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Minmax Approximation  
 
Methods for discrete data 
 
1   Uni-variate linear minmax  

approximation 
In discrete minmax approximation (a.k.a. 
Chebyshev-approximation) the main objec-
tive is to approximate discrete data with a 
model function such that the worst-case = 
maximum absolute error becomes minimal, 
i.e. the value of the global maximum absolute 
error |e| in Fig. 1.1 is minimal. 

Figure 1.1: Discrete data of 8 points approximated by 
a modelling cubic curve with 8 residuals e. 
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The maximum of the absolute residuals, a.k.a. as the maximum-norm 
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 ,  has to be minimized: 
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Example 1.1: Minmax parabola 

The 5-point data  { {3,1.70},{4,2.00},{5,2.26},{6,2.42},{7,2.70} }  

is to be approximated by a minmax-parabola. 
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Figure 1.2: Parabolas approximating the 5 data points with x-arguments {3, 4, 5, 6, 7}. A possible 
set of basis functions is {1, x, x2}. The parabola formula is 0.893333  + 0.300000 𝑥𝑥 − 0.006667𝑥𝑥2 for 
the minmax approximation (orange) and 0.776 + 0.342 x - 0.01 x2  for the least-squares approxima-
tion (blue), respectively. 

 
1.1 Computational solution by a linear optimization problem  
Mathematically, it is rather straightforward to transform the minmax objective (1.2a) into a linear opti-
mization problem with constraints:  
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This says that the linear objective function γ   has to minimized subject to the 2(N+1) linear inequality 

constraints denoted in (1.2b). The set of m+2 variables for the optimization is { }0 1, , , ,ma a a γ .  
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Using the design matrix  
0 0 1 0 0

0 1

( ) ( ) ( )

( ) ( ) ( )

m

N N m N

g x g x g x
G

g x g x g x

 
 =  
 
 



   



  this can be written in a compact 

matrix form:  
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Only in exceptional cases can such a linear constrained optimization problem be solved analytically. 
Generally, the global solution has to be found by an iterative numerical scheme or by an advanced 
mathematical framework as cylindrical algebraic decomposition. The latter works even for algebraic 
functions and contraints and allows for exact solutions whenever the date is given as exact rational 
numbers. Another exact and global method is the Simplex algorithm (a standard used for linear opti-
mization).  
 
Example 1.2 (cont. Ex. 1.1)   
The linear optimization problem (1.2c) for the data set in Example 1.1 has 10 inequalities as con-
straints. Below these are written out in matrix and expanded form, respectively:  
 

0

1

2

1.70 1 3 9 1.70 1 3 9
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2.42 1 6 36 2.42 1 6 36
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Design matrix G

a
a
a

γ
γ
γ
γ
γ

         
                             − ⋅ ≤ ∧ − +          

         
        
         



0

1

2

Design matrix G

a
a
a

γ
γ
γ
γ
γ

 
       ⋅ ≤    

   
  

 



  

 

  
 

The global solution to the constrained optimization problem min!γ →   is unique:  

    
Thus the parabola formula is 0.893333  + 0.300000 𝑥𝑥 − 0.00666667𝑥𝑥2  rounded to precision 6 (six 
significant digits). 
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2  Multi-variate linear minmax approximation 
Multi-variate linear minmax problems are solved exactly along the same lines as uni-variate problems. 
The method developped in Sections 1.1 remains valid and keep the same form relying on the design 
matrix.  
 
As in the multi-variate least-squares approximation the x-arguments now are vectors 

Nn xxxx 



 ,,,, 110 −  of dimension d and thus we need basis functions which take vectors as inputs (i.e. 
functions in several variables).  
 
Example 1.3: Multi-variate least-squares for 4695 three-dimensional data points 
 

0 50 100 150 200

0

50

100

150

30

20

10

0

 
50 100 150 200

20

40

60

80

100

120

140

 

Figure 1.3a: 4695 data 3d-data points  Figure 1.3b: Irregular grid in the argument plane 
(projections) 

 
Degree 3 complete basis 

Basis functions (not regularized): {1, x, y, x2, 2xy, y2, x3, 3x2y, 3xy2, y3} 
 

The first 4 data points are:  
{ {82.0565,99.8271,-25.3321},{83.9503,99.6029,-24.8481}, 

  {85.8279,99.3811,-24.3083},{80.1541,99.9811,-25.753}, … } 

 
The design matrix with respect to the statistically regularized basis 
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The system (1.2c) now reads as: 
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It consists of m + 2 = 11 variables { }0 1 9, , , ,ma a a γ=  and has 2( N + 1 ) = 2 * 4695 linear inequality 
constraints. Below two small sets of these are written out (notice that the variables are re-numbered 
beginning with index 1): 
 

  

 
 
 
Minmax approximation as a variable list and a functional formula, respectively:  
 

 
 

 
 

 

 
Figure 1.4a: 3th total degree minmax approximation function and data points (red). 
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Figure 1.4b: Scatter plots of 3th total degree minmax approximation (blue) compared to least-squares 
approximation (black) and data points (red).  
 
 


