OST

Qstschweizer
Fachhochachule

1 Numerical Analyis
Dr. Bernhard Zgraggen

Least-Squares Approximation

Methods for discrete data

1. Linear Least-Squares

The interpolation method of collocation by high degree polynomials normally runs into oscillation prob-

lems for (rather large) sets of measurement points with arguments X,,X;,...,Xy_,Xy or

Xy X5---» Xy, Xy in the multi-variate case. Oscillation problems normally occur at the boundaries of

the interval (minx,,maxx,),_,,

cable.

y and extrapolation (going beyond the boundaries) may not be appli-

Moreover, in many cases interpolation may not be the appropriate method when the data arises from
experiments that contain errors of a random nature. In such cases approximation methods may be

more appropriate. These methods just ap-
proximate the data by a “combination” of a
rather small set of basis functions

80> &> > &> &, (m<<N) and there is
a need to judge how “good” the approxima-
tion is. In many cases such a judgement
consists of minimizing a function measuring
the [1y_deviations (residuals) between the
approximation and the data values. The
important method of least-squares approx-
imation uses the sum of squared residuals.
Another important method is Chebyshev-
approximation; it uses the maximal devia-
tion (residual) to be minimized and there-
fore is called min-max-approximation.
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Figure 1.1: Data approximated by a modelling curve
with residuals.

Widely used basis functions are polynomials, trigopnometric functions, exponential functions or combi-

nations of these.

Type of basis func- | Formulas
tions

Trigonometric le"|k € Z} or {cos(kx),sin(k)lk € Z}  (x € (0,27)

Polynomials {xj|j € NO} (standard monomials)

j
(x—,uj |jeN0
o

(normalized standard monomials: ¢ and o denote mean and standard
deviation of the x-data.

{ﬂ'j (x)|j € NO} (Newton polynomials)

{TJ (x)|j € NO} (Chebyshev polynomials, x € (—1,1) )
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Polynomials

{Lj(x) _e dj, (e"‘xj )j € NO}

J!dx’
(Laguerre polynomials, x € (0,0))
BESR T
_(_NNp,2 “ 2 |4
H;(x)=(-1)e e jenN,

(Hermite polynomials, x € (—00,0))

Exponentials {e“kx |k c Z}

Table 1.1: Some widely used uni-variate basis functions for least-squares approximation. Normalizing the

standard monomials improves numeric stability significantly in many applications.

Example 1.1: Data smoothing by a Savitzky-Golay Filter
The data
{ {1,1.04},{2,1.37},{3,1.70},{4,2.00},1{5,2.26},

{6,2.42},{7,2.70},{8,2.78},{9,3.00},{10,3.14} }

consisting of 10 points is smoothed by six parabolas fitting only 5 (consecutive points). Figure 1.2
below shows the fitting least-squares parabola for the five points with x-arguments {3, 4, 5, 6, 7}.
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Figure 1.2: Parabola fitting only the 5 red points with x-arguments {3, 4, 5, 6, 7}. The parabola
does not fit the whole data. A possible set of basis functions is {1, x, x°}. The parabola formula is

0.776 +0.342 x - 0.01 x2-
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1.1 Normal equations and design matrix: A general framework

=0,...,
.....

,,,,,,

points with a linear combination Zajgj (a]. € R)  of the basis functions. This requires that
j=0

V= Zajgj (x;) (@=0,...,N) and thus yields linear system of N+1 equations in m+1 unknowns
j=0

a, (j=0,..,m).Written in matrix form we get that:

Design matrix G
go(x)  &(x) - g,(x) dy Yo
: : : = (1.1)
go(xy) glxy) - g,(xy)) \a, Vv
Generally, the linear system (1.1) is overdetermined (m < N). Thus, in general, the residuals
n=y,-> a,g,x) (i=0,..,N) (1.2)
j=0

are not all zero and the squared sum S of residuals

2
N m
S=Z(yi—2ajgj(xi)J min! (1.2))
i=0 =0

has to be minimized.

Theorem 1.1: Normal equations

The squared sum of residuals S in (1.2’) is minimal if and only if(G" - G -a|= G" ~y| (1.3)

The symbols a| and y|, respectively, are abbreviations for the column vectors formed by
a, (j=0,.,m)and y, (i=0,..,N),respectively. G" stands for the transposed design ma-
trix.

( Proof 1: Formally, (1.3) results from (1.1) by multiplication of G” on both sides. We use multi-
variate calculus to proof the theorem. A quadratic form like (1.2) is globally minimal if and only if the

-~
y

oS
partial derivatives —— (k=0,...,m) are 0. Computing the derivatives and interchanging the
oa,

summation order yields:
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a a ] m 2 N m
85 - 82(% _Zajgj(xi)J - ZZ(yl. —Zajgj(x,.)J(—gk(X,-) =0<

a; =0

m

N N

Z Zg/‘(xi)gk(xi) a; = Zyigk(xi) (k=0,...,m)
=0 i=0 i=0

<g;.qr> <vher>

The last system of m+1 equations is exactly (1.3)

0

( Proof 2: The following is a general geometric reasoning. In order to minimize the square sum of

m

residuals (1.2) we are to find a vector y‘ = Za‘/ g,‘ in the vector space V spanned by the basis
j=0

Figure 1.3: The orthogonal projection y* is nearest to y .

Due to the orthogonality we get that

0= <y|-y¥.gl>=<y-Daglgl> <
=0

J=

0= <y

m m
&> <glal> o 2a<g
j=0 =0

The last equations are the same as those at the end in the first proof

0

’gk‘> = <)y

&> (k=0,.,m)
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The equations (1.3) are called normal equations. The matrix product G" -G can be written as the

N
matrix of all inner products < g, ,gk| >= Zgj (x)g,(x;) (J,k=0,..,m) of the column vectors
i=0

of the design matrix. The right hand side of (1.3) then is the column vector formed by the inner prod-

N
ucts < y,gk| >= Zyigk (x;,) (k=0,...,m). Written in matrix form we get the following represen-
i=0

tation of (1.3):

G" G
<ghgl> <glgl>  <gubgl>) (@) (< gl>
S E 1 = (1.3)
<ghg.|> <alg.> - <g.bg.>) \a,) \<ig.l>

Obviously, the matrix G -G is symmetric and has dimensions (m +1)x (m +1) . If the basis func-
tions g,,95- &, = {gj }FO ,, are a linearly independent set of functions, then G" -G is positive

definite and has full rank. The linear system (1.3) then is regular and has a unique solution for the
coefficients a; (j =0,...,m).

Example 1.2: Cont. Ex. 1.1

The data set of Example 1.1is {{3,1.70},{4,2.00},{5,2.26}, {6,2.42},{7,2.70}}.
The set of basis functions {1, x, x?}. The system (1.1) has the following form:

Design matrix G

—_——

13 9 1.70
1 4 16| (a,) |2.00
1 5 25| a |=|226
1 6 36| \a,) |242
1 7 49 2.70

The system of normal equations (1.3) is:

G"G
5 25 135 a, 11.08
25 135 775 |- q, |=| 57.82
135 775 4659) \a, 323.22
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Generally, the system (1.3) should not be solved directly' for a; (j =0,...,m) because it does not

have a ,good” structure (sparse or band structure, e.g.) and because the relative error of the solution
is sensitive to changes (errors) in the matrix entries or changes in the right hand side?. The best thing

to happen with respect to (1.3) is a diagonal matrix G” -G . In this case the column vectors of the
design matrix G are orthogonal and the basis functions g, g,,...,g,, = {gj }I_:O " form an orthogonal

.....

set with respect to the arguments X, X,,...,Xy_, Xy

' E.g., by Cholesky decomposition due to symmetry and positive definiteness.
2 Such a system is called ill-conditioned or said to have a bad condition number.

3 A theoretically important method to iteratively transform a set of basis vectors or functions into an orthogonal
basis is the Gram-Schmidt orthogonalization. E.g., starting with the basis of Newton polynomials

7,(x) (i =0,L..., N)with respect to the arguments {0, 1, ..., N} the Gram-Schmidt orthogonalization yields

k (kY k+i) x? ‘
the polynomials p, ,(x) = Z(—l)l NG with N =N(N -1)(N =2)---(N —i+1) and
i

i=0 !

x? =x(x=1)(x =2)---(x —i + 1) defined as falling factorials. The Gram-Schmidt procedure is numerically

not stable and has to be modified or replaced by other methods like Givens rotations or Householder transfor-
mations.
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1.2 The QR-matrix-decomposition

A square real nx n-matrix Q is called orthogonal or Q € O(n) if Q" -Q=0-0" =1 (the identitiy

matrix = diagonal matrix with 1s in the diagonal). This is equivalent to saying that Q” = Q’l: The in-
verse matrix is equal to the transpose and, of course, is also orthogonal.

An orthogonal matrix represents an isometry: It preserves length of vectors and angles between vec-
tors:

0eOhn) < <x, y> = <Qx, Qy> for any vectors x, y

Theorem 1.2: QOR-Decomposition
Any matrix G of dimensions ((N +1) x (m + 1)) with N 0 m with full rank m+1 can be decomposed
as the product OR of an orthogonal (N +1)x (N +1)-matrix Q and a rectangular upper-triangle
(N +1)x (m+1) matrix R:

R

upper square triangle

oo Yot Tom
0 n - n,
G=0r=0 0 " O "] (1.4)
0 - - 0
0 - - 0

( Proof: A constructive proof of this yielding a numerically stable procedure for determing QO and R
can be found at http://en.wikipedia.org/wiki/QR _decomposition#Using Householder_reflections or

in the book by Schwarz/Kockler, Numerische Mathematik, 7t ed., Chapter 6.2.1|3 D )

With the aid of the decomposition of Theorem 1.2 the solution of (1.2) and (1.2’), i.e. minimization of
the square sum of residuals, can be found in a numerically stable and efficient way. We apply Theo-

rem 1.2 to the design matrix G in (1.1) and get Ga| = QRa| = y| = Ra| = Q_ly| = Q”y| and thus
Ra| = Q”y|. Abbreviating Q”y| by )7| and Q" r| by 17| the system (1.2) translates into

17| = )7| — Ra|. In matrix notation this reads as follows:


http://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections
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oo = Yo~ Ta@—  Typ@ —— T,d,
ﬁ = .)71_0 rllal - rlmam
r = 5% -0 0 roa
m ym mm m (1.5)
?mH = ym+l_0 O
o = yy-0 0

Because of the orthogonality of Q (and thus also Q") the square sum S of the residuals 7| is equal to
the square sum S of the original residuals r| . So minimizing S in (1.2) is equivalent to miminizing S in
(1.5). But obviously S in (1.5) is minimal if and only if 7, =0 (i =0,...,m). This yields a regular
triangle (m + 1) x (m + 1) -system of linear equations for the unknowns a; (;j =0,...,m). It can be
solved easily by backward-substitution beginning with solving for a,. Then we have S = S=
PR et ?NZ as the minimal square sum of residuals. Moreover, the residuals r| are de-

m+l1 m

termined by Q?| .
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1.3 Singular-value decomposition (SVD)

As the OR-decomposition the singular-value decomposition is a cleverly devised decomposition of a
matrix useful for many operations involving matrices like solving linear systems, inverting matrices,
finding eigenvalues and many more. Its computational costs are higher than those of the QR-
decomposition but it is numerically even more stable. The singular-value decomposition is one of the
most widely used matrix operations in applied linear algebra.

Theorem 1.3: SVD-Decomposition
Any real matrix G of dimensions ((N +1)x(m+1)) can be decomposed as the triple product
UMD whereas U is an orthogonal (N +1)x (N +1)-matrix, D is a (N +1)x (m +1) diagonal
matrix and J again is orthogonal with dimensions (m + 1) x (m +1).

D
diagonal
dy 0 - 0
0 d, '
. . 0
G:UDV” :U' 0 et O dmm 'th‘ (1.6)
0 0
0 0
( Proof: Cf. the book by Schwarz/Kéckler, Numerische Mathematik, 7t ed., Chapter 6.3 D )

With the aid of the decomposition of Theorem 1.3 the solution of (1.2) and (1.2’), i.e. minimization of
the square sum of residuals, can be found in a numerically stable and efficient way. We apply Theo-

rem 1.3 to the design matrix G in (1.1) and get Ga| =UDV" a| = y| = DV"a|= U_]y| = U”y| and

thus DV"'a|:U”y|.Abbreviating U”y| by )7|, V”a| by ﬁ| and U”r| by ;7| the system (1.2)

translates into 77| = )7| - Dﬁ|. In matrix notation this reads as follows:

Ty = Yo—dydy - 0 - 0
’71 = )71_0 dllal - :
l:m = ;m _0 e O dmmam (1 7)
77m+1 = ymﬂ_o O
ry = yy—0 0
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Because of the orthogonality of U (and thus also U") the square sum S of the residuals 7| is equal to

the square sum S of the original residuals r| . So minimizing S in (1.2) is equivalent to miminizing S in

(1.7). But obviously S in (1.7) is minimal if and only if 77 =0 (i =0,...,m). This yields a regular
diagonal (m +1) x (m + 1) -system of linear equations for the unknowns a, (j =0,...,m). It can be

. . . a ~ 2 -~ 2 ~ 2 .
solved directly due to its diagonal form. Then we have S =S=r,,," +7,,,” +:--+7, as the mini-
mal square sum of residuals.

In the final step we solve V”'a| = 51| for the unknowns a, (j =0,...,m) by multiplication of /' and

get a| = V-El|.

Example 1.3: Cont. Ex 1.2
The singular-value decomposition {U, D, V'} of G is"

(-0.135724 -0.624625 -0.65%0747 -0.0257605 -—0.337075
-0.237802 -0.537653 0.160648 0D.280%1% 0.741388
{ -0.368367 -0.327537 0.45%2673 -0.68815%1 -0.201651 |,
-0.52741% 0.00565%7 0.3053Z2% D.63666% -0.472466
v -0.7145%58  0.4615%7  -0.401383 -0.203636 0.26584%8

(652244 0. 0. \
0. 2.63845 0. (-0.0286643 -0.387418 -0.521455
0. 0. 0.144857 |, ‘ -0.1s4z4 -0.5%07483 0.386651 ‘}
0. 0. 0. . -0.%86004 0.162424 -0.0376172)

\ 0 0. 0.

For )7| = U"y| , 5| = V" a| and the final coefficients a| = V~c7| we get

~4.74558
~1.61637
~0.0843709 | (-0.0685536 (0.776 )
~0.0463456 ‘ ~0.61262 0.342
L 0.039141% | | -0.582441 | gpq | -0.01/

This is in accordance with Figure 1.2.

For 77| = U"r| and the residuals r| = Uf| we get:

0 f=0.012

0 0.01s

0 0.0z4
-0.0463456 -0.048

| 0.0391419 ) gpq | 0.02

' The entries in the diagonal of D are the singular values. These are the roots of the m + 1 real non-
negative eigenvalues of the symmetric (normal) matrix G -G or G-G", respectively . The columns
of U are, e.g., orthonormal eigenvectors of G-G” and those of J orthonormal eigenvectors of
G"-G.
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1.4 Uniform arguments and orthogonal polynomials

In case of a set of basis functions g,,g,,....,8,, = {g_i }j=0 ,, Which is orthogonal with respect to the

N
inner_product <gj,gk>::2gj(xi)gk(xi) the Lh.s. matrix in (1.3) is diagonal and the solution of
i=0

(1.3) is trivial:
<y.,g:|>
a, =—" (j=0,L,..,m) (1.8)
<g; 7gj‘ >

The minimal sum of squared residuals then is (cf. Figure 1.3):

N m
S =y -y =20 -Dal<g,g, > (1.8)
i=0 j=0 ‘——];v%———J

The next theorem gives a set of orthogonal polynomials for uniformly distributed arguments:

Theorem 1.4; Orthogonal polynomials for uniform arguments

,,,,,

. X — x() .
then putting ¢ = the set of polynomials
k (R k+i) ¢©

i=0

N
is orthogonal with respect to the inner product <g, §> = Zg(x[)gN(xl.) :
i=0

Here NV = N(N —=1)(N =2)---(N —i+1) and t") =¢(t —1)(t =2)---(t —i + 1) are defined as
falling factorials.

( Proof: Cf. Schaum’s outline of numerical analysis for a detailed but non-easy proof, Probl. 21.26 |:| )

Example 1.4: Ex. 1.1 rev.

The five data points {()cl.,yl.)}t:3 ’’’’ , of Example 1.1 are {{3,1.70},{4,2.00},{5,2.26},
{6,2.42},{(7,2.70}1}.

We have N = 4 and ¢ = x - 3. The first 3 orthogonal polynomials according to (1.8) are:

.....

{pk,N(x)}k:O , = {1, 1+(3-%)/2, 1-3/2(=3+x) + 1/2(-4+x) (-3+x) )

.....
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Evaluation of the inner products <g,§> = Zg(x[)g(xi) = Zg(i)g(i) yields

0
0

]
o R N R

B | -

The system of normal equations (1.3) thus is diagonal on the I.h.s. The right hand side is

;
Z P, N(l)
| = 11.08
| > ypn() =] -121
| 7 ~0.07
Z 2N(l)
i=3
E
By (1.8) the solution of (1.3) thus is a, = : (k=0,,2).
< PN} Pk, ‘ >
Numerically: a, = 11.08 =2216,a, = —lal —0.484,a, = —0.07 —0.02. These are the
5 5/2 7/2

coefficients with respect to the basis {pk)N(x)}kZO . Expanding and simplifying the polynomials

,,,,,

indeed yields the correct solution 0.776 + 0.342 x - 0.01 x? written in standard form.

T
1_¢t
Z
1-* L, i 1in)t
2 2
1—3t+§ (—1+t)t—§ (-2 +%t) (-1+t) ¢
1-5t+§ (—1+t)t—% (-2 +1t) (—1+t)t+% (-3 +t) (-2+t) (-1+t)t

Table 1.2: The first 5 orthogonal polynomials {pk N(t)} y forN=4.

.....
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1.5 Chebyshev knots and Chebyshev orthogonal polynomials

As in polynomial collocation Chebyshev knots and Chebyshev polynomials as basis functions provide
an efficient and elegant way to solve least-squares approximation with very good error properties.

The Chebyshev T-polynomials are defined by a simple trigonometric formula on the interval [-1, 1]:

T (x)=cos(narccosx) (n=0,1,..) (1.10)

The table and figure below show the first few Chebyshev polynomials:

1

s

2x? -1
Mxd - 3x

Sxt—8x?+ 1

16x° = 20x° + 5x

32x% —48xt +18x2 - 1

64x’ —112x° + 56" - Tx

128 x% — 256 x0 +160x% —32x% + 1

256x — 576x" +432x° —120x° +9x

51210 - 1280 %% + 1120x% — 400 x* + 50x% - 1

Table 1.3: The first 11 Chebyshev polynomials. As polynomials they are defined in the whole do-
main of complex numbers, of course.

05 \ /[0

_10t

Figure 1.4: The first 6 Chebyshev polynomials except To plotted in the domain [-1, 1]. But as poly-
nomials they are defined in the whole domain of complex numbers.
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Property 1.1: Elementary properties of the Chebyshev polynomials

a) max7 (x)=1 I}ﬁann(x) =—

—1<x<1

O
-

Tn(x):0<:>x:cos(2l+l
2n

72'] (i=0,1,...,n-1)

o) T,(x)=%l x= COS(Lﬂ'j (i=0,,..,n)
n

( Proof: These are direct consequences of the trigonometric definition (1.10) D )

Property 1.2: Recursive relation

x)=2xT,(x)-T,,(x) (n=2)

The Chebyshev polynomials fulfill the 2" order recursion |7
with initial conditions 7 (x) = x, 7, (x) =1.

n+l

( Proof: By elementary trigonometry (addition theorem):
cos((n+1)a)+cos((n—1)a) =2cosa cos(na) . Substituting a =arccosx vyields the recursion

relation in the proposition D )

One of the most important property of Chebyhsev polynomials is that they are uniformly small on
[-1, 1] and that they are optimal in this behaviour in the following sense.

Theorem 1.5: Min-Max property on [-1,1]

If p(x) is a (n+1)-degree polynomial with leading coefficient 1 such that the maximal absolute value

1
r?axl|p(x)| is minimal then max|p(x)| is necessarily equal to 2— as is the case for the normal-
<x< n

ized Chebyshev polynomial — X T, (x).

1
( Proof: On one side we have that max |— T, (%)=

—1<x<1| 2

—due to Property 1.1a and — > T, (x)

) 1 . .
takes its extremal values D? at x, =cos 7| (i=0,1,..,n,n+1). On the other side

(n+1)

. 1 -1 -2 1
suppose that some polynomial p(x)=x""+ax"+a, x"" +a, ,x" " +---a,x +a,were such

1
that max p(x)‘ <— Then define the polynomial g(x) = p(x)—

—1<x<1

—T,,(x). This polynomial is of

17

degree n or less and it does not vanish identically since this would require max

—1<x<1

p(x)|=

p(x) is dominated by —17 ,(x) at these points in absolute value, it follows that the values

n
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q(x,) alternate in signs. Being continuous, g(x) must have n+1 intermediate zeros. This contra-

p(x)‘ > :

dicts the fact that ¢ has degree at most n and is not identically zero. Thus max 5
—1<x<1 1

0

1
A polynomial as ?TM (x) in Theorem 1.5 is called a min-max polynomial. By Property 1.1b) the

2i+1
2(n+1)

(x=x)(x—=x,)-(x—x,)=m,,,(x) (Newton polynomial form) and we know now that

1 1
zeros of 2—nTn+1(x) are X; zcos( ﬂ'j (i=0,,...,n). So we can write ?Tﬁl(x) as

1
max|7rn+1 (x)| is — and this is minimal.
—l<x<1 2"

Newton product Chebyshev m,4+1(X) Newton product Equidistant a,,, 4 (x)

6015 0.04
0.010
5
0.00% 0.02
5 b .

Figure 1.5: The situation of Theorem 1.5 for n = 6. The figure on the left shows the construction of the

1
Chebyshev knots (blue points on the abscissa). The figure in the middle is a plot of 2—”Tn+1 (x)and the

figure on the right is a plot of 7z, (x) for equi-distant arguments.

Additionally, to Theorem 1.5 we have an orthogonality relation for the Chebyshev polynomials. The
next theorem is an analogue to Theorem 1.4 for the Chebyshev arguments (knots)

X; = COS ﬂn i=0,,...,n)
2(n+1)

Theorem 1.6: Discrete orthogonality
The Chebyhsev polynomials are orthogonal in the following sense:

v 0 Jj#k
(T.T)= 2T L () =1 (N +D/2 j=k#0  (jhk=0...N)
=0 N+l  j=k=0 (1.11)

X; =COS ﬂﬂ (i=0,,..,N)
2(N +1)
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2i+1

( Proof: Define the angles a, =| ——
2(N+1)

ﬂj (i=0,1,...,N) and thus
N

X, = Cos(a,.) (i=0,1,...,N). By definition (1.10) we have <T/.,T,\ > = ZT/.(X[)T/\ (x)=
i=0

N ] N 1 N
Z cos(ja,)cos(ka,) = 5 Zcos((j +k)a,)+ EZ cos((j—k)a,) by the addition theorem for the
i=0 i=0 i=0

cosine function. Because the angles a, (i=0,1,...,N) “lie” on a regular, symmetric polygon on
the upper half circle (cf. Figure 1.5) each of these sums is zero except for the cases that j+k =0

or j—k =0, respectively. This proves the theorem for the case j#k.If j=k=0 the sums
1 1

evaluate to 5(N+1)+5(N+1) =N+1. If j=k#0then the sums evaluate to

l0+l(/\/+]) *l(NJrl)

2 2 2

0

Example 1.5: A measurement of flow rates (volume per second) consists of N + 1= 231+1 data (there
are 232 measurements). The data have to be approximated by polynomials of degree at most m =
4. Figures 1.6ab compare the cases of almost uniform arguments versus Chebyshev arguments.

Fullkurven Anschnitte

Durchfluss ¢ ﬁc
500

400
300
200

100

it Fllzett sec
2 4 6 8 10 12

Figure 1.6a: A measurement at 232 almost uniform arguments and its least-squares approximation
with respect to the basis {l,x,xz,x3,x4}. The formula for the approximation curve is

999.371 - 951.948x + 285.299x% - 30.5158x3 + 1.08026x*
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The square sum of the residuals is equal to Smin = 338456. The normal equations (1.3’) have
non-diagonal matrix GG and right hand side vector:

232. 1500.81 11419.6 895979.7 857 822.
1500.81 11419.6 95979.7 857 822. 7.98116 - 10°
11419.6 959797 857 822. 7.98116 - 10° 7.63635. 107
95979.7 857 822. 7.98116-10% 7.63635.107 7.45801 - 108

\ 857822, 7.98116-10% 7.63635.107 7.45801 .10% 7.35511 107

58921.2

456 501.

3.72083 « 10°
3.16968 « 107
| 2.80255 . 108

Flillkurven Anschnitte Chebyshev
[hnchﬂusscnfgléc

500
400
300
200

100

: . ‘ ‘ ‘ — Fillzett sec
2 4 6 8 10 12

Figure 1.6b: A measurement at 232 Chebyshev arguments in the interval [a,b] = [1.7818, 11.14]
and its least-squares approximation with respect to the basis

(LT (-1+ 222D T, -1+ 2229 1, -1+ 2229, T, (-1+ 229,
b—a b—a b—a b-
The Chebyshev arguments are computed by:
¥ =a+2 = cos =2 it| =01, N)
2 2(N +1)

b—a

Here the affine transformation x - a + (x+1) mapping the interval [-1, 1] on [, b] and its

. X—a .
inverse —1+ 2b— mapping [a, b] to [-1, 1] have been used.
-a
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The formula for the approximation curve is

210.204 +

166.457 (-1.+0.213716 (-1.7818+x)) -

140.852 (-1.+2. (-1.40.213716 (-1.7818+x))?) -

68.6974 (-3. (-1.+40.213716 (-1.7818+x))+4. (-1.+0.213716 (-1.7818+x))3) +
52.0094 (1.-8. (-1.+0.213716 (-1.7818+x))?+8. (-1.+0.213716 (-1.7818+x))*)

= 794.179 -780.861 x + 237.52 x? - 25.1147 x3+ 0.868006 x*

The square sum of the residuals is equal to Smin = 291180. The normal equations (1.3’) have a
diagonal matrix G”G and right hand side vector:

232. ~1.%%84.10"% _3.01981 .10 _z.g84z17.1071* _1.77636. 1071
-1.5%84 10" 116. ~1.4321% <10 _3.08752.10"1% _4.06342 10"
-3.01981 10" _1.43219.10°1% 116. -3.78586-1071% _2.36478 10714
~2.84217 10" _3.09752 .10 _3.78586.10°1 116. ~5.56222 <1074

| -1.77636 10" _a_ 06342107 _z_.38478 10" _5_58222. 107" 116. )
(ARTET.E
19 309.
_16338.8
_7968.0
| 6032.09 )

The next theorem reflects the idea what happens if NV — o in Theorem 1.6.

Theorem 1.7: Continuous orthogonality
The Chebyshev polynomials fulfill the following continuous orthogonal relations:

X p 0 j#k
<Tvn>‘ﬁ:I@Lﬂn(ﬂ‘_j;;: 712 j=k=#0 (1.12)
con. i ll_x - ]:k:()

( Proof: By substitution x = cosu = dx = —sinu du we get that

M = J.cos(ju)cos(/cz,/)du =

V1-cos u 0

sin((j+ k)u) N sin((J —k)u)j
(J+k) (J—k)

1 i 0
jrx;gn(x)]d*: —j]ﬂﬁosu)ﬂ(cosu)
-1 — Vid

Ji-x

;j:(cos((\/?k)u)+cos((k/'—k)u))du - ;{

T

0
J 0 j#k

712 j=k=0 0
1 7T  j=k=0
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From Theorem 1.7 we can derive a continuous version of Theorem 1.1. The idea here is to replace the
discrete set of measurement { i}i=0 with a function depending on a continuous argument

x € (—=L1). This concept is called continuous least-squares approximation:

Theorem 1.8: Continuous Chebyshev least-squares approximation
If y(x) is function on (-1,1) which is absolutely square-integrable with respect to the weight func-

1
dx
tion w(x) = (x € (=1,1)) in the sense that “y(x)|2 ———= < 0, then the continuous
e V1-x?

1
V1-x?

square-sum of residuals

1

S = I(y(x)—ia,—f ,-<x)j % (1.13)
e} j=0 - X

is minimal if and only if

2j- dx .

— |7, (x)——= >0

a, = ”—111 d‘Vl—x2 (1.14)
—[yn—=—= j=0
Tz Nl=x?

The polynomial ZajTi(x) is called the continuous least-squares Chebyshev approximation of
j=0

degree m.

y(x)*dx z J-T(x) dx
Al=xt 5 J1=x*

( Proof: The two proofs of Theorem 1.1 and the formulas (1.8) and (1.8’) can be carried over to the

L= [Tme 2
-1 - X"

The minimal square-sum of residuals then is given by §_. = I

present situation by the idea that <T/,T,> replaces <g,,g; >.

(1) As in the proof of Theorem 1.7 <T/,Tk> = IT ()7, (J\)\/i Icos(ju) cos(ku)du .
_ o (2i+1) ,
Setting the equi-distant Chebyshev angles u =————nx (i=0,1,..,N) we get
2(N +1)

s

Vo (i=0,..,N—=1) and by definiton of the integral Jcos(ju)cos(ku)du=
+ 0

Au, =
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lim 72005(” )cos(ku,) = llm 72005(” )cos(ku,) = 11m 7ZT (x)T(x,)=

N—o0 N =0 i=0 i=0

. 1
7 lim <T;,1, > for the Chebyshev arguments
Now N 4 J
2i+1
x, = cos(y;) = cos !ﬂ' (i=0,1,...,N). In the same way we get that
2(N+1)

<y, ,> —J.y(x)T(x)\/i = hm Zy( T (x,) = ﬁlfiinm]\/l_{_l<y’r/>' The

i=0
formulas (1.14) now follow from (1.11) in Theorem 1.6 and (1.8) if N — 0.

(2) The geometric proof (cf. Figure 1.3) with < g8 > replaced by <T/.,Tk> establishes the
E E cont

theorem by the continuous orthogonal relations (1.12)

0

Corollary 1.1: Polynomial continuous least-squares Chebyshev approximation
If y(x)is a polynomial of degree n then setting N = n implies that discrete Chebyshev least-

o , (2i+1) . . .

squares approximation with x, =cos| ————7 | (i=0,1,...,N) is the same as continuous
2(N+1)

Chebyshev least-squares approximation.

( Proof: Since y(x)is a polynomial of degree 7 it can be written as a linear combination of Cheby-

shev polynomials Zaka (x) (k=0,1,...,n=N).

k=0
(2i+1) )
Now by Theorem 1.6 for the Chebyshev knots x; =cos| ————x | (i=0,L...,N)
2(N+1)
—<Zaka ,T/>:Zak ,Tj‘> which implies
=0

applying Theorem 1.7 implies that

cont

A similar computation for < y(x), 7’ (x) >
a. = < y(x)’ T/ (x) >cunl

! <T.,T >
tinuous because the coefficients are the same

0

. This shows that discrete Chebyshev approximation is the same as con-

cont

Corollary 1.1 is useful because integrals as in (1.14) can be replaced by discrete sums. The next ex-
ample shows how it is used together with truncation of a Chebyshev expansion.
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Example 1.6: Chebyshev continuous least-squares parabola on the interval (0,1) for y(¢) = t

First the interval (0,1) is transformed to (-1,1) by x = 2¢ —1, then by Table 1.3
(x+ 1) 1
y(x) = =

g(x3+3x2+3x+1) =
%(Ta(X)Jle(X)+3T2(X)+TO(X)
%(n(xmmx)+3T2(x);To(x)

4

+3N(x0) + T, (x)) =

+3T1(x)+T0(x)j 31 T(x)+ 3 T( )+ T(x)+ > T(x)

By truncation we get that the Chebyshev Ieast-squares parabola is equal to
3 5 3 5

ET(X)-F T(x)+ T(x)— T(2t—1)+—T(2t—1)+—61

The problem of Example 1.6 can also be solved by a discrete least-squares approximation of the
(2i+1)

Chebyshev data (x.,y, = y(x.)) with x, = cos T i=0,1,..,N=3),
y (x5, = ¥(x) with x [2(N+1) J ( )

i.e. {cos(—) cos( S ) cos( ) cos(—)} by a parabola 7,(x)+ a1;(x)+ a,T,(x). But the

truncation method, of course, is much faster and more elegant.

The reason why the truncation method works for polynomial modell functions y(x) (—1 <x< 1)

stems from the orthogonality of the Chebyshev-Polynomials (Theorem 1.7, formula (1.12)) and the
main Theorem 1.8 (formula 1.14).

1
This will be demonstrated with the example §T3(x)+ 36T(x)+ T(x)+ > T(x) =

b,T,(x)+b,T,(x) + b T (x)+b,T;,(x) by proving that the coefficients b, are optimal.

By Theorem 1.8 for 0 < j <3 the optimal coefficients are:

1

~ [T )2 = 2 [ B0+ )+ B0+ )T, 0 qd_x—xz j>0
v J.(bT(x)+bT(X)+bT(x)+bT(x)) dx =0+---+0+b,— jT(x)T(x) j=0

7[71 \/l—x l—x2

s

dx
Ot +0+b, = jT(x)T(x) +0++0=b, j>0
= V1=’ 1

/2

b, j=0
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1.6 Multi-variate linear least-squares approximation

Multi-variate linear least-squares problems are solved exactly along the same lines as uni-variate
problems. The methods developped in Sections 1.1 to 1.3 remain valid and keep the same form.

The x-arguments now are vectors X,,X,,...,X, ;,X, of dimension d and thus we need basis func-

tions which take vectors as inputs (i.e. functions in several variables). For practical purposes most
widely used are tensor products of uni-variate basis functions.

If 20,8150 8y = {gj },-:o " is a uni-variate basis then the d-fold tensor product

ny o nmy ny

Z Z " Z A jrrnia & (x“))gj2 (x®)-- &, (x') (1.15)

N=0/2=0 " j;=0

1 ,.(2)

defines a basis of m, x m, x---x m, functions in d variables x"’,x pee s XD X

Type of basis | 2d-formulas
functions

Trigonometric {ei/cx“) e

k(e Z} (xM,x* €(0,27)

Pol ial %
olynomials {x(')Jx(z) |],k € NO} (standard monomials)

' k
x - H (X - Hy
0, o,

(normalized standard monomials: x and ¢ denote mean and standard de-
viation of the x-data.

Jj.keN,

{T/ (x(”)Tk(x(z))j,k € NO} (Chebyshev polynomials, x,x* e (=1,1) )

From the uni-variate orthogonal polynomials

k (R k+i) ¢
D)= Z(—l) ] ) (k=0,1,...,N)we get an orthogonal
i=0 l l

2d-basis
{pkl,Nl (t1)pk2,1v2 (%) | (ky,ky) € {0515'--5 Nl}x {Oala"'a N, }}

for a uniform 2-dimensional integer grid (%,,¢,) € {O,l,...,Nl}x {O,l,...,Nz}.
Note that superscripts in the variables here are not used in order to avoid
confusion with the notation of the falling factorials.

Table 1.4: A few basis functions in two variables. The generalizations to more than two variables are
straightforward. Cf. also Table 1.1.
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Figure 1.7a: 4695 data 3d-data points Figure 1.7b: Irregular grid in the argument plane
(projections)

A. Degree 3 complete basis

Basis functions: {1, x, vy, x2, 2xy, vy?, x3, 3x2y, 3xy?, y°}

The first 4 data points are:
{ {82.0565,99.8271,-25.3321},{83.9503,99.6029,-24.8481},
{85.8279,99.3811,-24.3083}, {80.1541,99.9811,-25.753}, .. }

The design matrix has dimensions 4695 x 10 and its first 3 rows are:

1. 82.0565 99.8271 A733.27 16382.9 996A5.45 552500. 2.01649 «10°% 2.45319 «10% 994822,
1. 83.9503 99.A029 7047.65 16723.4 9920.74 591653, 2.1059 1085 2.49855.10% 988 134.
1. 85.8279 99.3811 7366.43 17059.3 9876.6 A32245. 2.19625+10° 2.54306+10% 981548,

The first 16 rows of the diagonal matrix of the singular value decomposition are:

.13397 - 10° 0.
1.17066 «10% 0.
.5396 - 107

=

_76625 . 10°

23954,

6901.1

4224.4

28.702

B2 .23Z2

3
0
0
0
0
0
0.
0.
0 -
0 502687
0

0

0

0

0

0

s e e e Y e e e Y e Y e Y e e Y N T e T e
oo o oo o oo oooo-a o o o
ocoooooooooo oMo o oo
o O e e Y e O e e e Y Y e e Y e Y e Y e
oo o oo oo oWoo oo o o0
o e e e e e e e QO e e e e e Y e e
coooooooMNooo oo oo o
oo o oo o =0 oo o oo o o o

CcooD o oo oo oo oo

Least-squares approximation: 35.2489 -1.35126 x+0.0131384 x2-0.0000416223 x3-1.23016
y+0.0100748 x y-4.38128x1076 x? y+0.00911392 y2-0.0000704719 x y2+8.30584x1077 y?
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Figure 1.8a: 4t degree least-squares approximation and data points

B. Degree 4 complete basis

Basis functions: {1, x, vy, x2, 2xy, v?, x3, 3x%y, 3xy?, y3, x4, 4x3y, 6x2y?, 4xy3, v%}

Least-squares approximation: -2.75677+0.130319 x-0.00670348 x2+0.0000625409 x3-
1.9681x10"7 x%+0.000438675 y-0.0145805 =x y+0.000200319 x2 y-4.24924x10"7 x3 y-
0.00900462 y2+0.0000435083 x y2-6.40939x1077 x? y2+0.00015033 y3-1.15603x10"% x y3-
5.23578x1077 y*

The design matrix has dimensions 4695 x 15 and its first 4 rows are:

1. BZ.0565 99.8271 6733.27 16382.9 99A5.45 552509. 2.01649 «10° 2.45319 «10% 994822. 4.53369 <107 2.20621 «10% 4.026 - 108 3.26526.10% 9.93102 «107
1. 83.9503 99.6029 7047.65 16723.4 9920.74 591653. 2.1059 -10° 2.49855 -10% 988134. 4.96694 107 2.35721-10% 4.19507-10% 3.31817-10° 9.8421.107
1. 85.8270 99.3811 7366.43 17059.3 0876.6 632245. 2.19625.106 2.54306.10% 981548, 5.42643 107 2.51333.10% 4.36532.10% 3.26977.10°% 9.75473 .107

Figure 1.8b: 4t degree least-squares approximation and data points
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Figure 1.8cd: 64t degree least-squares approximation and data points in two different views. The
design matrix has dimensions 4695 x 2145. The basis elements are generated by expanding the pow-

ers (x+ )" k=0,,...,64. They consist of k(k+1)/2 = 65*33 different elements.
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1.7 Legendre Polynome
In section 1.5 above Chebyshev polynomials as orthogonal basis functions provided an efficient and
elegant way to solve the weighted continuous least-squares approximation problem with weighting

! (-I<x<1).

V1= x?

A similar mechanism can be established by the Legendre polynomials for the simple weighting func-
tion w(x)=1 (-1<x<1).

function w(x) =

The Legendre P-polynomials are defined here by Rodriguez’ formula':

1 d oy
R’(x)_Z"n!'dx” (x —1) (1.16)

The table and figure below show the first few Legendre polynomials:

P(x)=1 Px)=x Pz(x):%(3x2—1) P3(x):%(5x3—3x)

Py(x) = %(35;5‘ —30x*+3)  P(x)= %(63x5 —~70x" +15x)

P.(x) :%(231x6 “315xt +105x° —5)  P(x) =%(429x7 — 693x° +315x° —35x)

Table 1.5: The first Legendre polynomials. As polynomials they are defined in the whole domain of
complex numbers, of course.

Property 1.3: Properties of the Legendre polynomials

a) nllaxl|Pn(x)| =1 (neN,) minP, (x)=-1 (n=135.)

b) P,(—x)=(=1)"P,(x) (symmetry or anti-symmetry)
C) f)” (1) = 1, Pn (—1) — (_l)n

" Another definition uses a generating function approach:

! :ZPn(x)t" (-1=x<1,-1<¢t<))

NI=2xt+t*
! = (1 —2xt+1 ) i nP, (x)t"" . Substituting

Differentiating with respect to ¢ yields (x —¢) - ————
N1=2xt+¢1° n=1

again ZPH (x)t" for ; on the |.h.s. and comparing coefficients of the powers of ¢ yields the Bonnet
ey N1=2xt+1°

recursion formula: (n+1)P,,,(x) = (2n+1)xP, (x)—nP,_ (x).

n
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( Proof: Parts ab) are consequences of the definition (1.16) but a) is not easily derived. Part c) fol-
lows by induction from the Bonnet recursion in the footnote to (1.16).

A (rather complicated) proof deriving the Bonnet recursion from the Rodriguez formula can be

found in Schaum'’s outline of Numerical Analysis, 2" edition, Problem 15.17. D )
legendre polynomials
1 I
0.5
£ o —~
o
-0.5 Po(x) ]
P1(x)
Pa(x)
P3(x)
Pa(x)
-1 | | | PS(X) ]
-1 -0.5 0 0.5 1
X

Figure 1.9: The first 6 Legendre polynomials plotted in the domain [-1, 1]. As polynomials they are
defined in the whole domain of complex numbers.

For continuous least-squares approximation the next orthogonality property is fundamental.

Theorem 1.9: Orthogonality of the Legendre polynomials
The Legendre polynomials are orthogonal with respect to the integral inner product with weight
wx)=1 (-1<x<1):

0 m#n
1
_[Pn (WP, (Wdx= (1.17)
-1 m=n
2n+1

( Proof: A proof can be found in Schaum’s outline of Numerical Analysis, 2" ed., Problems 15.9 —
15.12, 0

From the orthogonality Theorem 1.9 we can derive a continuous version of Theorem 1.1.

Theorem 1.10: Continuous Legendre least-squares approximation
If y(x) is function on [-1,1] which is absolutely square-integrable with respect to the weight func-

1

tion w(x) =1 (x € [— 1,1]) in the sense that J.|y(x)|2 dx < oo, then the continuous square-sum of
-1

residuals
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S = J{y(x)—iaij(x)J dx (1.18)

is minimal if and only if

a,= 2J”jy(x)P(x)dx (j=0,...m) (1.19)

The polynomial ZajP/. (x) is called the continuous least-squares Legendre approximation of de-
j=0

gree m.

1 m 1
The minimal square-sum of residuals then is given by §_. = Iy(x)%lx—Zaf J. Pj(x)2 dx .

-1 Jj=0

( Proof: The two proofs of Theorem 1.1 and the formulas (1.8) and (1.8’) can be carried over to the

present situation by the idea that <P/ B > = JP (x)B,.(x)dx replaces < g.,g;, >.

The geometric proof (cf. Figure 1.3) with < g, g, > replaced by <P/, P/> establishes the theo-
cont

rem by the continuous orthogonal relations (1.17)

0
The next example shows that for polynomials the coefficients a; in (1.19) can be computed without

solving integrals. It is an application of the truncation method.

Example 1.8: Legendre continuous least-squares parabola on the interval (0,1) for y(z) = t*

First the interval (0,1) is transformed to (-1,1) by x = 2¢ —1, then by Table 1.5

y(x) =%=%(x3 +3x% +3x+1)=
= %(ZPS(X);L3PI()C) +32P2(x)3+P°(x) +3P(x)+ Py(x)) =

:%P(x)+ —P,(x)+ 9P(X)-'- P(x)

By truncation we get that the Legendre least-squares parabola is equal to

%P(x)+ ’ —P(x)+— P(x) —P(2t—1)+iP(2t—1)+—
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The same problem could be solved by the integral formulas (1.19), of course:

1 1! 1
a, =EJ.1)/(X)P0(X)dx :Ej'ly(x)dx :Z

3 3 9
ay = [ yOOR () dx =2 [ (e = —
-1 -1

a=2 [rorwa -2 J y(x)(“ 2‘1]dx -

Example 1.9: Legendre continuous least-squares parabola on the interval (0,1) for y(¢) =sin(z¢):

. . . . x+1
First the interval (0,1) is transformed to (-1,1) by x =2¢—1, then y(x) =sin ET . By The-

orem 1.10 and formula (1.19):

1! 1t . x+1 2
a, =EJ.1y(x)P0(x)dx =5.[51n(7r-7jd =
1 1
a, = %J;Y(X)E (x)dx = %Isin(ﬂ-%ﬂj xdx =0

1
1

1 2 2
a, :g,[J’(X)Pz(X)dng sin(zz-erlJ-fx ljdeIO(ﬂ 3 2
—1 -1

2 2 T

10(7z2 -12)
From these values we get for the parabola —————
T
10(7* 12 2
107212 p o1y r0p@e-1)+ 2 P20 -1).
T T
oL oo Figure 1.10:
- - y(t)=sin(rt) and
08 - continuous least-squares
J \ (dashed line) of Example 1.9 in the
J X range 0 <¢<1.
06 + J %
04 | / \
02
02 04 06 08 to

Py(x)+ 0P, (x) + = By (x)
T

the Legendre
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1.8 The matrix condition number

For a system of linear equations in matrix form A-x =5 with square matrix 4 and right-hand side
(r.h.s.) b the solution x obviously depends on b because x=A4"'-b provided that 4 is a regular (in-
vertible) matrix.

The condition number of 4, denoted by K'(A), measures the maximum relative error of the solution x

with respect to a relative error in the r.h.s. b:

Definition 1.10: Matrix condition number K‘(A)

The condition number K‘(A) of a matrix 4 is defined by the maximum ratio of relative errors:

Ax /
” (b#0,Ab#0,A-x=>b) ifthe matrix A is regular, and by

=max ” /

K'(A) =o otherwise.

||| denotes a vector norm, commonly this is the Euclidean norm |-, or the maximum norm

In the case that K'(A)iS relatively small the matrix or the system of equations is called well-

conditioned, otherwise one uses the term "ill-conditioned".

Property 1.4: If 4 is regular then «(A4)= ||A||-||A"' ”

wherein the (spectral) norm of a matrix is defined as 4| = H HJ{(”A-x”):max(”A-x”). It de-

=1

pends on the vector norm |--|| .

A, H |4"-a8], H
( Proof: By linear computations: Ab q4-x
S bu o
/1] 4+
oAb X , h
A —|| . Since and —- are unit vectors the assertion follows by the defini-
el [a2] H H

tion of the spectral norm of a matrix

0

The next propositions establish relations between the matrix condition number and the singular-value
decomposition (SVD) or eigenvalues, respectively:
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Property 1.5: For a regular matrix A and the Euclidean vector norm' we have:

o
a) k(4) —|ﬂ denote the absolute maximal and the absolute mini-

| Gmin

in which |o,..| and |,

max

mal singular value of 4, respectively.

N |4

- max
|/1min

solute maximal and the absolute minimal eigenvalue, respectively.

denote the ab-

in

and |/1m

b) If, additionally, the matrix 4 is normal: K‘(A)

2

|O-max :
c) x(A*-A)=1" where again |0

max

denote the absolute maximal and the abso-

and |O-min
min

lute minimal singular value of 4, respectively.

Note to b): Normal means that 4 commutes with its conjugate transpose A*: 4-A*=A*-A4.

A special case of this are symmetric matrices.

max min

( Proof: Note that ‘0

4] and o

- HA’I H by the definition of the singular values. This

yields a).
For b) and normal matrices use the fact that the singular values correspond to the absolute eigen-
values. Note that, generally, the singular values are the square roots of the non-negative, real ei-

genvalues of 4*-A4 (or equivalently 4-A%*).
Finally, c) is concluded from a) and b) since the matrix A*-4 as a symmetric matrix is normal

0

Example 1.10: Continuation of Example 1.7A
For the design matrix G and its singular-value decomposition (cf. Example 1.7A above) we conclude
2
o 2
by Proposition 1.5¢ that x (G *-G) = % = (3-13397><107 ) . Thus the 10 x 10 system of
| o 4.50267

normal equations is ill-conditioned.

Example 1.11: Statistical normalization (cont. Example 1.10)

The variables in the (complete) basis of total degree 3 in Example 1.7A are statistically normalized? by
the substitutions:

X = XTH , Vb YTH (1.20)
o, o,
. . . ) max|a,.|
For the maximum norm ””00 and a regular, lower triangular matrix A4: K(A) > — | ”| .
min|a,;

2 The new variables thus have mean 0 and standard deviation 1.
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The singular-value decomposition for the new design matrix yields (10 rows of the diagonal matrix with
singular values in the diagonal):

[ 235.875 a. 2. 2. 2 a8 a8 @ 2 &.
@. 228,228 a. a. a. a. a. @ @ @.
@. @. 171.286 @. a. @. @. a. &. &.
@, @. . 128,485 . ] ] . . .
a. a. a. a. 187.539 a. a a a a.
a. a. a. a. a 99,3667 a. a a a.
a. 8. a. a. a. a8 73.5878 a. a a.
g, a. 2. 2. a. a8 a. 29.4899 a. &.
@. a. a. a. a a. a. a. 24,8546 @.
@. @. @. @. a a8 @. a. &. 21.5343

It is obvious that the 10 x 10 system of normal equations now is well-conditioned; the condition num-
ber being (10.9161)2.



