
 Numerical Analysis

 Dr. Bernhard Zgraggen

37

2 Systems of ODE and higher-order ODEs

An m-dimensional system of differential equations generalizes (1.1) to

 ))(,(,)),(,()),(,())(,()(' 21 xyxfxyxfxyxfxyxfxy m


 (2.1)

with initial vector condition 0 0()y x y
 

.

The arrows on top of the symbols y or f denotes an m-dimensional vector expression.

Example 2.1: Van der Pol second-order differential equation

The van der Pol equation emerges in the study of a closed loop electrical circuit consisting of an
inductor, a capacitor, and a nonlinear resistor. It is a classical example of a nonconservative non-
linear system with a stable limit cycle.

 zzztz
dampinglinearnon




')1()('' 2

 (2.2a)

The r.h.s.-function of a differential equation),,'',',,()1()( nn zzzzxfz  with highest derivative of

order n is),,,,,(
:

121    

z

nzzzzxf


 . This is multi-variate in the z-coordinates.

Substituting)1(
121 ,,'',' 
  n

n zzzzzz  transforms a higher order differential equation into a 1st –

order system:

),,,,,('

'

'

'

1211

32

21

1

 





nn zzzzxfz

zz

zz

zz




 (2.3)

with solution vector),,,,(121  nzzzzy 
.

Example 2.1 cont: Applying this scheme to (2.2a) and then renaming 1z with v yields:














zvzv

vz

)1('

'
2

. (2.2b)

Figure 2.1: Phase plot of a solution ))(),(()(
)('

1

tz

tztzty





to (2.2ab) for  = 0.2 with indicated initial point. The solu-
tion (trajectory) has a limit cycle.

In the undamped case  = 0 the solution curve is a circle.

For the special initial condition (0,0) the solution is con-
stant 0 (circle with radius 0), but for any other initial con-
dition the system has a limit cycle. Thus (0,0) is an un-
stable equilibrium point.

 Numerical Analysis

 Dr. Bernhard Zgraggen

38

Example 2.2: 3D Lorenz equations

Lorenz derived the equations 1963 from a set of partial equations modelling convection rolls in the
atmosphere. The equations constitute a 3D system of non-linear differential equations.

32132133

23132122

1232111

),,,()('

)(),,,()('

)(),,,()('

yyyyyytfty

yyyyyytfty

yyyyytfty










 (2.4)

The parameters  ,, are positive > 0, but usually 3/8,10   and  is varied. For small

values of  the system is stable and evolves two one of two fixed point attractors. For  = 28,

e.g., the system exhibits (complex) chaotic behaviour.

Figure 2.2: The 3D-plot on the left shows the evolution of
the solution vector)(ty


 with (red) inital point)0(y


=

(0,0,1).

Here  = 28 and 2000  t . The system was solved

numerically with the embedded Runge-Kutta method Bo-
gacki-Shampine 5(4) with accuracy and precision goals
equal to 16.

Example 2.3: Planar three-body-problem

The trajectories of n = 3 mass points with masses)3,...,2,1(0  nimi and planar coordi-

nates  )3,...,2,1()(),()( nitytxtq iii


 are described by a system of Newton equations

(second law of motion with gravitational constant ):

)3,...,2,1(
)(

)(''
,1

3 



 



ni
qq

qqmm
tqm

n

ikk ik

ikki
ii 

  (2.5a)

The r.h.s. expresses the vector sum of all gravitational forces applied to the i-th body due to all
other bodies.

 Numerical Analysis

 Dr. Bernhard Zgraggen

39

3
2

32
2

32

2332
3

2
31

2
31

1331
33

3
2

32
2

32

2332
3

2
31

2
31

1331
33

3
2

32
2

32

3232
3

2
21

2
21

1221
22

3
2

32
2

32

3232
3

2
21

2
21

1221
22

3
2

31
2

31

3131
3

2
21

2
21

2121
11

3
2

31
2

31

3131
3

2
21

2
21

2121
11

)()(

)(

)()(

)(
)(''

1

)()(

)(

)()(

)(
)(''

1

)()(

)(

)()(

)(
)(''

1

)()(

)(

)()(

)(
)(''

1

)()(

)(

)()(

)(
)(''

1

)()(

)(

)()(

)(
)(''

1

yyxx

yymm

yyxx

yymm
tym

yyxx

xxmm

yyxx

xxmm
txm

yyxx

yymm

yyxx

yymm
tym

yyxx

xxmm

yyxx

xxmm
txm

yyxx

yymm

yyxx

yymm
tym

yyxx

xxmm

yyxx

xxmm
txm









































































 (2.5b)

This is a system of 6 coupled second-order equations.

Introducing the (velocities) variables  )3,2,1()(')(),(':)( itytvtxtv iyix ii
 a first-order sys-

tem with 12 equations results when applying the scheme (2.3).

Figure 2.3ab: Planar trajectories of 3 bodies. The plots were generated with the embedded Runge-
Kutta method Bogacki-Shampine 5(4) with accuracy and precision goal set to 16. The first picture
shows an evolution until t = 0.67 sec and the second (scaled) one (the same evolution) until t = 10
sec.

 Numerical Analysis

 Dr. Bernhard Zgraggen

40

2.1 Notes on generalizations from scalar functions to vector-valued functions

The theory on explicit methods developped in the previous chapter can be generalized to systems of
differential equations. Concepts, proofs and formulaes can be carried over literally or with slight adap-
tations in notation mostly by substituting y with)(xyy


 , i.e. a vector-valued function depending on

the scalar variable x.

The multi-variate chain rule played a fundamental role in Property 1.1. Therefore it will be demonstrat-
ed here in vector notation:

1

)(':

21

)(:

21

::)('

)(',),('),(',1.,,,,))(',1(),()(''

Ffffxy
y

f

x

f

xyxyxy
y

f

y

f

y

f

x

f
xyyxJ

dx

fd
xy

yx

tr

xy

m

yJ
y

f

m

tr

f

f





   
  























































































The expressions yf
fyJ

y

f










)(all denote the Jacobian matrix of f


 with respect to the y


-

variables),,,(21 myyy  . So it becomes clear that even the abbreviations introduced in (1.8ab) carry

over. The dot here denotes the product of matrices with matrices or vectors (the inner product being a
special case). Keeping in mind that the product rule generalizes literally to products of matrices with

vectors higher derivatives 
),(),(''')4(xyxy are computed by iterative application of the multi-variate

chain rule combined with the product rule:

 

   
 

  12
2

:

2

:

2

1

2

2

)('''

FfFffffffffff

ffffffffff

fffffffffff

f
dx

d
fff

dx

d
fffff

dx

d
f

dx

d
fff

dx

d
xy

yyxy

F

yyyxxx

yyyxyyxxx

yxyyyxyyxxx

yyyxxxyx

F

yx


  




































































provided that all second partial derivatives exist and are continuous (from the continuity it follows the

symmetry relation xyyx ff 


 by a theorem called Schwarz-theorem). The expression yyf 


 is a kind of

„matrix gradient“ 
















y
m

y
m

y f
y

f
y

f
y







,,,
1

whose components are partial derivatives of Jacobian

matrices and thus matrices again. Then  ff yy


  is a linear combination of matrices and   fff yy


 

is an m-dimensional vector.

A second generalization concerns Taylor-expansions of f


 with respect to multiple y-coordinates and

multiple components. This is important because such expansions occur in the derivation of Runge-
Kutta methods (as in (1.8b) where the k-values are expanded according to Taylor’s formula). Instead
of scalar k-values k-vectors enter the stage. The idea becomes clear when generalizing (1.8):

 Numerical Analysis

 Dr. Bernhard Zgraggen

41

Now we are to find coefficients a, b and m, n such that the (so-called 2-stage Runge-Kutta) formulas

21

12

1

)()(

2
),(

),(

kbkaxyhxy

stages
kmymhxfhk

yxfhk


















 (2.6)

duplicate the Taylor series of the solution y


 through the (second-order) term in 2h . The last formula

of (2.6) is then near the Taylor polynomial of order 2.

Introducing the usual abbreviations for f


 and its partial derivatives we get from above:

  2

1

!2

1
)()(hfffhfxyhxy

F

yx 




  (2.6a)

Multi-variate Taylor expansions for the k


-vectors produce (!):

 

 

 








































 







 





  

























2

:

2

222
1

11
2

1
22

12

1

21

2
!2

1
)(

!2

1
))((

!2

1

!2

1
))((

!2

1

hffffffmhfffmfh

fhfhmffmhmhfhmfkmfmhffh

kkmfkmmhfhmfkmfmhffhk

fhk

F

yyyxxx

F

yx

yyyxxxyx

yyyxxxyx

 (2.6b)

Combining the expressions in (2.6b) as suggested in (2.6a) yields

2
1)()()()(hFbmfhbaxyhxy


 .

Comparing coefficients with (1.8a rev.) then must give the same redundant system of equations as in

(1.8c):
2

1
,1  bmba .

From this it becomes clear that the framework for Runge-Kutta methods (including Butcher tableaus)
can be carried over to systems of differential equations. The next example is a demonstration.

Example 2.4: Heun method applied to van der Pol’s equation (Ex. 2.1 cont.)

The van der Pol equation 












zvzv

vz

)1('

'
2

 (cf. 2.2b) has as r.h.s.-function














zvzvztf

vvztf
vztf

)1(),,(

),,(
),,(2

2

1




.

So the Heun-method (cf. 1.9a) as a 2-stage Runge-Kutta method with),(vzy 


reads as:

 Numerical Analysis

 Dr. Bernhard Zgraggen

42

0
20

40
60

80
100

0.100

0.050

0.030

0.070

tk HeunEuler 21 Reference
0. 1., 1. 1., 1.
0.11 0.88395, 1.10649 0.884085, 1.10632
0.208365 0.7706, 1.19517 0.770853, 1.1949
0.298483 0.659371, 1.27057 0.659728, 1.27025
0.382377 0.549951, 1.33523 0.550398, 1.33493
0.461389 0.442153, 1.39071 0.442707, 1.39038
0.536474 0.335855, 1.43798 0.336514, 1.43762
0.608352 0.23097, 1.47764 0.231647, 1.47734
0.67759 0.127436, 1.51008 0.128093, 1.50985
0.744656 0.0252065, 1.5355 0.0258871, 1.53532
0.810278 0.0762713, 1.55408 0.0754934, 1.55394
0.875774 0.178556, 1.56582 0.177612, 1.56573
0.941269 0.281378, 1.57019 0.280245, 1.57019
1.00685 0.384365, 1.56662 0.383101, 1.56673
1.0727 0.487282, 1.55453 0.48592, 1.55418
1.1391 0.589947, 1.53327 0.588456, 1.53198
1.20635 0.692184, 1.50212 0.690539, 1.49989
1.27484 0.793797, 1.46025 0.791999, 1.4575
1.34499 0.894546, 1.40671 0.89263, 1.40413
1.41733 0.994119, 1.34041 0.992159, 1.33878

 

  
  

  
       

21

22

2

2
2

2
1

12

2
2

1
1

2

1

2

1
)()(

2

)1()1(

)1(

)1(,,

)1(,,
),(

)1(),,(

),,(
),,(

kktyhty

stages

vhzzvzhvvhzh

zvzhvh

zvzhvvhzhtfh

zvzhvvhzhtfh
kyhtfhk

zvzhvztfh

vhvztfh
vztfhk














































































A short (modern) vector notation with explicit Butcher tableau
















21

212 0

000

bb

ac is:

2211

12112

1

)()(

2
),(

),(

khbkhbtyhty

stages
kayhctfk

ytfk


















The application of adaptive step-size formulas like (1.13d) in the case of vector-valued functions is
described in detail in the footnote to (1.13d).

Table 2.1: The first twenty steps from embedded pair

Heun-Euler 2(1) with  = 0.2. The accuracy goal is set to 1

and the precision goal to 2. Figure 2.4: Plot of the Step-sizes

 Numerical Analysis

 Dr. Bernhard Zgraggen

43

Method Steps Costs Error

DP54 37376, 26235 381668 1.515451014

BS54 23988, 26049 350261 2.664541015

The norm function for step-size adaptation in Table 2.1 was set to the infinity norm (maximum
norm). So the classical step-size formula (1.13de) for the example in Table 2.1 becomes

p

nra

n

nra

n

nn
y

e

y

e
hh

~
1

)2(

)2(

)1(

)1(

1 ,max
















 







.

Here n denotes the step number and the superscripts in round brackets indicate the vector compo-
nents.

Furthermore,),()2()1(
nnn eee


 is the vector of error estimates,),()2()1(
nnnnn vyzyy 


 is the so-

lution vector, and here 2~ p is the order of the (primary) Heun-method. Finally, the accuracy and

precision goals determine 21 10,10   ra  .

Example 2.5: Higher-order methods applied to van der Pol’s equation (Ex. 2.1 cont.)

Table 2.2: Comparisons of the meth-
ods Bogacki-Shampine 5(4) and Dor-
mand-Prince 5(4) for accuracy and
precision goals 16. The second num-
ber in the step-column is the number of rejected steps. The costs-column indicates the numbers of
function evaluations and the error-column indicates the miminum of final (global) relative or abso-
lute error.

0 20 40 60 80 100

0.0010

0.0050

0.0020

0.0030

0.0015

 0 20 40 60 80 100

0.0010

0.0050

0.0020

0.0030

0.0015

Figure 2.5a: Log-Plot of step-sizes for DP5(4) Figure 2.5b: Log-Plot of step-sizes for BS5(4)

 Numerical Analysis

 Dr. Bernhard Zgraggen

44

Method Steps Costs Error
BS54 251668, 258788 3573194 0.757335

Method Steps Costs Error
DP54 386656, 325115 4270628 1.1274

Example 2.6: Higher-order methods applied to the Lorenz equations (Ex. 2.2 cont.)

The Lorenz equations show chaotic behaviour for many parameter settings. Usually
3/8,10   and  is varied. For small values of ρ the system is stable and evolves to one of

two fixed point attractors. For ρ > 24.28, the fixed points become repulsors and the trajectory is re-
pelled by them in a complex way, evolving without ever crossing itself. The chaotic behaviour
means that (small) errors during a numeric scheme may evolve to divergent relative errors in the
long run. This becomes visible in the next comparison with large errors relative to the reference so-
lution (which itself is not reliable).

Tables 2.3ab: Comparisons of the
methods Bogacki-Shampine 5(4) and
Dormand-Prince 5(4) for accuracy and
precision goals 16. Here the time inter-
val was restricted to 1000  t . The
second number in the step-column is
the number of rejected steps. The costs-column indicates the number of function evaluations and
the error-column indicates the minimum of final (global) relative or absolute error. The reference
solution was computed with stiffness switching and a working precision of 32 for internal computa-
tions. Nevertheless, it is not necessarily reliable.

Figure 2.5a: Log-Plot of step-sizes for DP5(4) Figure 2.5b: Log-Plot of step-sizes for BS5(4)

