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Newton Polynomial Interpolation (Collocation) 
 
The method of divided differences 
 
1. The problem of collocation 
The following example of visualized data originates from a former industrial project with von Roll AG. 
 
Example 1.1: Five measurements of flow rates (volume per second = [cm3/sec]) consist of n + 1 = 231 

+ 1 data each (there are 232 measurements). For the purpose of integration and presentation each 
data set has to be interpolated by a single curve that meets all the corresponding measurement 
points.  
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Figure 1.1: Point plots of five data sets (measurements) of flow rates. 

 
This kind of interpolation problem is called collocation1. Concentrating now on a single measurement, 
e.g. the red one #5, and introducing the usual symbols x and y for the abscissa and ordinate axis, 
respectively, we have to find a polynomial formula2   
 

  1 2 3 1
0 1 2 3 1 0 1( ) ( ) ( , , )m m

m my x p x c c x c x c x c x c x c c−
−= = + + + + + + + ∈     (1.1) 

 
such that the degree m of the polynomial is minimal and the collocation conditions  
                                                           
1 There are other methods of interpolation often used in practice like osculation (where in addition derivative con-
ditions have to be met) or spline interpolation. Approximation methods, contrary to interpolation, relaxe the condi-
tion that all the data points have to be met. The most important approximation methods are called Least-Squares 
and Chebyshev (Min-Max), respectively. These methods can be combined, of course. 
 
2 There are other choices than polynomials, of course, like trigonometric polynomials or exponential functions. 
Polynomials have advantages concerning operations like evaluation, differentiation, integration and implementa-
tion of these operations. 
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),,2,1,0()()( nkyxpxy kkk ===  (1.2) 
 
are met. The formula (1.2) is a short description of a linear system of n+1 equations in the (unknown) 
coefficients mccc ,,, 10   of the polynomial. The data (measurement points) are given by a set of in-

dexed coordinate pairs ),,1,0(),( , nkyx kk = , usually beginning with index 0. The ordinate val-

ues ky  are called (function or measurement) values and the abscissa values kx  are called argu-
ments: 
 
 
 x 
 x0   x1   x2  x3  xn-1 xn  

 
The linear system (1.2) written in schematic form reads as 
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 (1.2’) 

 

It consists of n+1 equations in the (unknown) coefficients mccc ,,, 10  (“degrees of freedom”).  By 
elementary linear algebra it is generally uniquely solvable if m = n. But normally, the problem of collo-
cation (1.1) is not attacked by solving (1.2’) because of significant numeric instability and  inefficiency 
of computations. The form (1.2’) results from the polynomial form (1.1) where a polynomial function is 
represented as a weighted  sum of powers of x and thus p(x) is a linear combination of the basis poly-
nomials mxxx ,,,,1 21

 (powers). 

 
2. The Aitken-Neville recursion formula 
Without explicit solving (1.2) it is possible to establish relations among different interpolating polynomi-
als by partitioning the data set in two (overlapping) parts as indicated in the figure below. 
 
 
 

 x 
 x0   x1   x2  x3  xn-2      xn-1 xn  

 
 
 
The dashed red and green ovals, respectively, indicate the partition of the data arguments in two over-
lapping sets: red = { }110 ,,, −nxxx   and green = { }nxxx ,,, 21  . Assuming now that the indexed 

term )(1,,2,1,0 xp n−

 indicates a polynomial interpolating the red data subset and the indexed term 

)(,1,,2,1 xp nn−

does the same for the green data set then the following relation holds between these 
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“partial” polynomial terms and the “global” polynomial )()( ,1,,2,1,0 xpxp nn−=


solving the collocation 
problem (1.2): 
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 (1.3) 

 
The Aitken-Neville formula (1.3) describes how the “global” interpolating polynomial is combined from 
the “partial” interpolating polynomials 0,1,2, , 1( )np x−

( red) and 1,2, , 1, ( )n np x−

( green). 

( Proof: The proof of the Aitken-Neville recursion formula is easily done by sequentially replacing x by 
the arguments xk and evaluating p(xk ): 
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�  ) 
 
A tabular representation of (1.3) appropriate for computational purposes is given below. 

 
Table 1.1: Tabular representation of the Aitken-Neville recursion formula. Assuming n = 4 and that  

4,3,2,1,0p has to be found ….   

 
Bottom-up description of Table 1.1 

The scheme begins with the trivial partial solutions 4433221100 ,,,, pypypypypy ===== . 
These are constants (order zero polynomials), one for each measurement point. Applying (1.3) re-
peatedly for consecutive pairs yields 1,0p from 0p and 1p , 2,1p from 1p and 2p , …. and so on. 
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Graphically, these are straight lines joining two consecutive measurement points; as polynomials 

0,1p , 2,1p ... are of order 1. 

From 1,0p  and 2,1p  then the next column entry to the right, 2,1,0p , is determined again by (1.3). 
Graphically, this is a parabola joining the first three (consecutive) measurement points. As a poly-
nomial it is of order 2. In this manner a parabola or 2nd order polynomial is computed by (1.3) for 
any three consecutive measurement points yielding 2,1,0p , 1,2,3p , 2,3,4p , ... 

By continuation of this procedure rightwards from one column to the next one ... the scheme termi-
nates with 4,3,2,1,0p . This is the final 4th order polynomial covering the whole measurement of five 

points. It is computed by (1.3) from the cubic polynomials 3,2,1,0p  and 4,3,2,1p . 

 
3. The Newton basis polynomials 
As mentioned at the end of the first section the form (1.2’) is not appropriate for a numerical solution of 
the collocation problem (1.2), or, equivalently, the basis polynomials of powers  ,,,,,1 21 mxxx  are   
not a good choice for resolving (1.2) numerically. Newton found another basis of polynomials that 
leads to a lower-triangular form of (1.2) and allows for a surprisingly simple and efficient computational 
scheme resolving the collocation problem (1.2). 
 

Definition 1.1: The Newton basis polynomials ),,2,1,0()( nkxk =π  are defined by  
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It is obvious that ),,2,1,0()( nkxk =π  is of degree k and that every polynomial )(xp of degree 
m in the form (1.1) has a unique representation as a linear combination of Newton polynomials: 
 

)()()()()( 221100 xaxaxaxaxp mmππππ ++++=   (1.5) 

 
Moreover, when using (1.5) the linear collocation system (1.2) takes the following lower-triangular 
form: 
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 (1.6) 

 
From (1.6) – by step-wise solution row-by-row –  we immediately get the 
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Property 1.1: Stability of Newton coefficients against new data elements 

The coefficient ka  in  (1.6) is determined by the first k arguments 0 1, , , kx x x  ( 0,1, 2, , )k n=   

and thus adding a new data argument 1+nx  to the given, original data set nxxx ,,, 10  does not al-

ter the coefficients naaa ,,, 10   of the original collocation polynomial.  

At first sight the lower-triangular form of (1.6) looks attractive for a step-wise resolution row-by-row as 
indicated before Property 1.1 but still this is not optimal as far as efficiency is concerned. Bringing the 
form (1.6) together with the Aitken-Neville recursion formula allows for an elegant and fast computa-
tion of the Newton coefficients naaa ,,, 10  . 

 
4. The “elegant” and fast resolution by divided differences 

Due to Property 1.1 we can write the Newton coefficient ka  as ),,,( 10 kxxxa  , a formula depending 

only on the arguments ),,2,1,0(,,, 10 nkxxx k  = .    

The computations below aim at finding a recursive formula for the Newton coefficients  

),,,( 10 kxxxa  , especially the leading coefficient 0 1( , , , ) ( )na x x x n∈   . 

Applying the Aitken-Neville recursion formula (1.3) to the collocation polynomial )(xp  in the Newton 
form (1.5) yields 
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... splitting the factor )( nxx −  into )()( 11 nnn xxxx −+− −−  and correspondingly expanding in the 
nominator above we continue with … 
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The only terms with maximal degree n are encircled in the blue oval, all other parts are of lower de-
gree and do not concern ),,,( 10 nxxxa  . From this it is obvious that the leading coefficient 

),,,( 10 nn xxxaa =  is equal to the divided difference  
)(
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. Re-

naming ),,,( 10 nxxxa  by ),,,( 10 nxxxy   as is usual in Newton interpolation and considering that 
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n was arbitrary in   we can write the recursion formula for the Newton coefficients which are also 
called divided differences: 
 

),,1,0(
)(

),,,(),,,(
),,,(

0

11021
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The table below shows the divided differences ),,,( 10 kxxxy   for k = 0,1,2,3: 
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Table 1.2: Some divided differences up to order 3 
 
There is a recursive tabular scheme for computing divided differences analoguous the the one in Ta-
ble 1.1. This is illustrated in the next example. 
 
Example 1.2: Collocation polynomial for the data set  

   {(0,1), (1,1), (2,2), (4,5)} = { }3,...,1,0|),( == nkyx kk . 

 
Table 1.3: Tabular scheme for computing divided differences column-
by-column. The encircled values in the top diagonal correspond to the 
divided differences (Newton coefficients)  

   )( 0xy , ),( 10 xxy ,  , ),,,( 3210 xxxxy . 

From these the collocation polynomial is determined in Newton form: 
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Example 1.3: Polynomial interpolation of flow data (cont. Example 1.1) 

The collocation polynomial (of expected degree 231) in expanded short form1 for the red data set 
(#5) is  

                                                           
1 In most computer implementations the collocation polynomial is internally represented in Horner form 
reducing significantly the number of multiplications for numerical evaluation. This is advantageous for 
numerical evaluation (and thus plotting, e.g.) but disadvantageous for operations like addition, integra-
tion and differentiation. 
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1.48918×10118-6.70261×10119 x+ ... +8.22523×10-53 x229-1.1149×10-55 
x230+7.51708×10-59 x231 

 
Plotting the data set together with the collocating polynomial reveals the Runge phenomenon (os-
cillations with high frequencies and amplitudes towards the boundaries of the arguments range). 
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Figure 1.2: Point plot of data set #5 together with a restricted plot of the interpolating collocation 
polynomial of degree 231. High degrees are a potential risk for oscillations with high frequencies 
and amplitudes towards the boundaries of the arguments range. 

 
A very useful property of divided differences is symmetry with respect to the arguments: 
 
Property 1.2: Symmetry of divided differences 

Any divided difference ),,,( 10 kxxxy   is independent from the order of its arguments 

0 1, , , ( )kx x x k∈  . 

( Proof: This is a consequence of Property 1.1 and the fact that the collocation polynomial is unique 
and independent from the order of arguments. When interpolating only with respect to 0 1, , kx x x  

only ( )k xπ   contributes to the power kx , independently of the ordering of 0 1, , kx x x  . But the 

coefficient of the leading power kx  is unique, thus this is always equal to 0 1( , , , )ky x x x .    

�  ) 
 
 
5. The collocation error formula 

Interpolating a (model) function )(xfy =  by a polynomial )(xp collocating with the function f at ar-
guments nxxx ,,, 10   means that there is some kind of error between the function f and the colloca-
tion polynomial p. The next theorem gives an error measure and a theoretically interesting description 
of the error by higher derivatives of  f. 
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Theorem 1.1: Collocation error formula  ( )(xfy =   ) 
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whereas   [ ] ( ))max(),min()max(),min( kkkk xxxxx ∈∈ ξ  

( Proof: Schaum’s Outline of Numerical Analysis Chapter 2, Problem 2.7. �  ) 
 

The error formula (1.8) shows that the error )()( xpxy −  is determined by the derivative of order n+1 
- evaluated at some (normally unknown) intermediate value ξ  depending on x  - and the Newton ba-
sis polynomial of order n+1:  )(1 xn+π . 

If n is large and the the derivative 
)!1(
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n
xf n

 takes large values in the arguments range then there is a 

potential risk for oscillations towards the boundaries of the arguments range (Runge phenomenon), 
especially for uniformly distributed arguments. The section on Runge’s phenomen below gives more 
details on that topic. 

 

Another corollary from Theorem 1.1 is the representation of divided differences as derivatives: 

 

Corollary 1.1: Divided differences represented as derivatives  ( )(xfy =    
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( Proof: From Theorem 1.1 we find 
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Considering now 1 ( 0, , )n ix x x i n+= ≠ =   as the argument of a further measurement the coef-

ficient 
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+
 of the Newton polynomial 1( )n xπ +  by (1.7) must equal the divided difference  
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and the assertion (1.9) follows by Proposition 1.2 (symmetry). Finally, (1.9') is an application of 
(1.9) �  )
  

Corollary 1.1 says that a divided difference can be considered as a derivative. For the case n = 1 this 

is not a surprise, because 0 1 0
0 1 0 1

0 1 0

( ) ( )( , ) '( ) ( , )y y x y xy x x y x x
x x x

ξ ξ∆ −
= = = ∈
∆ −

  by the classical 

mean value theorem of calculus in one variable. 

 
6. The Runge phenomenon and Chebyshev arguments 
The so-called Runge phenomenon of polynomial collocation, i.e. oscillation of errors towards the 
boundaries of arguments range, was discovered approximately 100 years ago (!). The next example 
serves as an illustration. 

 

Example 1.4: Runge phenomenon 

Interpolating the non-polynomial (model) function 2251
1)(

x
xfy

+
==  with n+1 uniformly distrib-

uted arguments on the interval [-1, 1] leads to error oscillations towards the boundary values -1 and 
1. 

 
Figure 1.3abc: The first plot (from left) shows the model function y and the collocation polynomial 
for  n =10. The middle plot shows the Newton polynomial )(1 xn+π . On the right the derivation term 

)!1(
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 is shown. The derivation term oscillates with large amplitudes as does  )(1 xn+π  (middle) 

towards the boundary values. Looking at this plots it is not surprising that the error term 
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 of Theorem 1.1 (formula 1.8) itself oscillates towards the boundaries. 

 
A remedy against the error oscillations in the Example 1.4 must be based on another, non-uniform 
distribution of the arguments since we cannot change the derivatives of y. It is promising to look for 
arguments ),,2,1,0( nkxk =  minimizing the maximum absolute amplitude of )(1 xn+π , i.e. mini-

mizing )(max 111
xnx +≤≤−

π  (such optimization problems are briefly called min-max ). The problem has an 
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unique solution: Choosing Chebyshev arguments minimizes the maximum amplitude )(max 111
xnx +≤≤−

π  to 

the value  n2
1

. 

Theorem 1.2: Optimality of Chebyshev arguments1 

Choosing the Chebyshev arguments  

 

),...,1,0(
)1(2

12cos nk
n
kxk =








+
+

= π   (1.10) 

 

in the interval [-1, 1] minimizes the maximum absolute amplitude )(max 111
xnx +≤≤−

π  to the value  n2
1

. 

The proof of Theorem 1.2 will be given in a later chapter on least-squares approximation and is omit-
ted here. 

The next figures illustrates Theorem 1.2. 

 

 
Figure 1.4abc: The first plot (from left) shows the model function y and the collocation polynomial for 

the Chebyshev arguments )10,...,1,0(
)1(2

12cos ==







+
+

= nk
n
kxk π . The middle plot shows the 

optimized Newton polynomial )(1 xn+π  oscillating uniformly between the values n2
1

±  in the interval  

[-1, 1].  

                                                           
1 These arguments are the zeros of the (n+1)th-order Chebyshev polynomial )arccos)1cos(()(1 xnxTn +=+   
defined by trigonometry. The Chebyshev polynomials play a crucial role in approximation theory, e.g. least-
squares approximation or min-max approximation. 
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Figure 1.5abc: The first plot (from left) shows a geometric property of the Chebyshev arguments 

)10,...,1,0(
)1(2

12cos ==







+
+

= nk
n
kxk π . They can be constructed by projection from uniformly 

distributed, symmetric points on the upper half circle onto the abscissa. 

The middle plot shows the optimized Newton polynomial )(1 xn+π  oscillating uniformly between the 

values n2
1

±  in the interval [-1, 1] and the plot on the right side, finally, shows a non-optimal )(1 xn+π  

corresponding to uniformly distributed arguments. 

 

Example 1.5: Measurement of flow rates with Chebyshev arguments (Ex. 1.1 rev.) 
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Figure 1.6: The plot shows a measurement of a flow rate (#5) with n+1 = 231+1 Chebyshev argu-
ments in the time interval [a, b] = [1.7819, 11.1399] and the corresponding collocation polynomial. 
The measurement with Chebyshev arguments provides high resolutions (informations) towards the 
boundary values of [a, b] and avoids large oscillations of the collocation error. 
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The affine formula )1(
2

+
−

+ xabax   transforms the interval [-1, 1] onto [a, b]; it was applied to 

the Chebyshev arguments )231,...,1,0(
)1(2

12cos ==







+
+

= nk
n
kxk π and a = 1.7819, b = 

11.1399.  

 

To be fair it has to be said that the choice of Chebyshev arguments has its drawbacks as: Impossibility 
of measurement, expense of measurement, high density at boundaries and last but not least leads to 
a non-embedded interpolation scheme. This means that increasing the number n (of measurements 
minus 1) implies that nearly all arguments and Newton basis polynomials change. The interpolation 
polynomial has to be recomputed and represented from scratch. 

 
7. Uniformly distributed arguments and Newton’s difference formula 
The theory of collocation by Newton polynomials developed in the sections above simplifies in notation 
for the case of uniformly distributed arguments. 

 

 
 
 x 
 x0   x1     x2    x3  xn-1   xn  

 
It is obvious that 0 ( 0,1, 2, , 0)kx x kh k n h= + = > . Writing the delta-symbol  ∆  for the differ-

ence operator, i.e.  kkk yyy −=∆ +1  and the abbreviation m∆  for the m-fold composition of ∆ we get 
by elementary calculation that  

 

!
),,,( 0

10 kh
y

xxxy k

k

k
∆

=  (1.11) 

 

From this and (1.7) we deduce  

 

Theorem 1.3: Newton’s difference formula for collocation 

For uniformly distributed arguments the collocation polynomial p is given by the difference formula 

 
1 2

0 0 0 0
0 1 21 2

0
( ) ( ) ( ) ( ) ( )

1! 2! ! !

n kn

n kn k
k

y y y yp x y x x x x
h h h n h k

π π π π
=

∆ ∆ ∆ ∆
= + + + + =∑  (1.12) 

 

By a limiting process 0→h  or ),,2,1(0 nkxxk =→ , respectively, we get a classical result from 
calculus in one variable: 

 

 
 



h


h


h


h
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Corollary 1.2: Taylor-Approximation and Lagrange error term 

If )(xfy = is a (model) function with continuous derivatives up to order n on the interval [ ]xx ,0  

and y is (n+1)-times differentiable on ( )xx ,0  then 

( )xxxx
n

f

xx
n

xyxxxyxxxyyxf

termerrorLagrange

n
n

polynomialTaylor

n
n

,)(
)!1(

)(

)(
!

)()(
!2

)('')(
!1

)(')(

0
1

0

)1(

0
0

)(
2

0
0

0
0

0

∈−
+

+

+−++−+−+=

+
+

ξξ

  

  



 (1.13) 

( Proof: The assertion follows from Theorem 1.1 and Theorem 1.3 when considering that  
  

     
( )

0 0

0

( )lim ( 0,1,..., )
! !

k k

kh

y y x k n
h k k→

∆
= = . 

 

which itself is a consequence from Corollary 1.1 (1.9). �  ) 
 
 

8. Standard monomial polynomials from Newton polynomials – Stirling numbers of the 1st kind 

For computational purposes as integration ( )... dx∫  or derivation 
( )...d
dx

  the representation of a poly-

nomial as a linear combination of Newton polynomials 0 0 1 1( ) ( ) ( ) ( )n np x a x a x a xπ π π= + + +  is 
not the best choice.  
In the case of equi-distant measurement arguments (as in the previous section) there is a simple and 
elegant scheme transforming the Newton representation (1.5) into a standard monomial form: 
 

( ) ( ) ( )1 2
0 1 0 2 0 0( ) n

np x c c x x c x x c x x= + − + − + −  (1.14) 

 

For the computation of the coefficients ( )0 1, ,..., nc c c from the Newton coefficients ( )0 1, ,..., na a a  
there is a sophisticated scheme based on the Stirling numbers of the 1st kind:  
 

( , )s n k  with ( )00,1, 2, 0, ,n k n n= = ∈   . (1.15) 

 
The next Property introduces the meaning of the Stirling numbers with respect to the equi-distant nor-
malized arguments {0, 1, 2, ..., n}. 
 
Property 1.3: Stirling Numbers of the 1st kind 

a) A normalized Newton polynomial ( ) ( 1)( 2) ( ( 1))n x x x x x nπ = − − − −  expands into the 

standard monomial form 2 3( ,1) ( , 2) ( ,3) ( , ) ns n x s n x s n x s n n x+ + + + .  

b) ( )(0,0) 1, ( ,0) 0 , ( , ) 0 ( 0)s s n n s n k k n= = ∈ = > ≥  

c) The Stirling numbers fulfill the bi-variate recursion:  
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( 1, ) ( , 1) ( , ) ( 0,1,... 1, 2,...)s n k s n k n s n k n k+ = − − ⋅ = =  (1.16) 
 

( Proof: Part a) actually is a definition of the Stirling numbers: They constitute the coefficients in 
(1.14). From this b) is a conclusion; there is no other choice. Property c) follows from a), as well, 
but the details of the purely algebraic computations are omitted here. �  ) 

 
Example 1.6: Triangle matrix of ( , ) ( 1, 2,... 1, 2,...)s n k n k= =  

 

 
 
The matrix represents the Stirling numbers of the 1st kind: ( , )s n k  with indices running from 1 to 
10 ( 1, 2,...,10 1,2,...,10)n k= = .  

It is denoted by 1( )S n  and called the Stirling matrix of the 1st kind of order n. The row number cor-

responds to n, the column number to k and thus it is associated to the power kx  in the monomial 
expansion (1.14).  
The recursion (1.16) is illustrated by the blue and red coloured entries: For n = 3 (row number) and 
k = 3 (column number) we have: 6( , 1) ( , )6 ( 1, 133) s n ks knn sk n− = − ⋅ =− −= −+ = −⋅ . 

The recursion allows to expand the matrix row by row. The first column are signed faculty numbers 
(0! , -1! , 2! , -3! , 4! ,..., (-1)n n!). The diagonal consists of 1s and the matrix is triangular with 0s 
right above the diagonal. 
 

By applying Property 1a) to all rows (n = 1, 2, ...) the connection between the Newton coefficients and 
the monomial coefficients in (1.14) reveals as a simple matrix operation involving the Stirling matrix of 
the 1st kind: 

 

Property 1.4: Matrix transformation from ( )0 1, ,..., na a a  to ( )0 1, ,..., nc c c  

a) 0 0c a=  

b) ( ) ( )1 1 1,..., ,..., ( )n nc c a a S n= ⋅  

 
Property 1.4 refers to the normalized equi-distant measurement arguments {0, 1, 2, ...., n}. The gen-
eral situation of equi-distant arguments is solved by a simple reduction to the normalized distribution. 
The next example is to reveal the procedure. 
 
Example 1.8: Equi-distant arguments and reduction to normalized 
arguments {0, 1, 2, ...., n} 

The x-arguments are {1, 3, 5, 7} and the measurement values 
y are {-1, 2, 4, -1}. The Newton-Tableau on the right (the col-
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umn of x arguments is omitted) results in the cubic polynomial  
( ) 1 3 / 2 ( 1) 1/ 8 ( 1)( 3) 1/ 8 ( 1)( 3)( 5)p x x x x x x x= − + ⋅ − − ⋅ − − − ⋅ − − −  and the Newton coeffi-

cients ( )0 1 2 3, , , ( 1,3 / 2, 1/ 8, 1/ 8)a a a a = − − − .  

In order to be connected to Property 1.3 and 1.4 the x-axis is rescaled or normalized by  
 

0 1 [0,3]
2

x x xx
h
− −

= = ∈  .  

 
In these normalized coordinates the Newton tableau on the right 
yields the cubic polynomial  
 

( ) 1 3 ( ) 3 ( )( 1) 1/ 2 ( 1)( 2)p x x x x x x x= − + ⋅ + ⋅ − − ⋅ − −         

 

and the Newton coefficients ( )0 1 2 3, , , ( 1,3, 1/ 2, 1)a a a a = − − −    .  

 

From Property 1.4 it is concluded that 0 0 1c a= = − and 

( ) ( ) ( )1 2 3 1 2 3 1

1 0 0
, , , , (3) (3, 1/ 2, 1) 1 1 0 3 / 2,5 / 2, 1

2 3 1
c c c a a a S

 
 = ⋅ = − − ⋅ − = − 
 − 

   .  

Thus 
2 3

2 3 1 1 1( ) 1 3 / 2 5 / 2 1 1 3 / 2 5 / 2 1 ( )
2 2 2

x x xp x x x x p x− − −     = − + ⋅ + ⋅ − ⋅ = − + ⋅ + ⋅ − ⋅ =     
     

    . 

This is the same as ( ) ( ) ( )2 31 3 / 4 1 5 / 8 1 1/ 8 1 ( )x x x p x− + ⋅ − + ⋅ − − ⋅ − =  yielding a monomial 

representation of the interpolation polynomial p. 
 

Theorem 1.4: Matrix transformation from ( )0 1, ,..., na a a  to ( )0 1, ,..., nc c c  

Assuming equi-distant arguments 0 ( 0,..., )kx x k h k n= + ⋅ =  with h x const= =  and assum-

ing that the normalization 0 [0, ]x xx n
h
−

= ∈  is interpolated by  

0 1 2( ) ( 1) ( 1) ( 1)np x a a x a x x a x x x n= + ⋅ + ⋅ − + + ⋅ − ⋅ ⋅ − +          
   then the monomial representa-

tion of the interpolating polynomial ( )p x is equal to 
2

0 0 0
0 1 2

n

n
x x x x x xc c c c

h h h
− − −     + ⋅ + ⋅ + + ⋅ ⋅ =     

     
  

 

( ) ( ) ( )21 2
0 0 0 02

nn
n

cc cc x x x x x x
h h h

+ ⋅ − + ⋅ − + + ⋅ ⋅ −  

 

whereas 0 0 0c a a= =  and ( ) ( ) ( )1 1 1 1 1,..., ,..., ( ) ,..., ( )n
n n nc c a a S n a h a h S n= ⋅ = ⋅  . 

Notice that by Theorem 1.3: ka = 0

!

k y
k

∆
 and ka = 0

!

k
k

k k

y a
h k h
∆

=


 . This implies that k
k k

aa
h

=


. 


