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In discrete minmax approximation (a.k.a. 60 |

Chebyshev-approximation) the main objec-

tive is to approximate discrete data with a ]

model function such that the worst-case = 20 1

maximum absolute error becomes minimal, 0 | : . ‘ .

i.e. the value of the global maximum absolute 0o 1 2 3 4 5 6 7 8 9

error |e| in Fig. 1.1 is minimal.

Figure 1.1: Discrete data of 8 points approximated by
a modelling cubic curve with 8 residuals e.

Given discrete data (e.g. by a measurement) (X, ), (X, V)1s--» (Xy, V) = {(xi,yl.)}izo

or (in the multi-variate arguments case) (X;,1,),(X;, 1)1+ (Xy,Vy) = {(fi,yi)}izo .

,,,,,

and a set of modelling basis functions g,,g;,....,&,, = {g_]. }jzo . the components of the residual

,,,,,

vector 7 :(r.)AfomN are defined as the differences between the data y-values and the y-output

values of the linearly combined model function Zajgj (x) evaluated at the data x-arguments:
j=0

=Y a,g,(x) (i=0,.,N) (1.1)
j=0

The maximum of the absolute residuals, a.k.a. as the maximum-norm ||||w has to be minimized:

y = max |r| ||r|| — min! (1.2a)

.....

Example 1.1: Minmax parabola
The 5-pointdata { (3,1.70},{4,2.00},{5,2.26},{6,2.42},{7,2.70} }

is to be approximated by a minmax-parabola.
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Figure 1.2: Parabolas approximating the 5 data points with x-arguments {3, 4, 5, 6, 7}. A possible
set of basis functions is {1, x, x’}. The parabola formula is 0.893333 + 0.300000 x — 0.006667x2 for
the minmax approximation (orange) and 0.776 + 0.342 x - 0.01 x> for the least-squares approxima-

tion (blue), respectively.

11

Computational solution by a linear optimization problem

Mathematically, it is rather straightforward to transform the minmax objective (1.2a) into a linear opti-
mization problem with constraints:

y — min! st rn<yA-r<y (i=0,-,N) &

- N & . (1.2b)
y — min! s.t. yi—Zajgj(xi)S;/ A _yi+zajgj(xi)gy (i=0,--,N)
Jj=0 j=0

This says that the linear objective function ¥ has to minimized subject to the 2(N+1) linear inequality

constraints denoted in (1.2b). The set of m+2 variables for the optimization is {ao,al,...,am,}/} .
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go(‘x()) gl(‘xo)
Using the design matrix G = : :

go(xzv) g (xy)
matrix form:

gm(xo)
: this can be written in a compact

g, (xy)

al= (ao,al,...,am)tr, V= (7/,7,...,7)”

y — min! st y|-G-a|<y| A —(y|-G-al) <y|

(1.2c)

Only in exceptional cases can such a linear constrained optimization problem be solved analytically.
Generally, the global solution has to be found by an iterative numerical scheme or by an advanced
mathematical framework as cylindrical algebraic decomposition. The latter works even for algebraic
functions and contraints and allows for exact solutions whenever the date is given as exact rational
numbers. Another exact and global method is the Simplex algorithm (a standard used for linear opti-

mization).

Example 1.2 (cont. Ex. 1.1)

The linear optimization problem (1.2c) for the data set in Example 1.1 has 10 inequalities as con-
straints. Below these are written out in matrix and expanded form, respectively:

Design matrix G

1.70 1 3 9 /4 1.70
2.00 1 4 16| (a, /4 2.00
226 (=1 5 25| a |S|y| A —|2.26
242 1 6 36| \q % 242
2.70 1 7 49 /4 2.70

—a0-3al-9a2+1.7=vy

—-a0-4al-16a2+2 =y
—al-5al —-25a24+226=vy
—a0—-6al -36a2+242 =y
—a0-7al -=49a2 +2 7=y
ad+3al+9a2-17=vy
al+4al+16a2-2. =y

a0 +5al +25a2-226=<vy
a0 +6al +36a2-242 =<1y
ald+7al +4932 -2 7 =y

Design matrix G

1 3 9 y
1 4 16| (a, 1%
1 5 25| q |<|y
1 6 36| \a, %
1 7 49 4

The global solution to the constrained optimization problem » — min! is unique:

{0.0333333, {y—>0.0333333, a0 -+ 0.893333, al +0.3, a2 - -0.00666667} }
Thus the parabola formula is 0.893333 + 0.300000 x - 0.00666667x? rounded to precision 6 (six

significant digits).
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2 Multi-variate linear minmax approximation

Multi-variate linear minmax problems are solved exactly along the same lines as uni-variate problems.
The method developped in Sections 1.1 remains valid and keep the same form relying on the design
matrix.

As in the multi-variate least-squares approximation the x-arguments now are vectors
Xy>X;5...,X,_,,X, of dimension d and thus we need basis functions which take vectors as inputs (i.e.

functions in several variables).

Example 1.3: Multi-variate least-squares for 4695 three-dimensional data points

100

0 50

Figure 1.3a: 4695 data 3d-data points Figure 1.3b: Irregular grid in the argument plane
(projections)

Degree 3 complete basis

Basis functions (not regularized): (1, x, vy, x2, 2xy, vy?, x3, 3x%y, 3xy?, y3)

The first 4 data points are:
{ {82.0565,99.8271,-25.3321},{83.9503,99.6029,-24.8481},
{85.8279,99.3811,-24.3083}, {80.1541,99.9811,-25.753}, .. }

The design matrix with respect to the statistically regularized basis
j k
x—pu | [ Y- H

o, o,

J,k € N, ¢) has dimensions 4695 x 10 and its first 3 rows are:

(1. -0.320092 1.06937 0.102459 -0.684594 1.14355 -0.03279%:4 0.3287 -1.08813 1.22288,
1. -0.283415 1.0e3 0.0803238 -0.60234 1.12987 -0.0227648 0.256153 -0.9e0732 1.2011¢
V1. -0.24705 1.03e7 0.0610339 -0.522118 1.1lee2 -0.0150785 0.193484 -0.827585 1.178994 )

The system (1.2c) now reads as:

y — min! st G-a|<y| A —-G-a|<ly]|
tr

r
a|::(a0,a1,...,am:9) s V=0V )
—_

N+1=4695
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It consists of m + 2 = 11 variables {ao,al,...,ang,}/} and has 2( N + 1) = 2 * 4695 linear inequality

constraints. Below two small sets of these are written out (notice that the variables are re-numbered
beginning with index 1):

-25.3321-1. a1 -1.22288 210~ 0.320092 a2 - 1.06937 23 -0.102459 a4 + 0.684594 a5 - 1,14355 a6+ 0.0327964 a7 - 0.3287 a8 +1.09813 a0 2y
-24,8481-1,a1-1.20116210+0.283415a2-1.063 23 -0,0803238 a4+ 0.60254 a5 - 1,12087 a6 + 0.0227649 a7 - 0.256153 a8 +0.960752a% = v
-24.3083-1. a2l -1.17994 al0-0.24705a2 - 1.0567 a3 -0.0610339 a4 + 0.522118 a5 - 1. 11662 a6 + 0.0150785 a7 - 0.193484 a8 +0.827385a% = ¥

25,3321 +1. al +1.22268 a10-0.320082 a2 + 1.06937 a3 +0.102458 a4 - 0, 664594 a5+ 1.14355 a6 - 0.0327%¢4 a7+ 0.3287 a8 - 109813 al0 =y

24,8481 +1.al+1.20116a10-0.283415a2+1.0634a3+0,0803238 a4-0.60254a5+1.12997 a6 -0.0227649a7+0.256153a8-0.960752a0 =y
24,3083 +1.al+1.17994 210-0.24705 a2 + 1.0567 a3+ 0.0610339 a4 - 0. 522118 a5+ 1.11662 a6 - 0.0150785 a7+ 0.193484 aB - 0.827585 a0 = ¢

Minmax approximation as a variable list and a functional formula, respectively:

{¥ > 7.74506, al » -16.0838, a2 > 18.4127, a3 > -0.55464, a4 > -0.121244,
a5 > 0.0184736, a6 —» 2.08166, a7 > -5.84413, a8 - -0.0488747, ad —» -2.00871, al0 - 0.0220543}

~16.0839+0,356605 (-93,584 +x) - 0,0000454777 (-98.584 +x)° - 0,0000424549 (-98,584 +x)° - 00157519 (-62.1736 + y) +0.0000203224 (-98,584 < ) (-62,1736+y] -
1,56185x10°% (-98,584 - %) [-62.1736+y) + 0.00168708 (~62,1736+y)® - 00000941355 (-98.384 +x) (-62.1736 +y)® +5.25814x 107" (-62.1736 +y)°

Figure 1.4a: 3t total degree minmax approximation function and data points (red).
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Figure 1.4b: Scatter plots of 3t total degree minmax approximation (blue) compared to least-squares
approximation (black) and data points (red).



