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Multi-variate Polynomial Interpolation  
 
Nested application of uni-variate methods 
 
1. Bilinear interpolation on regular grids 
Applications of interpolation methods often include multi-dimensional data and thus several variables 
asking for extension of the uni-variate interpolation methods. These extensions normally are a nested 
application of uni-variate methods and thus are rather natural. 
 
Example 1.1: In image processing software tools upsizing a raster image often is performed by a two-

dimensional interpolation. The figure below shows a small sample from the pixel raster, a so-called 
patch: The pixel coordinates (14,20), (14,21), (15, 20), (15,21) form the corners of a square grid 
with known real pixel values 91/255, 162/255, 210/255, 95/255. These correspond to color infor-
mation, e.g. values of the red channel in a RGB-image (R = Red, G = Green, B = Blue). 

Interpolating this 2-dimensional grid means finding a polynomial ),( yxp  in two variables { }yx,  
such that p collocates with the color values in the four corner points of the grid. 

 

 
 

Figure 1.1ab: Square grid (patch) and its bilinear interpolation (red channel values). 
 

Of course, the question arises how to represent the multi-variate polynomial ),( yxp  and how to 
determine the order of this polynomial.  For the purpose of Example 1.1 we need four polynomial 
coefficients because there are four conditions. Preferring Newton polynomials leads to the following 
straightforward representation: 
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This kind of representation is called a 2-fold tensor product of the uni-variate basis { }10 ,ππ in the 

variables { }yx, . It is also called bilinear interpolation because only uni-variate basis functions up to 
order 1 are used. 
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The figure below illustrates how 2-dimensional interpolation problems are solved by two consecu-
tive uni-variate interpolation procedures. The xy-coordinate values have been rescaled to the unit 
square [0,1] x [0,1]. 

 

 
 

Figure 1.2: Illustration of 2-dimensional interpolation on a unit square. The red-gray surface is giv-
en by the polynomial 0.356863 + 0.466667 x + 0.278431 y - 0.729412 x y  in scaled xy-
coordinates and otherwise by -215.98 + 15.0549 x + 10.4902 y - 0.729412 x y. 

 
The computation proceeds along the following steps. Each step applies the method of divided dif-
ferences. 

 
(1) Uni-variate interpolation in the variable x for 200 == yy  leading to 
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(2) Uni-variate interpolation in the variable x for 211 == yy  leading to 
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(3)   Uni-variate interpolation in the variable y for an arbitrary value of x. This corresponds to in-

terpolating the two high-lighted points in Fig. 1.2. From the steps (1) and (2) we compute the 
values ),( 0yxp  and ),( 1yxp  and then interpolate these values along the y-axis: 
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The latter expression simplifies to  -215.98 + 15.0549 x + 10.4902 y - 0.729412 x y.  
 
From these computations it is seen that multi-variate interpolation is a nested application of uni-variate 
interpolation along different coordinate axes. 
 
 
2. Bi-cubic interpolation on regular grids 
Bi-cubic interpolation is a straightforward generalization of the method developped in the previous 
section. The term bi-cubic means that the basis polynomials are constituted by a 2-fold tensor product 
of the univariate cubic basis { }3210 ,,, ππππ  in the variables { }yx, . 
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From this it is seen that 16 conditions are required because there are 16 unknown coefficients. 
 
 
2.1 Bi-cubic collocation 
Bi-cubic collocation provides 16 function values on a regular 4x4 grid. These values constitute a set of 
16 conditions (as required). 
 



  Numerical Analysis  
 Dr. Bernhard Zgraggen 
 
 

4 

 
 

Figure 1.3: Illustration of 2-dimensional bi-cubic interpolation on a 4x4 grid. 
 
The computation proceeds along the following uni-variate interpolation steps: 
 
Steps (1)-(4): Uni-variate interpolations in the variable x for 3210 ,,, yyyyy =  leading to 4 cubic poly-

nomials ),(),,(),,(),,( 3210 yxpyxpyxpyxp . 

 
Step (5): Uni-variate interpolation in the variable y for an arbitrary value of x. This corresponds to in-
terpolating the four high-lighted points in Fig. 1.3. From the steps (1) to (4) we compute the values 

),( 0yxp , ),( 1yxp , ),( 2yxp  and ),( 3yxp  and then interpolate these values along the y-axis. 

 
This finally leads to the numerical bi-cubic polynomial  
 

-0.581324 + 3.58038 x - 2.92226 x2 + 0.63402 x3 + 1.15278 y + 6.07605 x y 
- 6.55837 x2 y + 1.35823 x3 y - 0.181566 y2 - 9.41581 x y2 + 8.59978 x2 y2 - 
1.72666 x3 y2 - 0.0584666 y3 + 2.35529 x y3 - 2.04092 x2 y3 + 0.402331 x3 y3 

 
in expanded form. The details of the computations are omitted. 



  Numerical Analysis  
 Dr. Bernhard Zgraggen 
 
 

5 

*2.2 Bi-cubic osculation 
When working with unit-square grids (as in the section on bi-linear interpolation and typical for image 
processing) 12 conditions on the derivative values must be added to the 4 values in the 4 corners 
{ }),(),,(),,(),,( 11011000 yxyxyxyx .  

 
Values for the first-order partial derivatives ... 
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… and the second-order partial derivatives 
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constitute such a set of 12 conditions. Generally, the partial derivatives are approximated by finite 
differences of data values neighbouring the corners.  
The 4 cubic boundary curves (of the polynomial surface)  

),(),,(),,( 010 yxpyxpyxp and ),( 1 yxp  

can be computed by Hermite interpolation using divided differences and the informations on the first-
order partial derivatives. 
 
 
3. Multi-variate collocation on regular grids1 
Multi-variate collocation problems on regular grids are solved along the same lines as the 2-
dimensional collocation problems described in the sections above. 
 

The x-arguments now are vectors nn xxxx 



 ,,,, 110 −  of dimension d and thus we need basis func-
tions which take vectors as inputs (i.e. functions in several variables). For practical purposes most 
widely used are tensor products of uni-variate basis functions.  

If { }
mjjm gggg
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=

=  is a uni-variate basis then the d-fold tensor product 
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defines a basis of dmmm ××× 21  functions in d variables )()1()2()1( ,,,, dd xxxx −
 . 

 
 

                                                           
1 Interpolation on irregular (non-grid) data is solved by triangulation and working with triangle patches 
(elements). For the solution of the interpolation problem on a triangle patch barycentric coordinates 
are very useful. 
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Name of basis 
functions 

3d-formulas 

Polynomials { }0
)3()2()1( ,, Nlkjxxx lkj

∈    (standard monomials) 

 

{ }0
)3()2()1( ,,)(()( Nlkjxxx lkj ∈πππ  (Newton polynomials) 

 
 

{ }0
)3()2()1( ,,)(()( NlkjxTxTxT lkj ∈  (Chebyshev polynomials,    

                                                             )1,1(,, )3()2()1( −∈xxx  ) 

 
 

  
 
Table 1.1: A few basis functions in 3 variables. The generalizations to more than 3 variables are 
straightforward.  

 
Typical applications are tri-linear and tri-cubic interpolation. The latter often is used on unit cubic grids 
with informations on partial derivatives.  


