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Hermite-Interpolation (Osculation) 
 
The method of divided differences with repeated arguments 
 
1. The problem of osculation 
When the problem of collocation is extended by the requirement that certain given values of deriva-
tives of order 0 up to some higher order k of the model function y must be met at some of the argu-
ments nxxx ,,, 1,0    we end in an interpolation problem called osculation or Hermite interpolation. This 
kind of interpolation normally is more complicated than collocation. Generally, the interpolating poly-
nomial has a higher degree than collocating polynomials; the degree, generally, equals “n + the number 
of additional conditions on derivatives” at most.  
 
Example 1.1: A typical problem of osculation is the following one (cf. Schaum’s Outline of Numerical 

Analysis, 2nd edition, Problem 10.12, p. 84): 
Compute a polynomial  p2     whose graph passes through the points (2,1) and (4,2) (collocation 
conditions) and that meets the four derivative conditions p2’(2) = 1, p2’(4) = 0, p2’’(2) = 0 and p2’’(4) 
= 0. 

 
 
 
2. The “elegant” solution by divided differences with repeated arguments 
There are different methods for solving osculation problems like the naïve method of undetermined 
coefficients or the Hermite-Lagrange-formula for 1st order derivative conditions. But from the point of 
view of implementation and comprehension nothing (known to the author) beats the method of divided 
differences extended to the case where arguments may occur repeatedly. 
 
2.1 The theoretical background 
The starting point is the collocation error formula: 
 
If y denotes a model function with n+1 continuous derivatives and p is the collocation polynomial co-
allocating with y at the arguments nxxx ,,, 1,0   then the collocation error is representable as follows: 
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Considering ),,0(1 nixxx in =≠= +  as the argument of a further measurement the coefficient 
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 of the Newton polynomial )(1 xn+π  must equal the divided difference 

),,,(),,,( 100 += nnn xxxyxxxy  .  
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These formulas say that a divided difference can be considered as a derivative. For the case n = 1 this 

is not a surprise, because ),()('
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mean value theorem of calculus in one variable. Proceeding with this special case and examing what 
happens when 10 xx =  (a situation called repetition of arguments) we deduce by a limiting argument 
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by definition of the derivative. Of course, this re-

quires that the derivative exists. By a similar argument applied to (2) we get the following formula for 
higher order divided differences with repeated arguments: 
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A divided difference with repeated arguments thus can be interpreted as a derivative. This is the key to 
solving the osculation problem by divided differences with repeated arguments. 
 
2.2 The method 

When given “derivative” values ),...,0()()( kjxy i
j =  up to order k have to be met by the osculation 

polynomial the corresponding argument xi is repeated k+1 times in the tableau of divided differences 

and the corresponding divided differences are set equal to 
!

)()(
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 according to (3).  

The resulting tableau contains repetitions and it is solved by the usual Newton scheme of divided dif-
ferences. Of course, the Newton basis polynomials have to be modified according to the repetitions of 
the arguments, but this modification is literally. Since the argument ix  occurs repeatedly (k+1 times) 

the corresponding part in the modified Newton polynomial is 
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stead of  )( 0xx − . An example computation will illuminate the method and its elegance. 

 
Example 1.2: This continues Example 1.1 from above. For the osculating polynomial p2 we have the 

following initial incomplete tableau of divided differences with repetitions: 
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This initial tableau is completed by the usual scheme of divided differences yielding the following 
lower left tableau: 

  

 

 
 

The framed values are divided differences computed by the usual scheme and the values encircled 
are the values on the main diagonal constituting the coefficients of the modified Newton polynomi-
als. The solution then is: 
 

 
 

Note that the modified Newton polynomials have to be used: 
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Zero means degree only 4 here 
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3. The osculation error formula 
Since the method in section 2 is a generalization of the usual method of divided differences we imme-
diately get a generalization of the collocation error formula (1) for osculating polynomials: 
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Here d denotes the total number of conditions and di denotes the number of conditions for the argu-
ment ),,0( nixi = . We have ndddd +++= 10  . 

 
Example 1.3: Continuing the example above we get the expression  
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   for the osculation error with )4;2(, ∈ξx . 

 

4. Missing informations on lower order derivatives 

The term Hermite interpolation or osculation refers to the case where given “derivative” values 
),...,0()()( kjxy i

j =  up to order k have to be met by the osculation polynomial. This means that 
there are no missing informations about the derivatives between the orders 0 and k  for any of the 
arguments ),...,0( nixi = . This guarantees that there will be a unique solution for the interpolation 
polynomial (with optimal degree). The following example shows that missing information on derivatives 
can lead to unsolvable interpolation problems. 
 
Example 1.4: There is no polynomial p (of order 2) with p’(0) = 1 and p(-1) = 0 = p(1) since such a 

polynomial graphs as a parabola and must have a zero derivative in the mean of its zeroes.  
If the method of divided differences is tried with a parameter a for p(0) then it results necessarily in 
a cubic polynomial although there are only three conditions: 

 
x y    
-1 0    
0 a a   
0 a y’(0)=1 1-a  
1 0 -a - a-1 -2/2 

 

Thus 2)1(1)1)(1()1()( xxxxaxaxp +−+−++=  which is necessarily cubic. Working with pa-
rameters for unknown values often is the first strategy for solving osculation problems. 

 

The subject of interpolation with missing lower order derivatives is called Birkhoff interpolation (cf. 
http://en.wikipedia.org/wiki/Birkhoff_interpolation for a survey). 

http://en.wikipedia.org/wiki/Birkhoff_interpolation

