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2 Systems of ODE and higher-order ODEs 

An  m-dimensional system of differential equations generalizes (1.1) to  

 ))(,(,)),(,()),(,())(,()(' 21 xyxfxyxfxyxfxyxfxy m


   (2.1) 

with initial vector condition 0 0( )y x y
 

. 

The arrows on top of the symbols y or f denotes an m-dimensional vector expression. 

 

Example 2.1: Van der Pol second-order differential equation  

The van der Pol equation emerges in the study of a closed loop electrical circuit consisting of an 
inductor, a capacitor, and a nonlinear resistor. It is a classical example of a nonconservative non-
linear system with a stable limit cycle. 
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The r.h.s.-function of a differential equation ),,'',',,( )1()(  nn zzzzxfz  with highest derivative of 

order n is ),,,,,(
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 . This is multi-variate in the z-coordinates.  
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121 ,,'',' 
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n zzzzzz   transforms a higher order differential equation into a 1st –

order system: 
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with solution vector ),,,,( 121  nzzzzy 
. 

Example 2.1 cont: Applying this scheme to (2.2a) and then renaming 1z  with v  yields: 
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Figure 2.1: Phase plot of a solution ))(),(()(
)('
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to (2.2ab) for  = 0.2 with indicated initial point. The solu-
tion (trajectory) has a limit cycle.  

In the undamped case  = 0 the solution curve is a circle.  

For the special initial condition (0,0) the solution is con-
stant 0 (circle with radius 0), but for any other initial con-
dition the system has a limit cycle. Thus (0,0) is an un-
stable equilibrium point. 
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Example 2.2: 3D Lorenz equations 

Lorenz derived the equations 1963 from a set of partial equations modelling convection rolls in the 
atmosphere. The equations constitute a 3D system of non-linear differential equations. 
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 (2.4) 

The parameters  ,,  are positive > 0, but usually 3/8,10    and  is varied. For small 

values of   the system is stable and evolves two one of two fixed point attractors. For  = 28, 

e.g., the system exhibits (complex) chaotic behaviour. 

 

Figure 2.2: The 3D-plot on the left shows the evolution of 
the solution vector )(ty


 with (red) inital point )0(y


= 

(0,0,1).  

Here  = 28 and 2000  t . The system was solved 

numerically with the embedded Runge-Kutta method Bo-
gacki-Shampine 5(4) with accuracy and precision goals 
equal to 16. 

 

 

 

 

 

 

 

 

  

Example 2.3: Planar three-body-problem 

The trajectories of n = 3 mass points with masses )3,...,2,1(0  nimi  and planar coordi-

nates   )3,...,2,1()(),()(  nitytxtq iii


 are described by a system of Newton equations 

(second law of motion with gravitational constant ): 
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   (2.5a) 

The r.h.s. expresses the vector sum of all gravitational forces applied to the i-th body due to all 
other bodies. 
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 (2.5b) 

This is a system of 6 coupled second-order equations.  

Introducing the (velocities) variables   )3,2,1()(')(),(':)(  itytvtxtv iyix ii
 a first-order sys-

tem with 12 equations results when applying the scheme (2.3). 

 

 

Figure 2.3ab: Planar trajectories of 3 bodies. The plots were generated with the embedded Runge-
Kutta method Bogacki-Shampine 5(4) with accuracy and precision goal set to 16. The first picture 
shows an evolution until t = 0.67 sec and the second (scaled) one (the same evolution) until t = 10 
sec.  
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2.1 Notes on generalizations from scalar functions to vector-valued functions 

The theory on explicit methods developped in the previous chapter can be generalized to systems of 
differential equations. Concepts, proofs and formulaes can be carried over literally or with slight adap-
tations in notation mostly by substituting y  with )(xyy


 , i.e. a vector-valued function depending on 

the scalar variable x. 

The multi-variate chain rule played a fundamental role in Property 1.1. Therefore it will be demonstrat-
ed here in vector notation: 
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The expressions yf
fyJ
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)(  all denote the Jacobian matrix of f


 with respect to the y


-

variables ),,,( 21 myyy  .  So it becomes clear that even the abbreviations introduced in (1.8ab) carry 

over. The dot here denotes the product of matrices with matrices or vectors (the inner product being a 
special case). Keeping in mind that the product rule generalizes literally to products of matrices with 

vectors higher derivatives 
),(),(''' )4( xyxy  are computed by iterative application of the multi-variate 

chain rule combined with the product rule:  
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provided that all second partial derivatives exist and are continuous (from the continuity it follows the 

symmetry relation xyyx ff 


  by a theorem called Schwarz-theorem). The expression yyf 


 is a kind of 

„matrix gradient“ 
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whose components are partial derivatives of Jacobian 

matrices and thus matrices again. Then  ff yy


   is a linear combination of matrices and   fff yy


   

is an m-dimensional vector. 

A second generalization concerns Taylor-expansions of f


 with respect to multiple y-coordinates and 

multiple components. This is important because such expansions occur in the derivation of Runge-
Kutta methods (as in (1.8b) where the k-values are expanded according to Taylor’s formula). Instead 
of scalar k-values k-vectors enter the stage. The idea becomes clear when generalizing (1.8): 
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Now we are to find coefficients a, b and m, n such that the (so-called 2-stage Runge-Kutta) formulas 
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duplicate the Taylor series of the solution y


 through the (second-order) term in 2h . The last formula 

of (2.6) is then near the Taylor polynomial of order 2. 

Introducing the usual abbreviations for f


 and its partial derivatives we get from above: 
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Multi-variate Taylor expansions for the k
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-vectors produce (!): 
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Combining the expressions in (2.6b) as suggested in (2.6a) yields 

2
1)()()()( hFbmfhbaxyhxy
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 . 

Comparing coefficients with (1.8a rev.) then must give the same redundant system of equations as in 

(1.8c):  
2

1
,1  bmba .   

From this it becomes clear that the framework for Runge-Kutta methods (including Butcher tableaus) 
can be carried over to systems of differential equations. The next example is a demonstration. 

 

Example 2.4: Heun method applied to van der Pol’s equation (Ex. 2.1 cont.) 
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So the Heun-method (cf. 1.9a) as a 2-stage Runge-Kutta method with ),( vzy 


reads as: 
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tk HeunEuler 21 Reference
0. 1., 1. 1., 1.
0.11 0.88395, 1.10649 0.884085, 1.10632
0.208365 0.7706, 1.19517 0.770853, 1.1949
0.298483 0.659371, 1.27057 0.659728, 1.27025
0.382377 0.549951, 1.33523 0.550398, 1.33493
0.461389 0.442153, 1.39071 0.442707, 1.39038
0.536474 0.335855, 1.43798 0.336514, 1.43762
0.608352 0.23097, 1.47764 0.231647, 1.47734
0.67759 0.127436, 1.51008 0.128093, 1.50985
0.744656 0.0252065, 1.5355 0.0258871, 1.53532
0.810278 0.0762713, 1.55408 0.0754934, 1.55394
0.875774 0.178556, 1.56582 0.177612, 1.56573
0.941269 0.281378, 1.57019 0.280245, 1.57019
1.00685 0.384365, 1.56662 0.383101, 1.56673
1.0727 0.487282, 1.55453 0.48592, 1.55418
1.1391 0.589947, 1.53327 0.588456, 1.53198
1.20635 0.692184, 1.50212 0.690539, 1.49989
1.27484 0.793797, 1.46025 0.791999, 1.4575
1.34499 0.894546, 1.40671 0.89263, 1.40413
1.41733 0.994119, 1.34041 0.992159, 1.33878
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A short (modern) vector notation with explicit Butcher tableau 
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The application of adaptive step-size formulas like  (1.13d) in the case of vector-valued functions is 
described in detail in the footnote to (1.13d). 

 

 

 

 

 

 

 

 

 

 

Table 2.1: The first twenty steps from embedded pair  

Heun-Euler 2(1) with  = 0.2. The accuracy goal is set to 1  

and the precision goal to 2. Figure 2.4: Plot of  the Step-sizes 
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Method Steps Costs Error

DP54 37376, 26235 381668 1.515451014

BS54 23988, 26049 350261 2.664541015

The norm function for step-size adaptation in Table 2.1 was set to the infinity norm (maximum 
norm). So the classical step-size formula (1.13de) for the example in Table 2.1 becomes  
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Here n denotes the step number and the superscripts in round brackets indicate the vector compo-
nents. 

Furthermore, ),( )2()1(
nnn eee


  is the vector of error estimates, ),( )2()1(
nnnnn vyzyy 


 is the so-

lution vector, and here 2~ p  is the order of the (primary) Heun-method. Finally, the accuracy and 

precision goals determine 21 10,10   ra  . 

 

Example 2.5: Higher-order methods applied to van der Pol’s equation (Ex. 2.1 cont.) 

 

Table 2.2: Comparisons of the meth-
ods Bogacki-Shampine 5(4) and Dor-
mand-Prince 5(4) for accuracy and 
precision goals 16. The second num-
ber in the step-column is the number of rejected steps. The costs-column indicates the numbers of 
function evaluations and the error-column indicates the miminum of final (global) relative or abso-
lute error. 
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Figure 2.5a: Log-Plot of step-sizes for DP5(4) Figure 2.5b: Log-Plot of step-sizes for BS5(4) 
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Method Steps Costs Error
BS54 251668, 258788 3573194 0.757335

Method Steps Costs Error
DP54 386656, 325115 4270628 1.1274

Example 2.6: Higher-order methods applied to the Lorenz equations (Ex. 2.2 cont.) 

The Lorenz equations show chaotic behaviour for many parameter settings. Usually 
3/8,10    and  is varied. For small values of ρ the system is stable and evolves to one of 

two fixed point attractors. For ρ > 24.28, the fixed points become repulsors and the trajectory is re-
pelled by them in a complex way, evolving without ever crossing itself. The chaotic behaviour 
means that (small) errors during a numeric scheme may evolve to divergent relative errors in the 
long run. This becomes visible in the next comparison with large errors relative to the reference so-
lution (which itself is not reliable). 

 

Tables 2.3ab: Comparisons of the 
methods Bogacki-Shampine 5(4) and 
Dormand-Prince 5(4) for accuracy and 
precision goals 16. Here the time inter-
val was restricted to 1000  t . The 
second number in the step-column is 
the number of rejected steps. The costs-column indicates the number of function evaluations and 
the error-column indicates the minimum of final (global) relative or absolute error. The reference 
solution was computed with stiffness switching and a working precision of 32 for internal computa-
tions. Nevertheless, it is not necessarily reliable. 
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