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Least-Squares Approximation  
 
Methods for discrete data 
 
1. Linear Least-Squares 
The interpolation method of collocation by high degree polynomials normally runs into oscillation prob-
lems for (rather large) sets of measurement points with arguments NN xxxx ,,,, 110 −  or 

NN xxxx 



 ,,,, 110 −  in the multi-variate case.  Oscillation problems normally occur at the boundaries of 
the interval Niii xx ,,1,0)max,(min

=  and extrapolation (going beyond the boundaries) may not be appli-
cable.  
Moreover, in many cases interpolation may not be the appropriate method when the data arises from 
experiments that contain errors of a random nature. In such cases approximation methods may be 
more appropriate. These methods just ap-
proximate the data by a  “combination” of a 
rather small set of basis functions 

mm gggg ,,,, 110 −  (m << N)  and there is 
a need to judge how “good” the approxima-
tion is.  In many cases such a judgement 
consists of minimizing a function measuring 
the � y deviations (residuals) between the 
approximation and the data values. The 
important method of least-squares approx-
imation uses the sum of squared residuals. 
Another important method is Chebyshev-
approximation; it uses the maximal devia-
tion (residual) to be minimized and there-
fore is  called min-max-approximation. 

Figure 1.1: Data approximated by a modelling curve 
with residuals. 

 
Widely used basis functions are polynomials, trigonometric functions, exponential functions or combi-
nations of these.  
 

Type of basis func-
tions 

Formulas 

Trigonometric { }Zkeikx ∈  or { }Zkkxkx ∈)sin(),cos(     ( )2,0( π∈x  

Polynomials { }0Njx j ∈    (standard monomials) 













∈





 −

0Njx j

σ
µ

  

(normalized standard monomials: µ and σ  denote mean and standard 
deviation of the x-data. 
 

{ }0)( Njxj ∈π     (Newton polynomials) 

{ }0)( NjxTj ∈     (Chebyshev polynomials, )1,1(−∈x  ) 
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(Laguerre polynomials, ),0( ∞∈x ) 
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(Hermite polynomials, ),( ∞−∞∈x ) 

Exponentials { }Zke kx ∈α  

Table 1.1: Some widely used uni-variate basis functions for least-squares approximation. Normalizing the 
standard monomials improves numeric stability significantly in many applications. 

 
 

Example 1.1: Data smoothing by a Savitzky-Golay Filter 

The data  
{ {1,1.04},{2,1.37},{3,1.70},{4,2.00},{5,2.26}, 

  {6,2.42},{7,2.70},{8,2.78},{9,3.00},{10,3.14} }  

consisting of 10 points is smoothed by six parabolas fitting only 5 (consecutive points). Figure 1.2 
below shows the fitting least-squares parabola for the five points with x-arguments {3, 4, 5, 6, 7}. 

 
 

 
 

 
 
 
 
 
 
 

Figure 1.2: Parabola fitting only the 5 red points with x-arguments {3, 4, 5, 6, 7}. The parabola 
does not fit the whole data. A possible set of basis functions is {1, x, x2}. The parabola formula is  
0.776 + 0.342 x - 0.01 x2. 
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1.1 Normal equations and design matrix: A general framework 

Given a measurement { } NiiiNN yxyxyxyx ,...,011100 ),(),(,,),(),,( ==  or (in the multi-variate argu-

ments case)  { } NiiiNN yxyxyxyx ,...,011100 ),(),(,,),(),,( ==






 and a set of basis functions 

{ }
mjjm gggg

,...,010 ,...,,
=

=  the design matrix G results from the trial to collocate all measurement 

points with a linear combination )(
0

Raga j

m

j
jj ∈∑

=

   of the basis functions. This requires that 

),...,0()(
0

Nixgay
m

j
ijji == ∑

=

 and thus yields linear system of N+1 equations in m+1 unknowns 

),...,0( mja j = . Written in matrix form we get that: 
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
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

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



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






Nm

GmatrixDesign

NmNN
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  







 (1.1) 

 
Generally, the linear system (1.1) is overdetermined (m < N). Thus, in general, the residuals  
 

),...,0()(
0

Nixgayr
m

j
ijjii =−= ∑

=

  (1.2) 

 
are not all zero and the squared sum S of residuals  
 

min!)(
0

2

0
∑ ∑
= =









−=

N

i

m

j
ijji xgayS  (1.2’) 

 
has to be minimized. 
 
Theorem 1.1: Normal equations 

The squared sum of residuals S in (1.2’) is minimal if and only if yGaGG trtr ⋅=⋅⋅  (1.3) 

The symbols a  and y , respectively,  are abbreviations for the column vectors formed by 

),...,0( mja j =  and ),...,0( Niyi = , respectively. trG  stands for the transposed design ma-
trix. 

( Proof 1: Formally, (1.3) results from (1.1) by multiplication of  trG  on both sides. We use multi-
variate calculus to proof the theorem. A quadratic form like (1.2) is globally minimal if and only if the 

partial derivatives ( 0,..., )
k

S k m
a
∂

=
∂

 are 0. Computing the derivatives and interchanging the 

summation order yields:  
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The last system of m+1 equations is exactly (1.3)   
�  ) 

 
 

( Proof 2: The following is a general geometric reasoning. In order to minimize the square sum of 

residuals (1.2) we are to find a vector *

0

m

j j
j

y a g
=

=∑  in the vector space V spanned by the basis 

vectors  { }
0,...,j j m

g
=

 such that the Euclidean norm (distance)  
2*S y y= −  is minimal. A solution 

for this is the orthogonal projection of y onto V: 
 

 

 
 
 
 
 

Figure 1.3: The orthogonal projection y* is nearest to y . 
 

Due to the orthogonality we get that  

    
0

0 0

0 * , ,

0 , , , , ( 0,..., )

m

k j j k
j

m m

k j j k j j k k
j j
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=
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∑
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The last equations are the same as those at the end in the first proof  

�  ) 
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The equations (1.3) are called normal equations. The matrix product GGtr ⋅  can be written as the 

matrix of all inner products ),...,0,()()(:,
0

mkjxgxggg
N

i
ikijkj ==>< ∑

=

 of the column vectors 

of the design matrix. The right hand side of (1.3) then is the column vector formed by the inner prod-

ucts ).,...,0()(:,
0

mkxgygy
N

i
ikik ==>< ∑

=

 Written in matrix form we get the following represen-

tation of (1.3): 
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

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
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
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
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,

,

,,,
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  







 (1.3’) 

 

Obviously, the matrix GGtr ⋅  is symmetric and has dimensions )1()1( +×+ mm . If the basis func-

tions { }
mjjm gggg

,...,010 ,...,,
=

=  are a linearly independent set of functions, then GGtr ⋅  is positive 

definite and has full rank. The linear system (1.3) then is regular and has a unique solution for the 
coefficients ),...,0( mja j = . 

 
Example 1.2: Cont. Ex. 1.1 

The data set of Example 1.1 is  {{3,1.70},{4,2.00},{5,2.26}, {6,2.42},{7,2.70}}. 
The set of basis functions {1, x, x2}. The system (1.1) has the following form: 

   







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
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2

1
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a
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GmatrixDesign


 

 
The system of normal equations (1.3’) is: 

 

   















=






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


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














22.323
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08.11
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135255

2

1

0

a
a
a

GGtr
  
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Generally, the system (1.3) should not be solved directly1 for  ),...,0( mja j =  because it does not 
have a „good“ structure (sparse or band structure, e.g.) and because the relative error of the solution 
is sensitive to changes (errors) in the matrix entries or changes in the right hand side2. The best thing 
to happen with respect to (1.3) is a diagonal matrix GGtr ⋅ . In this case the column vectors of the 
design matrix G are orthogonal and the basis functions { }

mjjm gggg
,...,010 ,...,,

=
=  form an orthogonal 

set with respect to the arguments NN xxxx ,,,, 110 −    3. 

 

                                                           
1 E.g., by Cholesky decomposition due to symmetry and positive definiteness. 
2 Such a system is called ill-conditioned or said to have a bad condition number.  
3 A theoretically important method to iteratively transform a set of basis vectors or functions into an orthogonal 
basis is the Gram-Schmidt orthogonalization. E.g., starting with the basis of Newton polynomials 

),...,1,0()( Nixi =π with respect to the arguments {0, 1, …, N} the Gram-Schmidt orthogonalization yields 

the polynomials )(

)(

0
, )1()( i

ik

i

i
Nk N

x
i

ik
i
k

xp 






 +








−=∑

=

 with )1()2)(1()( +−−−= iNNNNN i
  and 

)1()2)(1()( +−−−= ixxxxx i
  defined as falling factorials. The Gram-Schmidt procedure is numerically 

not stable and has to be modified or replaced by other methods like Givens rotations or Householder transfor-
mations. 
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1.2 The QR-matrix-decomposition 

A square real nn× -matrix Q is called orthogonal or )(nOQ∈  if IQQQQ trtr =⋅=⋅  (the identitiy 

matrix = diagonal matrix with 1s in the diagonal). This is equivalent to saying that 1−= QQtr : The in-
verse matrix is equal to the transpose and, of course, is also orthogonal. 
 
An orthogonal matrix represents an isometry: It preserves length of vectors and angles between vec-
tors:  
 

QyQxyxnOQ ,,)( =⇔∈  for any vectors yx,   

 
Theorem 1.2: QR-Decomposition 

Any matrix G of dimensions ( )1()1( +×+ mN ) with N �  m with full rank m+1 can be decomposed 
as the product QR of an orthogonal )1()1( +×+ NN -matrix Q and a rectangular upper-triangle 

)1()1( +×+ mN  matrix R: 

 

⋅


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











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
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
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0

0

00

0 111

00100

 (1.4) 

 
( Proof: A constructive proof of this yielding a numerically stable procedure for determing Q and R 
can be found at http://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections or 
in the book by Schwarz/Köckler, Numerische Mathematik, 7th ed., Chapter 6.2.1|3 �  )  

 
With the aid of the decomposition of Theorem 1.2 the solution of (1.2) and (1.2’), i.e. minimization of 
the square sum of residuals, can be found in a numerically stable and efficient way. We apply Theo-
rem 1.2 to the design matrix G in (1.1) and get yQyQaRyaQRaG tr==⇒== −1  and thus 

yQaR tr= . Abbreviating yQtr  by y  and rQtr  by r   the system (1.2) translates into 

aRyr −= 

. In matrix notation this reads as follows: 

 
 
 
 

http://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections
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 (1.5) 

 

Because of the orthogonality of Q (and thus also Qtr) the square sum S


 of the residuals r  is equal to 

the square sum S of the original residuals r . So minimizing S  in (1.2) is equivalent to miminizing S


 in 

(1.5). But obviously S


 in (1.5) is minimal if and only if ),...,0(0 miri == . This yields a regular 

triangle )1()1( +×+ mm -system of linear equations for the unknowns ),...,0( mja j = . It can be 

solved easily by backward-substitution beginning with solving for ma . Then we have SS


= = 
22

2
2

1 Nmm rrr 



 +++ ++  as the minimal square sum of residuals. Moreover, the residuals r  are de-

termined by rQ . 
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1.3 Singular-value decomposition (SVD) 

As the QR-decomposition the singular-value decomposition is a cleverly devised decomposition of a 
matrix useful for many operations involving matrices like solving linear systems, inverting matrices, 
finding eigenvalues and many more. Its computational costs are higher than those of the QR-
decomposition but it is numerically even more stable. The singular-value decomposition is one of the 
most widely used matrix operations in applied linear algebra. 
 
Theorem 1.3: SVD-Decomposition 

Any real matrix G of dimensions ( )1()1( +×+ mN ) can be decomposed as the triple product 
U�D�Vtr whereas U is an orthogonal )1()1( +×+ NN -matrix, D is a )1()1( +×+ mN  diagonal 
matrix and V again is orthogonal with dimensions )1()1( +×+ mm . 

 

tr

D
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mmtr Vd
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 (1.6) 

 

( Proof: Cf. the book by Schwarz/Köckler, Numerische Mathematik, 7th ed., Chapter 6.3  �  )  
 
With the aid of the decomposition of Theorem 1.3 the solution of (1.2) and (1.2’), i.e. minimization of 
the square sum of residuals, can be found in a numerically stable and efficient way. We apply Theo-
rem 1.3 to the design matrix G in (1.1) and get yUyUaDVyaUDVaG trtrtr ==⇒== −1  and 

thus yUaDV trtr = . Abbreviating yU tr  by y ,  aV tr  by  a  and rU tr  by r   the system (1.2) 

translates into aDyr  −= . In matrix notation this reads as follows: 
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Because of the orthogonality of U (and thus also Utr) the square sum S


 of the residuals r  is equal to 

the square sum S of the original residuals r . So minimizing S  in (1.2) is equivalent to miminizing S


 in 

(1.7). But obviously S


 in (1.7) is minimal if and only if ),...,0(0 miri == . This yields a regular 

diagonal )1()1( +×+ mm -system of linear equations for the unknowns ),...,0( mja j =

. It can be 

solved directly due to its diagonal form. Then we have SS


= = 22
2

2
1 Nmm rrr 



 +++ ++  as the mini-
mal square sum of residuals. 

In the final step we solve aV tr  =  a  for the unknowns ),...,0( mja j =  by multiplication of V  and 

get a  =  aV ⋅ .  

 
Example 1.3: Cont. Ex 1.2 

The singular-value decomposition {U, D, V} of G is1 
 

 
 

For  y  = yU tr  ,   a  = aV tr   and the final coefficients a  =  aV ⋅  we get 

 

,   and  .  
This is in accordance with Figure 1.2. 
 

For r  = rU tr   and the residuals  r  = rU   we get: 

 

 and . 
                                                           
1 The entries in the diagonal of D are the singular values. These are the roots of the m + 1 real non-
negative eigenvalues of the symmetric (normal) matrix trG G⋅  or trG G⋅ , respectively . The columns 
of U are, e.g., orthonormal eigenvectors of trG G⋅  and those of V orthonormal eigenvectors of 

trG G⋅ . 
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1.4 Uniform arguments and orthogonal polynomials  

In case of a set of basis functions { }
mjjm gggg

,...,010 ,...,,
=

=  which is orthogonal with respect to the 

inner product ∑
=

=
N

i
ikijkj xgxggg

0
)()(:,  the l.h.s. matrix in (1.3’) is diagonal and the solution of 

(1.3) is trivial: 
 

),...,1,0(
,

,
mj

gg

gy
a

jj

j
j =

><

><
=  (1.8) 

 
The minimal sum of squared residuals then is (cf. Figure 1.3):  
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==

 (1.8’) 

 
The next theorem gives a set of orthogonal polynomials for uniformly distributed arguments: 
 
Theorem 1.4: Orthogonal polynomials for uniform arguments 

If { } { } NtNn htxxxxx ,...,00110 ,,,, =− ⋅+=  are uniformly distributed arguments of a measurement 

then putting 
h

xxt 0−
=  the set of polynomials  

),...,1,0()1()( )(

)(

0
, Nk

N
t

i
ik

i
k

tp i

ik

i

i
Nk =







 +








−= ∑

=

  (1.9) 

is orthogonal with respect to the inner product ∑
=

=
N

i
ii xgxggg

0
)(~)(:~, . 

Here )1()2)(1()( +−−−= iNNNNN i
  and )1()2)(1()( +−−−= ittttt i

  are defined as 
falling factorials.  
 

( Proof: Cf. Schaum’s outline of numerical analysis for a detailed but non-easy proof, Probl. 21.26 �  ) 
 
 
Example 1.4: Ex. 1.1 rev. 

The five data points { } 7,...,3),( =tii yx  of Example 1.1  are  {{3,1.70},{4,2.00},{5,2.26}, 
{6,2.42},{7,2.70}}. 

We have N = 4 and t = x - 3. The first 3 orthogonal polynomials according to (1.8) are: 

 

  { }
2,...,0, )(

=kNk tp   =  {1, 1-t/2, 1-(3t)/2 + 1/2(-1+t)t} 

  { }
2,...,0, )(

=kNk xp   =  {1, 1+(3-x)/2, 1-3/2(-3+x) + 1/2(-4+x)(-3+x)} 
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Evaluation of the inner products ∑∑
==

==
7

30
)(~)()(~)(:~,

i

N

i
ii igigxgxggg  yields 

  
 

The system of normal equations (1.3) thus is diagonal on the l.h.s. The right hand side is  

 
















−
−=

























=
















><
><
><

∑

∑

∑

=

=

=

07.0
21.1
08.11

)(

)(

)(

,
,
,

7

3
,2

7

3
,1

7

3
,0

,2

,1

,0

i
Ni

i
Ni

i
Ni

N

N

N

ipy

ipy

ipy

py
py
py

 

By (1.8) the solution of (1.3) thus is )2,1,0(
,

,

,,

, =
><

><
= k

pp
py

a
NkNk

Nk
k .  

Numerically:  02.0
2/7
07.0,484.0

2/5
21.1,216.2

5
08.11

210 −=
−

=−=
−

=== aaa . These are the 

coefficients with respect to the basis { }
2,...,0, )(

=kNk xp . Expanding and simplifying the polynomials 

indeed yields the correct solution 0.776 + 0.342 x - 0.01 x2 written in standard form. 

 

 

Table 1.2: The first 5 orthogonal polynomials { }
NkNk tp

,...,0, )(
=

 for N = 4. 
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1.5 Chebyshev knots and Chebyshev orthogonal polynomials 

As in polynomial collocation Chebyshev knots and Chebyshev polynomials as basis functions provide 
an efficient and elegant way to solve least-squares approximation with very good error properties. 
 
The Chebyshev T-polynomials are defined by a simple trigonometric formula on the interval [-1, 1]:  
 

,...)1,0()arccoscos()( == nxnxTn  (1.10) 

 
The table and figure below show the first few Chebyshev polynomials: 

 

 
Table 1.3: The first 11 Chebyshev polynomials. As polynomials they are defined in the whole do-
main of complex numbers, of course. 

 
 

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

 
Figure 1.4: The first 6 Chebyshev polynomials except T0 plotted in the domain [-1, 1]. But as poly-
nomials they are defined in the whole domain of complex numbers. 
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Property 1.1: Elementary properties of the Chebyshev polynomials 
 

a) 1)(min1)(max
1111

−==
≤≤−≤≤−

xTxT nxnx
 

b) )1,...,1,0(
2

12cos0)( −=





 +

=⇔= ni
n

ixxTn π  

c) ),...,1,0(cos1)( ni
n
ixxTn =






=⇔±= π  

( Proof: These are direct consequences of the trigonometric definition (1.10)  �  ) 
 
 
Property 1.2: Recursive relation 

The Chebyshev polynomials fulfill the 2nd order recursion )2()()(2)( 11 ≥−= −+ nxTxxTxT nnn   

with initial conditions 1)(,)( 01 == xTxxT . 

 
( Proof: By elementary trigonometry (addition theorem): 
cos(( 1) ) cos(( 1) ) 2cos cos( )n a n a a na+ + − = . Substituting  arccosa x=  yields the recursion 

relation in the proposition �  ) 
 
One of the most important property of Chebyhsev polynomials is that they are uniformly small on  
[-1, 1] and that they are optimal in this behaviour in the following sense. 
 
 
Theorem 1.5: Min-Max property on [-1,1] 

If p(x) is a (n+1)-degree polynomial with leading coefficient 1 such that the maximal absolute value 

)(max
11

xp
x≤≤−

  is minimal then )(max
11

xp
x≤≤−

 is necessarily equal to n2
1

 as is the case for the normal-

ized Chebyshev polynomial )(
2
1

1 xTnn + . 

( Proof: On one side we have that 11 1

1 1max ( )
2 2nn nx

T x+− ≤ ≤
= due to Property 1.1a and 1

1 ( )
2 nn T x+  

takes its extremal values �
1
2n  at cos ( 0,1,..., , 1)

( 1)i
ix i n n

n
π

 
= = + + 

. On the other side 

suppose that some polynomial 1 1 2 1
1 2 1 0( ) n n n n

n n np x x a x a x a x a x a+ − −
− −= + + + + + were such 

that 
1 1

1max ( )
2nx

p x
− ≤ ≤

< . Then define the polynomial 1
1( ) ( ) ( )
2 nnq x p x T x+= − . This polynomial is of 

degree n or less and it does not vanish identically since this would require 
1 1

1max ( )
2nx

p x
− ≤ ≤

= . Since 

( )p x  is dominated by 1
1 ( )
2 nn T x+  at these points in absolute value, it follows that  the values 
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( )iq x  alternate in signs. Being continuous, ( )q x  must have n+1 intermediate zeros. This contra-

dicts the fact that q has degree at most n and is not identically zero. Thus 
1 1

1max ( )
2nx

p x
− ≤ ≤

≥   

�  ) 

A polynomial as )(
2
1

1 xTnn +  in Theorem 1.5 is called a min-max polynomial. By Property 1.1b) the 

zeros of )(
2
1

1 xTnn +  are ),...,1,0(
)1(2

12cos ni
n
ixi =








+
+

= π . So we can write )(
2
1

1 xTnn +  as 

)()())(( 110 xxxxxxx nn +=−−− π  (Newton polynomial form) and we know now that 

)(max 111
xnx +≤≤−

π  is n2
1

 and this is minimal. 

 

 
Figure 1.5: The situation of Theorem 1.5 for n = 6. The figure on the left shows the construction of the 

Chebyshev knots (blue points on the abscissa). The figure in the middle is a plot of )(
2
1

1 xTnn + and the 

figure on the right is a plot of )(1 xn+π for equi-distant arguments.  

 
Additionally, to Theorem 1.5 we have an orthogonality relation for the Chebyshev polynomials. The 
next theorem is an analogue to Theorem 1.4 for the Chebyshev arguments (knots) 

),...,1,0(
)1(2

12cos ni
n
ixi =








+
+

= π  

 
Theorem 1.6: Discrete orthogonality  

The Chebyhsev polynomials are orthogonal in the following sense: 
 

),...,1,0(
)1(2

12cos

),...,0,(
01
02/)1(

0
)()(:,

0

Ni
N
ix

Nkj
kjN
kjN

kj
xTxTTT

i

N

i
ikijkj

=







+
+

=

=








==+
≠=+

≠
==∑

=

π

 (1.11) 
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( Proof: Define the angles 
2 1 ( 0,1,..., )

2( 1)i
ia i N
N

π
 +

= = + 
 and thus  

( )cos ( 0,1,..., )i ix a i N= = . By definition (1.10) we have 
0

, : ( ) ( )
N

j k j i k i
i

T T T x T x
=

=∑ =  

0
cos( ) cos( )

N

i i
i

ja ka
=
∑  = 

0 0

1 1cos(( ) ) cos(( ) )
2 2

N N

i i
i i

j k a j k a
= =

+ + −∑ ∑  by the addition theorem for the 

cosine function. Because the angles ( 0,1,..., )ia i N=  “lie” on a regular, symmetric polygon on 
the upper half circle (cf. Figure 1.5) each of these sums is zero except for the cases that 0j k+ =  
or 0j k− = , respectively. This proves the theorem for the case j k≠ . If 0j k= =  the sums 

evaluate to 
1 1( 1) ( 1) 1
2 2

N N N+ + + = + . If 0j k= ≠ then the sums evaluate to 

1 1 10 ( 1) ( 1)
2 2 2

N N+ + = +  

�  ) 
 
 
Example 1.5: A measurement of flow rates (volume per second) consists of N + 1= 231+1 data (there 

are 232 measurements). The data have to be approximated by polynomials of degree at most m = 
4. Figures 1.6ab compare the cases of almost uniform arguments versus Chebyshev arguments. 

 

2 4 6 8 10 12
Füllzeit sec

100

200

300

400

500
Durchfluss cm3sec

Füllkurven Anschnitte

 
Figure 1.6a: A measurement at 232 almost uniform arguments and its least-squares approximation 
with respect to the basis { 432 ,,,,1 xxxx }. The formula for the approximation curve is  
 

  999.371 - 951.948x + 285.299x2 - 30.5158x3 + 1.08026x4 
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The square sum of the residuals is equal to Smin = 338456. The normal equations (1.3’) have 
non-diagonal matrix GtrG and right hand side vector:  

 

     
 

    
 

 

2 4 6 8 10 12
Füllzeit sec

100

200

300

400

500
Durchfluss cm3sec

Füllkurven Anschnitte Chebyshev

 
Figure 1.6b: A measurement at 232 Chebyshev arguments in the interval [a,b] = [1.7818, 11.14] 
and its least-squares approximation with respect to the basis  

{ )21(),21(),21(),21(,1 4321 ab
axT

ab
axT

ab
axT

ab
axT

−
−

+−
−
−

+−
−
−

+−
−
−

+− }.  

The Chebyshev arguments are computed by: 

),...,1,0(1)
)1(2

12cos(
2

Ni
N
iabaxi =








+

+
+−

+= π  

 

Here the affine transformation )1(
2

+
−

+ xabax   mapping the interval [-1, 1] on [a, b] and its 

inverse 
ab
ax

−
−

+− 21  mapping [a, b] to [-1, 1] have been used. 
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The formula for the approximation curve is  

 
210.204 + 

166.457 (-1.+0.213716 (-1.7818+x)) - 

140.852 (-1.+2. (-1.+0.213716 (-1.7818+x))2) - 

68.6974 (-3. (-1.+0.213716 (-1.7818+x))+4. (-1.+0.213716 (-1.7818+x))3) + 

52.0094 (1.-8. (-1.+0.213716 (-1.7818+x))2+8. (-1.+0.213716 (-1.7818+x))4)  

 

= 794.179 -780.861 x + 237.52 x2 - 25.1147 x3 + 0.868006 x4 

 

The square sum of the residuals is equal to Smin = 291180. The normal equations (1.3’) have  a 
diagonal matrix GtrG and right hand side vector:  
 

 
 

 
 
 
The next theorem reflects the idea what happens if ∞→N  in Theorem 1.6. 
 
Theorem 1.7: Continuous orthogonality 

The Chebyshev polynomials fulfill the following continuous orthogonal relations: 
 









==
≠=

≠
=

−
= ∫

− 0
02/

0

1
)()(:,

2

1

1 kj
kj

kj

x
dxxTxTTT kjcontkj

π
π  (1.12) 

 
( Proof: By substitution cos sinx u dx u du= ⇒ = −  we get that 
1

2
1

( ) ( )
1

j k
dxT x T x

x− −
∫  = 

0

2

sin(cos ) (cos )
1 cos

j k
u duT u T u

uπ

−
−

∫  =  
0

cos( ) cos( )ju ku du
π

∫  = 

( )
0

1 cos(( ) ) cos(( ) )
2

j k u j k u du
π

+ + −∫  =  
0

1 sin(( ) ) sin(( ) )
2 ( ) ( )

j k u j k u
j k j k

π
 + −

+ + − 
 =  

0
/ 2 0

0

j k
j k
j k

π
π

≠
 = ≠
 = =

 �  ) 
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From Theorem 1.7 we can derive a continuous version of Theorem 1.1. The idea here is to replace the 
discrete set of measurement { } Niiy ,...,0=  with a function depending on a continuous argument 

).1,1(−∈x This concept is called continuous least-squares approximation: 

 
Theorem 1.8: Continuous Chebyshev least-squares approximation 

If )(xy  is function on (-1,1) which is absolutely square-integrable with respect to the weight func-

tion ))1,1((
1

1:)(
2

−∈
−

= x
x

xw in the sense that ∞<
−

∫
−

2

1

1

2

1
)(

x
dxxy , then the continuous 

square-sum of residuals  
 
 

2

1

1

2

0 1
)()(:

x
dxxTaxyS

m

j
jj

−







−= ∫ ∑

− =

 (1.13) 

 
is minimal if and only if  
 











=
−

>
−=

∫

∫

−

−

0
1

)(1

0
1

)()(2

2

1

1

2

1

1

j
x

dxxy

j
x

dxxTxy
a

j

j

π

π
 (1.14) 

 

The polynomial ∑
=

m

j
jj xTa

0
)(  is called the continuous least-squares Chebyshev approximation of 

degree m. 

The minimal square-sum of residuals then is given by
21 12

2
min 2 2

01 1

( )( )
1 1

m
j

j
j

T x dxy x dxS a
x x=− −

= −
− −

∑∫ ∫ . 

 
( Proof: The two proofs of Theorem 1.1 and the formulas (1.8) and (1.8’) can be carried over to the 

present situation by the idea that 
1

2
1

, : ( ) ( )
1

j k j kcont

dxT T T x T x
x−

=
−

∫  replaces ,j kg g< > . 

 

(1) As in the proof of Theorem 1.7 
1

2
1

, : ( ) ( )
1

j k j kcont

dxT T T x T x
x−

=
−

∫ = 
0

cos( ) cos( )ju ku du
π

∫ . 

Setting the equi-distant Chebyshev angles  
(2 1) ( 0,1,..., )

2( 1)i
iu i N
N

π+
= =

+
 we get 

( 0,..., 1)
1iu i N

N
π

∆ = = −
+

 and by definition of the integral 
0

cos( ) cos( )ju ku du
π

∫ = 
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0
lim cos( )cos( )

1

N

i iN i
ju ku

N
π

→∞
=+ ∑ =

0
lim cos( )cos( )

1

N

i iN i
ju ku

N
π

→∞
=+ ∑ = 

0
lim ( ) ( )

1

N

j i k iN i
T x T x

N
π

→∞
=+ ∑ = 

1lim ,
1 j kN

T T
N

π
→∞

< >
+

  for the Chebyshev arguments  

(2 1)cos( ) cos ( 0,1,..., )
2( 1)i i

ix u i N
N

π
 +

= = = + 
.    In the same way we get that 

1

2
1

, : ( ) ( )
1

j jcont

dxy T y x T x
x−

=
−

∫  = 
0

lim ( ) ( )
1

N

i j iN i
y x T x

N
π

→∞
=+ ∑  = 

1lim ,
1 jN

y T
N

π
→∞

< >
+

. The 

formulas (1.14) now follow from (1.11) in Theorem 1.6 and (1.8) if N →∞ . 
 

(2) The geometric proof (cf. Figure 1.3) with ,j kg g< >  replaced by ,j k cont
T T  establishes the 

theorem by the continuous orthogonal relations (1.12)   

�  ) 
 
Corollary 1.1: Polynomial continuous least-squares Chebyshev approximation  

If )(xy is a polynomial of degree n then setting N = n implies that discrete Chebyshev least-

squares approximation with ),...,1,0(
)1(2

)12(cos Ni
N
ixi =








+
+

= π  is the same as continuous 

Chebyshev least-squares approximation.  
 
( Proof: Since ( )y x is a polynomial of degree n it can be written as a linear combination of Cheby-

shev polynomials 
0

( ) ( 0,1,..., )
n

k k
k

a T x k n N
=

= =∑ . 

Now by Theorem 1.6 for the Chebyshev knots 
(2 1)cos ( 0,1,..., )

2( 1)i
ix i N
N

π
 +

= = + 
 

0 0
, , , ,

n n

j k k j k k j j j j
k k

y T a T T a T T a T T
= =

< > = = < > = < >∑ ∑   which implies 

,

,
j

j
j j

y T
a

T T

< >
=
< >

.  

A similar computation for ( ), ( )j conty x T x< > applying Theorem 1.7 implies that  

( ), ( )
,

j cont
j

j j cont

y x T x
a

T T
< >

=
< >

. This shows that discrete Chebyshev approximation is the same as con-

tinuous because the coefficients are the same  

�  ) 
 
 
Corollary 1.1 is useful because integrals as in (1.14) can be replaced by discrete sums. The next ex-
ample shows how it is used together with truncation of a Chebyshev expansion. 
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Example 1.6: Chebyshev continuous least-squares parabola on the interval (0,1) for 3)( tty =  

First the interval (0,1) is transformed to (-1,1) by 12 −= tx , then by Table 1.3   

)133(
8
1

8
)1()( 23

3

+++=
+

= xxxxxy  = 

))()(3
2

)()(
3

4
)(3)(

(
8
1

01
0213 xTxT

xTxTxTxT
++

+
+

+
= 

).(
16
5)(

32
15)(

16
3)(

32
1)()(3

2
)()(

3
4

)(3)(
8
1

012301
0213 xTxTxTxTxTxT

xTxTxTxT
+++=






 ++

+
+

+

 
By truncation we get that the Chebyshev least-squares parabola is equal to  

)(
16
5)(

32
15)(

16
3

012 xTxTxT ++ = 1
16
5)12(

32
15)12(

16
3

12 +−+− tTtT . 

 
The problem of Example 1.6 can also be solved by a discrete least-squares approximation of the 

Chebyshev data  ( ))(, iii xyyx =  with )3,...,1,0(
)1(2

)12(cos ==







+
+

= Ni
N
ixi π ,  

i.e. 






 )

8
7cos(),

8
5cos(),

8
3cos(),

8
cos( ππππ

, by a parabola )()()( 22110 xTaxTaxT ++ . But the 

truncation method, of course, is much faster and more elegant. 
 
 

The reason why the truncation method works for polynomial modell functions ( )( ) 1 1y x x− ≤ ≤  
stems from the orthogonality of the Chebyshev-Polynomials (Theorem 1.7, formula (1.12)) and the 
main Theorem 1.8 (formula 1.14).  

This will be demonstrated with the example 3 2 1 0
1 3 15 5( ) ( ) ( ) ( )

32 16 32 16
T x T x T x T x+ + +  = 

3 3 2 2 1 1 0 0( ) ( ) ( ) ( )b T x b T x bT x b T x+ + +  by proving that the coefficients jb  are optimal. 

 
By Theorem 1.8 for 0 3j≤ ≤  the optimal coefficients are: 

 

( )

( )

1 1

3 3 2 2 1 1 0 02 2
1 1

1 1

3 3 2 2 1 1 0 0 0 0 02 2
1 1

2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
1 1

1 1( ) ( ) ( ) ( ) 0 0 ( ) ( ) 0
1 1

j j

j

dx dxy x T x b T x b T x bT x b T x T x j
x x

a dx dxb T x b T x bT x b T x b T x T x j
x x

π

π π

π π

− −

− −


= + + + >

− −= 
+ + + = + + + =

− −


∫ ∫

∫ ∫



 
1

2
1

/2

0

20 0 ( ) ( ) 0 0 0
1...

0

j j j j
dxb T x T x b j

x

b j
π

π −


+ + + + + + = > −= 


 =

∫ 



                                             �  
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1.6 Multi-variate linear least-squares approximation 
Multi-variate linear least-squares problems are solved exactly along the same lines as uni-variate 
problems. The methods developped in Sections 1.1 to 1.3 remain valid and keep the same form.  
 

The x-arguments now are vectors Nn xxxx 



 ,,,, 110 −  of dimension d and thus we need basis func-
tions which take vectors as inputs (i.e. functions in several variables). For practical purposes most 
widely used are tensor products of uni-variate basis functions.  

If { }
mjjm gggg

,...,010 ,...,,
=

=  is a uni-variate basis then the d-fold tensor product 

 

)()()( )()2(

0 0 0

)1(
,...,, 2

1

1

2

2

121

d
jj

m

j

m

j

m

j
jjjj xgxgxga

d

d

d

d
∑∑ ∑

= = =

 (1.15) 

 

defines a basis of dmmm ××× 21  functions in d variables )()1()2()1( ,,,, dd xxxx −
 . 

 
Type of basis 
functions 

2d-formulas 

Trigonometric { }Zkee xiikx ∈⋅ 

 ,
)2()1(

     ( )2,0(, )2()1( π∈xx  

Polynomials { }0
)2()1( , Nkjxx kj

∈    (standard monomials) 













∈






 −







 −
0

2

2
)2(

1

1
)1(

, Nkjxx
kj

σ
µ

σ
µ

  

(normalized standard monomials: µ and σ  denote mean and standard de-
viation of the x-data. 
 

{ }0
)2()1( ,)()( NkjxTxT kj ∈  (Chebyshev polynomials, )1,1(, )2()1( −∈xx  ) 

 
From the uni-variate orthogonal polynomials 

),...,1,0()1()( )(

)(

0
, Nk

N
t

i
ik

i
k

tp i

ik

i

i
Nk =







 +








−=∑

=

we get an orthogonal 

2d-basis  
 

{ } { }{ }21212,1, ,...,1,0,...,1,0),()()(
2211

NNkktptp NkNk ×∈  

 

for a uniform 2-dimensional integer grid { } { }2121 ,...,1,0,...,1,0),( NNtt ×∈ . 
Note that superscripts in the variables here are not used in order to avoid 
confusion with the notation of the falling factorials.  
 

  
Table 1.4: A few basis functions in two variables. The generalizations to more than two variables are 
straightforward. Cf. also Table 1.1.  
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Example 1.7: Multi-variate least-squares for 4695 three-dimensional data points 
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Figure 1.7a: 4695 data 3d-data points  Figure 1.7b: Irregular grid in the argument plane 
(projections) 

 
A. Degree 3 complete basis 

Basis functions: {1, x, y, x2, 2xy, y2, x3, 3x2y, 3xy2, y3} 
 

The first 4 data points are:  
{ {82.0565,99.8271,-25.3321},{83.9503,99.6029,-24.8481}, 

  {85.8279,99.3811,-24.3083},{80.1541,99.9811,-25.753}, … } 

 
The design matrix has dimensions 4695 x 10 and its first 3 rows are: 
  

 
 
The first 16 rows of the diagonal matrix of the singular value decomposition are: 
 

 
 
Least-squares approximation: 35.2489 -1.35126 x+0.0131384 x2-0.0000416223 x3-1.23016 
y+0.0100748 x y-4.38128×10-6 x2 y+0.00911392 y2-0.0000704719 x y2+8.30584×10-7 y3 
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Figure 1.8a: 4th degree least-squares approximation and data points 
 
B. Degree 4 complete basis 

Basis functions: {1, x, y, x2, 2xy, y2, x3, 3x2y, 3xy2, y3, x4, 4x3y, 6x2y2, 4xy3, y4} 
 
Least-squares approximation: -2.75677+0.130319 x-0.00670348 x2+0.0000625409 x3-
1.9681×10-7 x4+0.000438675 y-0.0145805 x y+0.000200319 x2 y-4.24924×10-7 x3 y-
0.00900462 y2+0.0000435083 x y2-6.40939×10-7 x2 y2+0.00015033 y3-1.15603×10-8 x y3-
5.23578×10-7 y4 

 

The design matrix has dimensions 4695 x 15 and its first 4 rows are:  
 

 
 

 
Figure 1.8b: 4th degree least-squares approximation and data points 
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Figure 1.8cd: 64th degree least-squares approximation and data points in two different views. The 
design matrix has dimensions 4695 x 2145. The basis elements are generated by expanding the pow-
ers 64,...,1,0)( =+ kyx k . They consist of k(k+1)/2 = 65*33 different elements. 
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1.7 Legendre Polynome 

In section 1.5 above Chebyshev polynomials as orthogonal basis functions provided an efficient and 
elegant way to solve the weighted continuous least-squares approximation problem with weighting 

function )11(
1

1)(
2

<<−
−

= x
x

xw . 

A similar mechanism can be established by the Legendre polynomials for the simple weighting func-
tion )11(1)( ≤≤−= xxw .  

 
The Legendre P-polynomials are defined here by Rodriguez’ formula1:  
 

( )nn

n

nn x
dx
d

n
xP 1

!2
1)( 2 −⋅=  (1.16) 

 
 
The table and figure below show the first few Legendre polynomials: 

 

( ) ( )

( ) ( )

( ) ( )xxxxxPxxxxP

xxxxPxxxP

xxxPxxPxxPxP

35315693429
16
1)(5105315231

16
1)(

157063
8
1)(33035

8
1)(

35
2
1)(13

2
1)()(1)(

357
7

246
6

35
5

24
4

3
3

2
210

−+−=−+−=

+−=+−=

−=−===

 

Table 1.5: The first Legendre polynomials. As polynomials they are defined in the whole domain of 
complex numbers, of course. 

 
 
Property 1.3: Properties of the Legendre polynomials 
 

a) ...)5,3,1(1)(min)(1)(max
11011

=−=∈=
≤≤−≤≤−

nxPNnxP nxnx
 

b) )()1()( xPxP n
n

n −=−    (symmetry or anti-symmetry) 

c) n
nn PP )1()1(,1)1( −=−=  

 
 

                                                           
1 Another definition uses a generating function approach:   

)11,11()(
21
1

0
2

<<−≤≤−=
+−

∑
∞

=

txtxP
txt n

n
n  

Differentiating with respect to t  yields ( ) ∑
∞

=

−⋅+−=
+−

⋅−
1

12

2
)(21

21
1)(

n

n
n txnPtxt

txt
tx . Substituting 

again ∑
∞

=0
)(

n

n
n txP  for 

221
1

txt +−
 on the l.h.s. and comparing coefficients of the powers of t  yields the Bonnet  

recursion formula: )()()12()()1( 11 xnPxxPnxPn nnn −+ −+=+ . 
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( Proof: Parts ab) are consequences of the definition (1.16) but a) is not easily derived. Part c) fol-
lows by induction from the Bonnet recursion in the footnote to (1.16).  
A (rather complicated) proof deriving the Bonnet recursion from the Rodriguez formula can be 
found in Schaum’s outline of Numerical Analysis, 2nd edition, Problem 15.17. �  ) 

 

 
Figure 1.9: The first 6 Legendre polynomials plotted in the domain [-1, 1]. As polynomials they are 
defined in the whole domain of complex numbers. 
 
For continuous least-squares approximation the next orthogonality property is fundamental. 
 
Theorem 1.9: Orthogonality of the Legendre polynomials 

The Legendre polynomials are orthogonal with respect to the integral inner product with weight 
)11(1)( ≤≤−= xxw :  

 









=
+

≠

=∫
− nm

n

nm

dxxPxP mn

12
2

0

)()(
1

1

 (1.17) 

 
( Proof: A proof can be found in Schaum’s outline of Numerical Analysis, 2nd ed., Problems 15.9 – 
15.12. �  ) 

  
From the orthogonality Theorem 1.9 we can derive a continuous version of Theorem 1.1. 
 
Theorem 1.10: Continuous Legendre least-squares approximation 

If )(xy  is function on [-1,1] which is absolutely square-integrable with respect to the weight func-

tion [ ]( )1,11)( −∈= xxw  in the sense that ∞<∫
−

dxxy
1

1

2)( , then the continuous square-sum of 

residuals  
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dxxPaxyS
m

j
jj∫ ∑

− =








−=

1

1

2

0
)()(:  (1.18) 

 
is minimal if and only if  
 

),...,0()()(
2

12 1

1

mjdxxPxyja jj =
+

= ∫
−

 (1.19) 

 

The polynomial ∑
=

m

j
jj xPa

0
)(  is called the continuous least-squares Legendre approximation of de-

gree m. 

The minimal square-sum of residuals then is given by
1 1

2 2 2
min

01 1

( ) ( )
m

j j
j

S y x dx a P x dx
=− −

= −∑∫ ∫ . 

 
( Proof: The two proofs of Theorem 1.1 and the formulas (1.8) and (1.8’) can be carried over to the 

present situation by the idea that 
1

1

, : ( ) ( )j k j kcont
P P P x P x dx

−

= ∫  replaces ,j kg g< > . 

 

The geometric proof (cf. Figure 1.3) with ,j kg g< >  replaced by ,j k cont
P P  establishes the theo-

rem by the continuous orthogonal relations (1.17)   

�  ) 
 
 

The next example shows that for polynomials the coefficients ja  in (1.19) can be computed without 
solving integrals. It is an application of the truncation method. 
 

Example 1.8: Legendre continuous least-squares parabola on the interval (0,1) for 3)( tty =  

First the interval (0,1) is transformed to (-1,1) by 12 −= tx , then by Table 1.5   

)133(
8
1

8
)1()( 23
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+++=
+

= xxxxxy = 

= ))()(3
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+
+

+
=  

).(
4
1)(

20
9)(

4
1)(

20
1

0123 xPxPxPxP +++=  

 
By truncation we get that the Legendre least-squares parabola is equal to  

)(
4
1)(

20
9)(

4
1

012 xPxPxP ++ = 
4
1)12(

20
9)12(

4
1

12 +−+− tPtP . 
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The same problem could be solved by the integral formulas (1.19), of course: 
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Example 1.9: Legendre continuous least-squares parabola on the interval (0,1) for )sin()( tty π= : 

First the interval (0,1) is transformed to (-1,1) by 12 −= tx , then 





 +

⋅=
2

1sin)( xxy π  . By The-

orem 1.10  and formula (1.19): 
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From these values we get for the parabola )(2)(0)()12(10
0123

2

xPxPxP
ππ

π
++

−
 = 

)12(2)12(0)12()12(10
0123

2
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ππ
π

. 

 
Figure 1.10: Plots showing 

)sin()( tty π=  and the Legendre 
continuous least-squares parabola 
(dashed line) of Example 1.9 in the 
range 10 ≤≤ t . 
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1.8 The matrix condition number 

For a system of linear equations in matrix form A x b⋅ =  with square matrix A and right-hand side 
(r.h.s.) b the solution x obviously depends on b because 1x A b−= ⋅  provided that A is a regular (in-
vertible) matrix. 

The condition number of A, denoted by ( )Aκ , measures the maximum relative error of the solution x 
with respect to a relative error in the r.h.s. b: 

 

Definition 1.10: Matrix condition number  ( )Aκ  

The condition number ( )Aκ  of a matrix  A  is defined by the maximum ratio of relative errors:   

     ( ) max

x
x

A
b

b

κ

 ∆ 
 
 =
∆ 

 
 

  ( 0, 0,b b A x b≠ ∆ ≠ ⋅ = )  if the matrix  A  is regular, and by     

( )Aκ = ∞    otherwise.  

 

 denotes a vector norm, commonly this is the Euclidean norm 
2

  or the maximum norm 

∞
  . 

In the case that ( )Aκ is relatively small the matrix or the system of equations is called well-
conditioned, otherwise one uses the term "ill-conditioned". 

 

Property 1.4: If  A is regular then ( ) 1A A Aκ −= ⋅   

wherein the (spectral) norm of a matrix is defined as ( ) ( )
1 1

max max
x x

A A x A x
≤ =

= ⋅ = ⋅ . It de-

pends on the vector norm   . 

( Proof: By linear computations: 

1

1

A bx
x x A b A x

b xb b
b A x

−

−

⋅∆∆

⋅∆ ⋅= = ⋅ =∆∆ ∆
⋅

   

1 b xA A
b x

− ∆
⋅ ⋅ ⋅
∆

 . Since 
b
b

∆
∆

  and 
x
x

   are unit vectors the assertion follows by the defini- 

 
tion of the spectral norm of a matrix  

�  ) 

 

The next propositions establish relations between the matrix condition number and the singular-value 
decomposition (SVD) or eigenvalues, respectively:  
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Property 1.5: For a regular matrix A  and the Euclidean vector norm1 we have: 

a) ( ) max

min

A
σ

κ
σ

=  in which maxσ  and minσ  denote the absolute maximal and the absolute mini-

mal singular value of A, respectively. 

b) If, additionally, the matrix A  is normal: ( ) max

min

A
λ

κ
λ

=  in which maxλ  and minλ  denote the ab-

solute maximal and the absolute minimal eigenvalue, respectively. 

c) ( )
2

max
2

min

*A A
σ

κ
σ

⋅ =  where again maxσ  and minσ  denote the absolute maximal and the abso-

lute minimal singular value of A, respectively. 

 

Note to b): Normal means that A commutes with its conjugate transpose A* : * *A A A A⋅ = ⋅ .  

A special case of this are symmetric matrices. 
 

( Proof: Note that max Aσ =   and  
1 1

min Aσ − −=    by the definition of the singular values. This 

yields a).   
For b) and normal matrices use the fact that the singular values correspond to the absolute eigen-
values. Note that, generally, the singular values are the square roots of the non-negative, real ei-
genvalues of *A A⋅  (or equivalently *A A⋅ ).  
Finally, c) is concluded from a) and b) since the matrix *A A⋅  as a symmetric matrix is normal  

�  ) 

 

Example 1.10: Continuation of Example 1.7A 

For the design matrix G and its singular-value decomposition (cf. Example 1.7A above) we conclude 

by Proposition 1.5c that ( ) ( )
2 28max
2

min

3.13397 10* 4.50267G G
σ

κ
σ

×⋅ = = . Thus the 10 x 10 system of 

normal equations is ill-conditioned. 

 

Example 1.11: Statistical normalization (cont. Example 1.10) 

The variables in the (complete) basis of total degree 3 in Example 1.7A are statistically normalized2 by 
the substitutions: 

 

, yx

x y

yxx y
µµ

σ σ
−−

 
 (1.20) 

                                                           

1 For the maximum norm 
∞

  and a regular, lower triangular matrix A: ( ) max
min

ii

ii

a
A

a
κ ≥ . 

 
2 The new variables thus have mean 0 and standard deviation 1. 
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The singular-value decomposition for the new design matrix yields (10 rows of the diagonal matrix with 
singular values in the diagonal): 

 

 
 

It is obvious that the 10 x 10 system of normal equations now is well-conditioned; the condition num-
ber being (10.9161)2. 
 
 
 
 
 


