensive, but the
reason is that stiffness detection is off. SS3(2) is more suitable for stiffness detection and would be
left if stiffness detection would be on (automatic stiffness switching, cf. Table 1.8c).

Method Steps Costs Error Table 1.8a: Comparisons of BSR3(2) and
BSR32 | {758, 506} | 3794 |0.000159676 | | SS3(2) with accuracy goal = 4[8[16 and
SS32 | {759, 554} | 3941 | 0.000035481 | | Precision goal = 4|8|16.
Method Steps Costs Error
BSR32 | {1349, 289} | 4916 |3.43865x10°10
Ss32 | {2220, 281} | 7505 |8.58037x10710
Method Steps Costs Error
BSR32 {113329, 42624} 467861 |6.34952x10°16
SS32 {828666, 187280} 3047840 6.58427x 10717
Method Steps Costs Error Table 1.8b: Comparisons of DP5(4) and
DP54 (885, 2} | 5324 |3.45653x10-10 BS5(4) with accuracy goal = 8|16 and preci-
: - sion goal = 8|16.
BS54 | {613, 201} | 5700 | 2.17317x10"’ 9 |
Method Steps Costs Error
DP54 | {23466, 2634} |156602|1.42702x10717
BS54 | {15345, 737} |112576]1.31396x10710
Method Steps Costs Error Table 1.8c: Comparison of BSR3(2) and
N SS3(2) with accuracy goal = 8 and precision
BSR32 | {931, 15} | 2840 |2.58261x107? : :
{ ) 5 goal = 8 in the x-interval [1, 9.52509]. At x =
5532 {1805, 0} ] 5417 11.15295x10 9.52509 stiffness was detected by SS3(2).
The additional costs for SS3(2) are partly
due to the stiffness detection that is on.
1.1.6.1 Stiffness detection

Detection of stiffness or non-stiffness (!) on runtime generally is not an easy task but in the case of
explicit Runge-Kutta methods an elegant and inexpensive approach for stiffness detection is possible.
Recalling the definition of explicit Runge-Kutta methods (cf. 11ab) for the last two k-values

ksfl = f(x + csflha y + hz as—l,jkj)
j=1

the formula

&s-1

~

85~

k, -

ks—l

gsfl

k= f(x+ehy+hYa k)

Jj=1

&s

(1.17)
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o

gives a good estimate for the partial derivative fy ::a— at the position x+ /4 provided that
v

The value /T takes the role of |ReA| ' in the absolute stability analysis (cf. Example 1.11). By testing

‘hﬂ against the absolute boundary values of the absolute stability region stiffness can be detected.

Example 1.16: Stiffness detection with Sofroniou-Spaletta method SS3(2)

From Example 1.13 and Figure 1.10a the linear stability function of SS3(2) is known to be
2 3

z° z
F(z)=1+z+ ? + ? with boundary values on the negative x-axis equal to {-2.51275, 0}.

The stiffnest test in this case is ‘hﬁj‘ < s|—2.51275 . The number s is a safety factor (by default
0.8).2

0.0300 F ‘ ‘ ‘ '] Figure 1.11: Step data plot for Ex-
1| ample 1.16 with accuracy and pre-
0.0200 | 1 T
cision goals equal to 8
0.0150 F
Since ‘/l‘z‘f ‘:100 the stiffness
0.0100 | ¥
00070l test produces 4 <0.0251275.
0.0050 - The step data plot is compatible
with Table 1.8c: Stiffness is detect-
ed at x = 9.52509. Above this x-
0.0030 - I .
value oscillations of the step-size
0.0020 | begin and continue on if the meth-
od SS3(2) is kept running.

Stiffness is not an inherent property of a differential equation. It is a relative concept and the occur-
rence of stiffness generally depends on the numerical method and the associated evolution of the

step-size. Stiffness occurs when the step-size / is such that ‘hi‘ is near or beyond the bounds of the

absolute stability condition.

1 For vector differential equations generalizing (1.1) to

¥'(x) = £ 3(x)) = (G, 5(), £, (X)), -+, £ (%, P(x))) with initial vector condition 37'(x,) = ¥,

the value Z is an absolute estimate for the dominant eigenvalue of the Jacobian matrix

g, = Qo)
012> "> V)

“advanced” methods of linear algebra (cf.
http://reference.wolfram.com/mathematica/tutorial/NDSolveStiffnessTest.html ).

. Generally, estimates of dominant eigenvalues are rather expensive and are based on

2 In modern implementations it is useful to specify the maximum number of successive and total times that the
stiffness test is allowed to fail by a pair of number called maximal repetitions. Typical values are {3,5}.





