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Chapter 1

What Is Numerical Analysis?

ALGORITHMS

The objective of numerical analysis is to solve complex numerical problemsusing only the simple
operations of arithmetic, to develop and evaluate methods for computing numerical results from
given data, The methods of computation are called algorithms,

Our efforts wil be focused on the search for algorithms, For some problems no satisfactory
algorithm has yet been found, while for others there are several and we must choose among them,
There are various reasons for choosing one algorithm over another, two obvious criteria being speed
and accuracy, Speed is clearly an advantage, though for problems of modest size this advantage is
alniost eliminated by the power of the computer. For larger scale problems speed is stiU a major
factor, and a slow algorithm may have to be rejected as impracticaL. However, other things being

equal, the faster method surely gets the nod,

EXAMPLE 1,1, Find the square root of 2 to four decima! places.
More than one algorithm, using only the four basic operations of arithmetic, exists, The favorite is without

much doubt

Xn+1 =~ (Xn +t)

from which a few mental calculations quickly manage

XI = 1

3
xZ=2

17
X3 = 12

1 (17 24)
X4 =2 12 + 17

or, rounded to four decimal places,

Xz = 1.5000 X3 = 1.4167 X4 = 1.4142

the last being correct to all four places, This numerical algorithm has a long history , and it wil be encountered
again in Chapter 25 as a special case of the problem of finding roots of equations,

ERROR

The numerical optimist asks how accurate are the computed results; the numerical pessimist äsks
how much error has been introduced, The two questions are, of course, one and the same, Only
rarely wil the given data be exact, since it often originates in measurement processes, So there is
ptobably error in the input information, And usually the algorithm itself introduces error, perhaps
uiiavoidableroundoffs, The'output information wil then contain errot fromboth of these sources,

EXAMPLE 1,2, Suppose the number ,1492 is correct to the four decimal pi aces given, In other words, it is an
approximation to a true value that lies somewhere in the interval between .14915 and .14925. The error is then
at most five units in the fifth place, or half a unit in the fourth, In such a case the approximation is said to have
four significant digits, Similarly, 14,92 has two correct deciinalplaces and four significant digits provided its
error does not exceed ,005,

l:XAMPLE 1,3, The number ,10664 is said to be rounded to four decimal places when abbreviated to ,1066,
while .10666 would be rounded to ,1067, In both cases the error made by rounding is no more than ,00005,
assuming the given figures are correct, The first is an example of rounding down, the second of rounding up, A
borderline case such as .10665 is usually rounded to the nearest even digit, hete to .1066, This is to avoid
long-range prejudice between the ups and downs,

EXAMPLE 1,4, When 1.492 is multiplied by 1.066, the product is 1.590472, Computers work to a fixed "word

1



2 WHAT IS NUMERICAL ANALYSIS? (CHAP, 1

length," all numbers being tailored to that length. Assuming a fictitious four-digit machine, the above product
would be rounded to 1.590, Such roundoff errors are algorithm errors and are made by the unavoidable milions
in modern computing.

SUPPORTING THEORY

Though our view of numerical analysis wil be .applications oriented, we wil naturally be
concerned with supporting theory, which is used both to discover algorithms and to establish their
validity, Often the theory to which we are led has intrinsic interest; it is attractive mathematics, We
then have the best of both worlds, but must not forget that our interests are more functional than
aesthetic,

EXAMPLE 1,5, Computing yalues of the trigonometric, exponential, and other nonelementary functions
c1early depends upon supporting theory, To get the cosine of x for sm all x, the c1assic series is still a good
choice,

x2 x4 x6
cosx = 1 --+---+'"

2! 4! 6!

With x = .5 this becomes

cos.5 = 1 - .125 + .0026041 - .0000217 +, , ,

= .877582

which is correct as far as it goes. The error bound in this case is guaranteed by further supporting theory which
states that for se ries such as this the error is no greater than the first omitted term. (See Pròblem 1.9.) Here the
first omitted term is x8/8!, which forx =.5 amountsto just less than ,0000001.

NUMBER REPRESENTATIONS

Since our ultimate objectives are numerical, a word or two about the representation of numbers
wil not be out of place, Numerical input wil usually be in decimal form, since this is the form with
which we are most familiar. As almost everyone knows, however, computers generallyfind binary
representations more convenient, their 0 and 1 çligits matching the off and on or high and low states
of electrical components, For positive integers the binary form is

dn2n + dn_~2n-i + ' . , + di2i + d02°

while for positive numbers less than one it is

d_i2-i + d_zTz + d_3T3 + ' , ,

with all binary digits d¡ either 0 or 1. Such representations are unique,
Floating-point representations have an additional convenience, In this form, numbers are

described by three parts, a sign, a mantissa, and an exponent (which itself has a sign) , Turning to
decimals for the first illustrations, the number .1492 might appear as

+.1492 100

the sign being +, the mantissa ,1492, and the exponent O. The alternative + 1.492 1O-i is available,
among other possibilities, but standard practice calls for the leading (nonzero ) digit to come just
after the point. The èxponent then takes care of the order of magnitude. Such representations are
called normalized, Thus 1492 would be expressed as +,1492 104,

EXAMPLE 1,6, Convert the decimal13.75 into a binary floating-point form.
More formal conversion methods exist, but even without them the binary equivalent of 13.75 is easily seen

to be 1101.11, with 8 + 4 + 1 on the left of the point and ! + l on the right. Now rewrite this as

+.110111( + 100)
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where the + 100 in parentheses serves as exponent 4, A final conversion to

01101110100

in which not hing but zeros and ones appear is attractIve for electrical purposes, provided that certain
conventions are understood. The leading zero is interpreted as a plus sign, (1 would mean minus,) Six binary
digits, or bits, then make the mantissa, a binary point being assumed at its head, The zero that follows is
another plus sign, this time for the exponent, which then ends the representation, The final form do~s not look
very much like 13,75 but is understandable, In practice both the mantissa and exponent would involve more
digits, and the forms of sign and exponent will vary, but floating-point representations are a basic tool of
modern computing.

NORMS OF VECTORS AND MATRICES

The Euclidean length of a vector, that is,

(vi + v~ +, . ,+ V~)112

for the vector V with components Vi, is also called a norm of Vand given the symbol IIVII, Three
bàsic properties of this norm are

1. IIVII ~ 0, and equals 0 if and only if V = 0

2, IlcV11 = c 'IIVII for any number c

3, IIV + Wll ~ IIVII + IIWII

The last is known as the triangle inequality,
Several other real functions also have these properties andare also called norms, Of particular

interest are the Lp norms

( n ) l/pIIVllp = ~ IV¡IP

forp ~ 1. With P = 1, it is the L1 norm, the sum of the component magnitudes, With p = 2, it is the
familar vector length, or Euclidean norm, As p tends to infinity, the dominant V¡ takes over and we

have the maximum norm

IIVII"" = max lvii
¡

On more than one occasion, we wil find use for these norms, particularly in studying the error
behavior of algorithms,

EXAMPLE 1,7, Using the Li norm, the vectors (1,0) G, n (0, 1) among others have norm one. A plot of such
unit vectors is given as Fig, I-la, all emanating from the origin. Their terminal points form a square. Figure
I-1b shows the more familiar unIt vectors of the Euclidean norm, Using the Loo norm, the vectors (1,0) (1,1)
(0,1) among others have norm one, Their plot appears as Fig, 1-lc, terminal points again forming a square,

,
'\ '\ I /'\ /,1/---/j,---/1 '/ . "/ I ,/ I '\

(a) (b)

Fig,l.l
(c)



4 WHAT IS NUMERICAL ANALYSIS? (CHAP, 1

Turnil1g to niatrices, we define
IIAII =max IIAVII

the maximum being taken over all unit vectors V, The meal1ing of unit here depends upon the type
of vector norm being used, Such matrix norms have parallel properties to those listed above for
vectors,

1, IIA 11 ~ 0, and equals zero if and only if A = 0

2, IlcA11 = c' IIAII for any number c

3, IIA + BII ~ IIAII + IIBII

In addition, for matrices A and Band vector V, the properties

4, IIAVII ~ IIAII'IWII

5, IIABII ~ IIAII' IIBII

wil be usefuL. The Li and Lx norms have the advantage of being easy to compute, the first being the
maximum absolute column sum

n

IIAIII = max 2: laijl
j i=l

and the second the absolute row sum of A
n"

IIAllx == max 2: laul
i j=l

Many of these features wil be proved in the solved problems,

EXAMPLE 1,8, Find the Li, L2, and Lx norms of this matrix:

A=G ~J

The maximum column sum and row sum are found instantly, and we are off to a fast start with

Li = Lx=2

Unfortunately there is no corresponding supporting theory to helpwith Lz and this very innocent-appearing

matrix does not yield this value without some resistance. By definition, the Lz norm of A is the maximum Lz
norm of the vector

(~ ~J(;J=(X;YJ

for x2 + y2 = 1, that is, for (x, y) on the unit CIrcle of Fig, 1- 1b, The square of this norm is

(x + y)2 + x2 = 1 + 2xy + Xz = 1 + 2xV1 - x2 + XZ

which can be maximized by elementary calculus, The assumption that y is positive Is not restrictive here since
the norm takes the same value for (x, y) and (-x, - y). Eventually one finds that a maximum occurs for

x2 = l + VS/lO and that

iiAii~ = 3 +2VS

Solved Problems

1,1, Calculate the value of the polynomial

p(x) = 2x3 - 3x2 + 5x - 4

for the argument x = 3.
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Following the natural course, we find XZ = 9, x3 = 27, and putting the pieces together,

p(3) = 54 - 27 + 15 - 4 = 38

A count finds that five multiplications, an addition, and two subtractions have been performed,
Now rearrange the polynomial as

p(x) = ((2x - 3)x + 5)x - 4
and try again, From x = 3 we have successively 6, 3, 9, 14, 42, and 38, This time only three
multiplications have been made, instead of five, The reduction is not dramatic, but it is suggestive, For a
general polynomial of degree n, the first algorithm requires 2n - 1 multiplications, the second just n. In
a larger operation, involving many polynomial evaluations, the saving in time and algorithm (roundoff)
errors may be significant.

1.2. Define the error of an approximation,

The traditional definition is

True value = approximation + error

so that, for example, Vi = 1.414214 + error

TC = 3,1415926536 + error

1.3. What is relative error?

This is error measured relative to the true value.

. errorRelative error =-
true value

In the common event that the true value is unknown, or unwieldy, the approximation is substituted for it
and the result stil is called, somewhat loosely, the relative error. Thusthe familiar approximation 1.414
for Vi has a relative error of about

,0002
1.414 = ,00014

while the cruder approximation 1.41 has a relative error ne ar .003.

1.4. . Suppose the numbers Xi' xz, ' , , , xn are approximations to Xi' Xz, ' , , , Xn and that in each
case the maximum possible error is E, Prove that the maximum possible error in the sum of
the Xi is nE,

Since X¡ - E~X¡~x¡ + E

it follows by addition that

so that

~~-~~~~~~~+~
-~~~~-~~~~

which is what was to be proved,

1.5. Compute the sum Vi + v2 + ' , , + yiOO with all the roots evaluated to two decimal places.
By the preceding problem, what is the maximum possible error?

Whether by a few weIl-chosen lines of programming or by a more old-fashioned appeal to tables,
the roots in question can be found and summed. The result is 671.38, Since each root has a maximum
error of E = ,005, the maximum possible error in the sum is nE = 100(.005) = ,5, suggesting that the
sum as found may not be correct to even one decimal place,
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1.6. What is meant by the probable error of a computed result?

This is an error estimate such that the actual error wil exceed the estimate with prob ability
one-half. In other words, the actual error is as likely to be greater than the estimate as less, Since this
depends upon the error distribution, it is not an easy target, and a rough substitute is often used, vnE,
with E the maximum possible error.

1.7. What is the actual error of the result in Problem 1.5, and how does it compare with the
maximum and probable errors?

A new computation, with square roots found to five decimal places, resulted in the sum 671.46288,
This time the maximum error is 100(,000005) which is .0005, so we have the sum correct to three pi aces
as 671.463. The actual error of the earlier result is thus ab out ,08, compared with the maximum ,50 and
the probable ,05, One of our estimates was too pessimistic and the other slightly optimistic,

1.8. Suppose a thousand square roots are to be summed, instead of a mere hundred, If three-place

accuracy is wanted, how accurately should the in~ividual roots be computed?

For asolid guarantee it is best to assurne the worst, that the maximum possible error might be
attained, The formula nE of Problem 1.4 becomes 1000E, showing that three decimal places may be
lost in a summation of this length. Since three are wanted in the output, it may be wise to have six places
correct in the input, The point is, in very long computations there is time for very small errors to make a
substantial collective contribution,

1.9. Calculate the series

1 1 11--+---+" ,
2 3 4

correct to three digits,

This series illustrates an often-used theorem of analysis, Because its terms alternate in sign and
steadily decrease, the partial sums dodge back and forth across the limit, the se ries value, This implies
that the error at any point will be less than the first omitted term, To get the specified accuracy, we
therefore need l/n:; ,0005, or n s; 2000, Two thousand terms wil have to be added, Working to eight
decimal places, the 2000 roundoffs may accumulate to

nE = 2000(.000000005) = ,00001

which seems negligible, so we permit the computation to proceed, round the result to three places, and
have .693.

Note that in this problem we have no input error, only algorithm errors, First, we take just a partial
sum instead of the series, and then we make numerous roundoff errors in trying to evaluate this sum,
The first is called a truncation error and it seems to be the larger of the two error sources in this
problem, In summary

Actual error = truncation error + roundoff error

= .0005 + ,00001

more or less. In fact the series value is the natural logarithm of 2, and to three places it is our .693,

1.10. Prove that if the se ries
a¡ - az + a3 - a4 + ' , ,

is convergent, all the a¡ being positive, then

1 1 1 1
iai + i (ai - az) - i(az - a3)+ i(a3 - a4) + . , ,

is also convergent and represents the same number.
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With An and Bn representing the nth partial sums of the two series, it is easily seen that
An - Bn = :f !an. Since the first series is convergent, lim an is zero and the result follows,

1.11. Apply the theorem of the preceding problem to evaluate the series of Problem 1.9, again to
three decimal places.

A little algebra finds Bi = t and for n ? 1

1 n 1
Bn =-2+ 2: (- l)k~

k~2

This is again an alternating series with monotone terms, so the theorem of Problem 1..9 is again
available. For three-digit accuracy we need

2 ( ~;; .0005n n+
or n !? 32. This is far fewer terms than were needed earlier and roundoff wil hardly be an issue on an
eight-digit machine, The new algorithm is much faster than the other and manages the same ,693 with
less effort.

1.12. Given that the numbers ,1492 and ,1498 are correct as far as they go, that is, the errors are no
larger than five units in the fifth place, ilustrate the development of relative error by
considering the quotient 1/(,1498 - ,1492),

For the given numbers the relative errors are about 5/15,000 which is near ,03 percent. For their
sum and difference a maximum error of one unit in the fourth place is possible. In the case of the sum,
this again leads to a relative error of about .03 percent, but with the ,0006 difference we find an error of
one part in six, which is 17 percent, Turning to the required quotient, it may be just as weIl to take the
pessimistic view, As given, a quotient of 1667 would be calculated, to the nearest integer, But
conceivably it is 1/(,14985 - ,14915) which ought to have been found instead, andthis would have
brought us 1429, At the other extreme is 1/(,14975 - ,14925) = 2000. This very simple example makes it

clear that a large relative error generated at some interior stage of a continuing calculation can lead to
large absolute errors down the line. .

1.13. What is meant by the condition of a numerical problem?

A problem is well-conditioned if small changes in the input information cause small changes in the
output. Otherwise it is il-conditioned, For instance, the system

x+y = 1
1.1x+y=2

presents an obvious diffculty, It represents the intersection of nearly parallel lines and has the solution
x = 10, y = -9,

Now change the 1.1 to 1.05 and solve again, This time x = 20 and y = - 19. A 5 percent change in
one coeffcient has caused a 100 percent change in the solution,

1.14. What is a stablealgorithm?

In extended calculations it is likely that many roundoffs will be made. Each of these plays the role
of an input error for the remainder of the computation, and each has an impact on the eventual output,
Algorithms for which the cumulative effect of all such errors is limited, so that a useful result is
generated, are called stable algorithms. Unfortunately, there are tim es when the accumulation is
devastating and the solution is overwhelmed by error. Needless to say, such algorithms are called
unstable,
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1.15. Interpret the floating-point decimal + .1066 * 104,

Clearly the exponent shifts the decimal point four pI aces to the right, to make 1066, Similarly,
+ ,1066 * 10-2 is ,001066,

1.16. Interpret the floating-point binary symbol + ,10111010 * 24,

The exponent shifts the binary point four pi aces to the right, to make 1011.1010, equivalent to

decimal 11 + Ä or 11.625. Similarly, + ,10111010 * 2-1 is .01011101. This is, of course, -l times the

number given originally.

1.17. Interpret the floating-point binary symbol 0101110100100, given that the mantissa uses eight

places and the exponent three, apart fram their signs,

The zeros in positions one and ten are to bè taken as plu"s signs.

0101110100100/~I-. /.. / ~
Sign Mantissa Sign Exponent

The bìnary point is assumed at the head of the mantissa. With these understandings we have once again
+,10111010 * 24. Similarly, and with the same conventions, +,10111010 * rl becomes 0101110101001,
the last four digits meaning an exponent of - 1.

1.18. Add these floating-point numbers, using the conventions of the preceding problem.

0101101110010

0100011 00 11 00

. One way or another, the binary points will have to be "lined up," Interpreting the symbols leads to
the following sum:

10.110111
+. .000010001100

= 10.111001001100

In the form used for the inputs this becomes

0101110010010

with the mantissa again taking eight pI aces and the exponent three, ápart from signs. A roundoff error is
made when the last six binary digits are eliminated to conform with machìne capabilities.

1.19. What is overflow?

Again using the conventions of OUf fictitious machine, the largest number that can be expressed is
011 11 11 1101 11, both the mantissa and the exponent being maximaL. Seven shifts of the binary point

make this the equivalent of 1111111.1 which comes to decimal 127 + L or 27 - 2-1. Any number larger
than this cannot be represented under the given conventions and is called an overflow.

1.20. What is underflow?

The smallest number that can be represented in the form being used, apart from zero and negatives,
is 0000000011111. However, for various reasons it is convenient to insist that the leading digit of a
mantissa be aLThis is known as the normalized form, and fixes the exponent. Again an exception must
be made for the number zero. If normalization is required, the smallest positive number becomes
0100000001111. In decima! this is rl * r7 or rH. Any positive number smaller than this cannot be



CHAP, 1) WHAT IS NUMERICAL ANALYSIS? 9

represented and is called an underfow, Any floating-point system of number representation will have
such limitations and the concepts of overflow and underfow wil apply.

1.21. Imagine an even simpler floating-point system, in which mantissas have only three binary
digits and exponents are -1, 0, or 1. How are these numbers distributed on the real line?

Assuming normalization, these numbers have the form ,lxx apart from exponent. The entire set,
therefore, consists of three subsets of four numbers each, as folIows:

.0100 .0101 ,0110 ,0111

.100 ,101 ,110 .111

1.00 1.01 1.0 1.1

(for exponent - 1)

(for exponent 0)

(for exponent 1)

'1'

These are plotted in Fig. 1-2, Notice the denser packing of the smaller numbers, the separation

increasing from k to ! as we pass from group to group. This is due, of course, to the fact that we have
only three significant digits (the leader fixed at 1) with the exponent supplying progressive magnification
as it increases, For example, 1.005 is not available here. The set is not that den se in this part of its
range, A fourth significant digit would be needed, Realistic floating-point systems have this same

feature, in a more complex way, and the ideas of significant digits and relative error are relevant.

o
i

-'
4

\~I~I~t\ ex~onent = 0 ! . overflowexponent = - 1 exponent 1

i
"2 2

underflow

Fig.1.2

1.22. Assurne a number X represented by a floating-point binary symbol, rounded to a mantissa of n
bits, Also assurne normalization, What are the bounds for the absolute and relative errors
caused by the rounding?

Rounding wil cause an error of at most a unit in the (n + l)th binary place, or half a unit in the nth
place, So

Absolute error ~ i-n-1

while for the relative error we must take into account the true value x. Normalization means a mantissa
no smaller than ! and this leads to the following bound:

2-n-1
IRelative errorl ~ z= = i-n

It is useful to rewrite this letting fl(x) represent the floating-point symbol for x. Then

. . fl(x) - xRelative error = E
x

or fl(x) = x(l + E) = x + xE

with lEI ~ i-n. The operation of rounding off can thus be viewed as the.replacement of x by a perturbed
value x + xE, the perturbation being relatively small. '

1.23. Find abound for the relative error made by the addition of two floating-point numbers,

Let the numbers be x = m¡ * ie and y = m2 * 2! with y the sm aller. Then m2 must be shifted e - f
places to the right (lining up the binary points). The mantissas are then added, the result normalized and
rounded, There are two possibilities. Either overflow occurs to the left of the binary point (not overflow
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in the sense of Problem 1.19), or it does not, The first possibility is characterized by

1~ Imi +mz * 2'-el-:2
and the second by

1

2~ Imi + mz * 2'-el-: 1

If overflow does occur, a right shift of one place will be required, and we have

fl(x + y) = ((mi + mz * 2'-e)2-1 + E J * 1'+1

where E is the roundoff error. This can be rewritten

fl(x+Y)=(X+Y)(l+ ml+~:*2' e)

= (x + y)(l + E)
with lEI ~ 2E ~ i-n.

If there is no overflow, then

with E bouIlded as before.
A corresponding result for floating-point subtraction wil be found in Problem 1.45.

fl(x + y) = ((mi +mz * 2'-e) + EJ * l'

=(X+Y)(l+ E f-e)mi +mz* 2

= (x + y)(l + E)

1.24. Find abound for the relative error made by multiplying two floating-point numbers,

Again let the two numbers be x = mi * l' and y = mz * 2'. Then xy = mimz * 1'+f with l ~ Im1mzl-:
1 because of normalization, This means that to normalize the product there wil be a left shift of at most
one place. Rounding will, therefore, produce either mimz + E or 2mimz + E, with lEI ~i-n-I. This can

be summarized as follows:

r1 +-.
= m1mz * 2e+f mimz1+~

2m1mz

1
if Imimzl~2

1 ;;!
if -? Imimzl = 4

2

1
if Imimzl~2

1 ;;!
if -? Imimzi = 4

2

f (mimZ + E) * 1'+f

fl(xy) =

(2mimZ + E) * 2e+f-1

xy(l + E)

with lEI ~ 21EI ~ i-n.

A similar result is sketched for the operation of division in Problem 1.46. This means that in all four
arithmetic operations, using floating-point numbers, the relative error introduced does not exceed 1 in
the least significant pI ace of the mantissa,

1.25. Estimate the error generated in computing the sum

Xl +X2+'" +Xk

using floating-point operations,

We consider the partial sums Si' Let SI = Xi. Then

Sz = fl(sl + xz) = (SI + xz)(l + Ei)
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with Ei bounded by i-n as shown in Problem 1.23, Rewriting,

Sz = Xi(1 + Ei) + xz(1 + Ei)

Continuing

S3 = fl(s2 + X3) = (S2 + x3)(1 + Ez)

= xi(l + Ei)(l + Ez) + xz(1 + Ei)(l + Ez) + x3(1 + E2)

and eventually
Sk = fl(sk_1 + Xk) = (Sk-I + xk)(l + Ek-i)

= Xi(1 + ci) + x2(1 + C2) + ' , . +'xk(l + Ck)

where, for i = 2, . . . , k,

1 + C¡ = (1 + E¡_l)(l + E¡) , . , (1 + Ek_i)

and 1 + Cl = 1 + C2' In view ofthe uniform bound on the Ei' we now have this estimate for the 1 + Ci:

(1 - 2-n)k-i+1 ~ 1 + ci,~ (1 + i-nl-i+I

Summarizing

where

fl(t Xi) = (~Xi)(l+ E)

k / k
E = ~XiCi ~Xi

Note that if the true sum I: Xi is sm all compared with the Xi' then the relative error E can be large, This
is the cancellation effect caused by subtractions, observed earlier in Problem 1. 12,

1.26. Ilustrate a forward error analysis,

Suppose the value of A(B + C) is to be computed, using approximations a, b, C which are in error
by amounts e1, ez, e3' Then the true value is

where

A(B + C) = (a + ei)(b + ez + C + e3) = ab + ac + error

Error = a(ez + e3) + bei + cei + eieZ + eie3

Assuming the uniform bound le¡J ~ e and that error products can be neglected, we find

IErrorl ~ (21al + ¡bi + Ic/)e

This type of procedure is called forward error analysis, In principle it could be carried out for any
algorithm, Usually, however, the analysis is tedious if not overwhelming, Besides, the resulting bounds
are usually very conservative, suitable if what is needed is an idea of the worst that might happen, In the
present example one point of minor interest does surface. The value of a seems to be twice as sensitive
as the values of band c.

1.27. What is backward error analysis?

The underlying idea of backward error analysis is to take the result of a computation and try to
determine the range of input data that could have produced it. It is important not to misunderstand the
motive here, There is no intention of modifying the data to accommodate the answer. If a backward
error analysis is completed and shows that the result found is consistent with the input data, within the
range of observation al or roundoff error, then one may have söme confidence in the result, If this does
not happen, then a major source of error exists elsewhere, presumably within the algorithm itself,

1.28. Show that the error analysis in Problem 1.23 was a backward error analysis,
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The result obtained was

fl(x + y) = (x + y)(l + E)

with lEI ~ i-n, where n is the number of binary pi aces in the mantissas. Rewriting this as

fl(x + y)=x(l + E) + y(l +E)

and recalling Problem 1.22, we see that the sum as computed, namely fl(x + y), is also the true sum-of
numbers differing from the original x and y by no more than the roundoff error bound E. That is, the
output can be explained by input data weil within the recognized error limit,

1.29. Show that the analysis done in Problem 1,24 was a backward error analysis,

We found

fl(xy) = xy(l + E)

which we can think of as the product of x by y(l + E), This me ans that the computed fl(xy) is also the
true product of numbers differing from the original x and y by no more than the roundoff error. It is
consistent with input data weil within our recognized error limit,

1.30. Wh at does the backward error analysis made in Problem 1.25 indicate?

First, the equation

fl(~ xj) = xi(1 + ci) + ' . , + xk(l + Ck)

shows that the floating-point sum of k numbers x i to Xk is also the true sum of k numbers which differ
from the Xj by relative errors of size cj. Unfortunately the estimates then obtained in Problem 1.25 also
show that these errors can be much greater than simple roundoffs.

1.31. Prove the triangle property of vector length, the Lz norm, by first proving the Cauchy-
Schwarz inequality,

(2: a¡b¡)Z ~ (2: af)(2: bf)

One interesting proof begins by noting that E (ai - b;x)2 is nonnegative, so that the quadratic
equation

(2: b;)x2 - 2(2: aib;)x + 2: a; = 0

cannot have distinct real roots. This requires

4(2: a;b;)2 - 4 2: a; 2: b;~O

and cancelling the 4's we have the Cauchy-Schwarz inequality.
The tri angle inequality now follows quite directly, but with a bit of algebra, Written in component

form, it states

((vi + li.W +. , ,+ (v" + wnnll2~ (v~ +., . + v~t2 + (w~ +, "+ W~)1/2

Squaring, removing comffon terms, squaring again, and using Cauchy-Schwarz will bring the desired
result (see Problem 1.50).

1.32. Show that the vector Lp norm approaches max Iv;! for p tending to infinity,
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Suppose Vm is the absolutely largest component and rewrite the sum as

( I v IP)IIPIvml 1 + i~ V~

Within the parentheses al1 terms but the first approach zero as limit, and the required re.sult fol1ows,

1.33. Show that the definition IIA 11 = max IIA V I1 for unit V satisfies properties 1 to 3 as given in the
introduction,

These follow rather easily from the corresponding properties of the companion vector norm, Since
AVis a vector, IIA V II ~ 0 and so IIA 11 ~ 0, If IIA 11 = 0 and even one element of A were not zero, then V
could be chosen to make a component of AV positive, a contradiction of max IIAVII = O. This proves the
first,

Next we find
IlcA11 = max IlcAVl1 = max Icl'IIAVII = Icl'lIAl1

proving the second. The third is handled similarly,

1.34. What are the Lv L2, and Lx norms of the identity matrix?

They are all 1. Wehave
IIIII = max IllVll = max IWJI = 1

since V is a unit vector.

1.35. Whát are the Li, L2, and Lx norms of the matrix G ~J?

We have

AV = (Vi +vzJ
VI +vz

Assurne for simplicity that VI, Vz are nonnegative, Then for Li we add, and find IIAVII = 2(v¡ + vz) = 2,
since V is a unit vector in Li norm, Thus IIAIII = 2. For the Lz norm we must square and add the two
components, obtaining 2(vi + 2vivZ + v~). In this norm vi + v~ = 1 so we maximize ViVz, Elementary
calculus then produces VI = Vz = I/Vi leading quickly to IIAIIz = 2, Finally IIA V 1100 = Vi + Vz, since with

this norm we seek the maximum component. But here again the maximum is 2, because with this norm
neither Vi can exceed 1. The Li and Loo norms could have been read instantly using the result of the
following problem or its companion,

1.36. Show that
n

IIA 1100 = max ¿ laijl
, í j=1

Choose a vector V with all components of size 1 and signs matching the arj such that :E larjl is
maximaL. Then :E arjvj is an element of A V equaling this maximal value and clearly cannot be exceeded, -
Since this V has norm 1, the norm of A also takes this value, The similar result for the Li norm is left as
Problem 1,52,

1.37. Prove that IIAVII ~ IIAII . IIVII,

For a unit vector U we have, by definition of IIAII,

IIAUII ~max IIAUII = IIAII
u
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so choosing V = v /IIVII and applying property 2,

IIACI~II)11 ~ IIAII
IIAVII ~ IIAII'IIVII

1.38. Prove IIABII;§ IIAII'IIBII.

We make repeated use of the result of Problem 1.37:

IIABII = max IIABVII ~ max IIAII' IIBVII ~ max IIAII' IIBII .11 Vii = IIAII -IIBII

Supplementary Problems

1.39. Compute 1/ .982 using the supporting theory1 2-=l+x+x +.,'
1 -x

with x = .018.

1.40. Numbers are accurate to two pi aces when their error does not exceed .005. The following square roots
are taken from a table. Round each to two pI aces and note the amount of the roundoff. How do these
roundoff errors compare with the maximum of .005?

n 11 12 13 14 15 16 '. 17 18 19. 20

~ to three places 3.317 3.464 3,606 3.742 3.873 4,000 4.123 4,243 4,359 4.472

~ to two places 3.32 3.46

approx. roundoff +.003 -,004

The total roundoff error could theoretically be anywhere from 10( - .005) to 10(,005), Actually what is
the total? How does it compare with the "probable error" of Vi(.005)?

1.41. Suppose N numbers, all correct to a given number of places, are to be summed, For about what size N
wil the last digit of the computed sum probably be meaningless? The last two digits? Use the probable
error formula.

1.42. A sequence Jo, J1, J2, . . . is defined by

Jn+I=2n1n-J,,-1

with Jo = .765198 and Ji = .440051 correct to six places. Compute J2, . . . ,J7 and compare with the
correct values wh ich follow. (These correct values were obtained by an altogether different process. See
the next problem for explanation of errors,)

n 2 3 4 5 6 7

Correct Jn .114903 .019563 .002477 .000250 .000021 .000002

1.43. Show that for the sequence of the preceding problem,

J7 = 36,767J1 - 21, 144Jo
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exactly, Compute this from the given values of Jo and Ji. The same erroneous value wil be obtained,
The large coeffcients multiply the roundoff errors in the given Jo and Ji values and the combined results
then contain a large error.

1.44. To six pi aces the number J8 should be all zeros. What does the formula of Problem 1.42 actually
produce?

1.45, Show that the error introduced by floating-point subtraction is bounded by i-n. Let x = m1 * 2e and
Y = mz * 21 as in Problem 1.23. Then x - y = (mi - mz * 21-e)2e and unless this is zero

i-n ~ Imi - mz * 21-el ~ 2

Normalizing the new mantissa may require up to n - lIeft shifts, the actual number S being determined
by

2-s-1 ~ Imi - mz * 21-el ~ i-s

Now show that

and eventually

with lEI ~ 2-n.

fl(x - y) = ((mi - mz * 21-e) * 2' + E) * 2e-s

fl(x - y) = (x - y)(l + E)

1.46. Show that the error introduced du ring floating-point division is bounded by i-n. With the conventions of
Problem 1.24, let one-half of the numerator mantissa be divided by the denominator mantissa (to avoid
quotients greater than one) and the exponents subtracted. This gives

~ =(~) * 1'-1+1Y 2m2
with l ~ Iml/2mzl ~ 1. Now follow the remainder of the analysis made for the multiplication operation to
show that once again the relative error is bounded as stated.

1.47, Analyze the computation of the inner product

Sk = fl(xi Yi + X2Y2 + . , . + XkYk)

much as in Problem 1.25. Let

t¡ = fl(x¡ y;)

and then set Si = ti

for i = 1, . . . ,k

S¡ = fl(s¡_1 + t;)

for i ""1, . . . , k. This makes Sk the required inner product. Now find relations and estimates similar to
those found in the earlier problem.

1.48. Using the conventions of Problem 1.17, interpret this floating-point symbol: 0100110011010. (This is as
elose as one can come to .1492 with only an 8-bit mantissa.)

1.49, Imitating Problem 1.21, imagine a floating-point system in which normalized mantissas have 4 bits and
the exponents are - 1, 0, and 1. Show that these numbers form three groups of eight, according to their
exponents, one group falling in the interval l to t another in the interval l to 1, and the third between 1
and 2. Which positive numbers will cause overflow? Underflow?

1.50. Complete the proof begun in Problem 1.31.

1.51. Complete Problem 1.33 by showing that the norm of the sum of two matrices does not exceed the sum
of their norms.

1.52. By a suitable choice' of unit vector (one component 1, the rest 0) show that the Li norm of a matrix A
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can be computed as the maximum column sum of absolute elements, Compare with the related proof in
Problem 1,36,

1.53. Show that for A = (; ~J the Li, Lz, and Loo norms are equal.

1.54. Show that for A = (;
bJ .

the Lz norm ls (aZ + bZ)lI.-a

1.55. Show that for A = (; :J a vector V that maximizes IIAVIIz canbe found in the form (cos t, sin t)T with

cos 2t = 0 in the case bZ = aZ while tan 2t = 2a/(a - b) otherwise.

1.56. It has been suggested that the following message be broadcast to outer space as a sign that this planet
supports intelligent life. The idea is that any form of intellgent life elsewhere wil surely comprehend its
intellectual content and so deduce our own intellgent presence here, What is the meaning of the
message?

11,001001000011111101110

1.57. If the vector V with components x, y is used torepresent the point (x, y) of a plane, thert points
corresponding to unit vectors in the L2norm form the c1assic unit circ1e. As Fig. 1-1 shows, in the Li and
Loo norms the "circ1e" takes a square shape, In a city of square blocks, which is the suitable norm for

taxicab travel? (Find all the intersections at a given distance from a given intersection.) On a
chessboard, why is the appropriate norm for the travels of the chess king the Loo norm?



Chapter 2

TheColiocationPolynom ial

APPROXIMATION BY POLYNOMIALS

Approximation by polynomials is one of the oldest ideas in numerical analysis, and stil one of
the most heavily used, A polynomial p(x) is used as a substitute for a function y(x), for any of a
dozen or more reasons, Perhaps most important of all, polynomials are easy to compute, only simple
integer powers being involved, But their derivatives and integrals are also found without much effort
and are again polynomials, Roots of polynomial equations surface with less excavation than for other
functions, The popularity of polynomials as substitutes is not hard to understand,

CRITERION OF APPROXIMATION
The difference y(x) - p(x) is the error of the approximation, and the central idea is, of course, to

keep this error reasonably smalI, The simplicity of polynomials permits this goal to be approached in
various ways, of which we consider

1. collocation, 2, osculation, 3, least squares, 4, min,-max,

THECOLLOCATION POL YNOMIAL
The collocation polynomial is the target of this and the next few chapters, It coincides

(collocates) with y(x) at certain specified points, A number of properties of such polynomials, and of
polynomials in general, play a part in the development.

1, The existence and uniqueness theorem states that there is exactly one collocation
polynomial of degree n for arguments xo, , , , , XM that is, such that y(x) = p(x) for these
arguments, The existence wil be proved by actuallyexhibiting such a polynomial in
succeeeding chapters, The uniqueness is proved in the present chapter and is a consequence
of certain elementary properties of polynomials,

2, The division algorithm. Any polynomial p(x) may be expressed as

p(x) = (x - r)q(x) + R
where r is äny number, q(x) is a polynomial bf degree n - 1, and R is a constant. This has
two quick corollaries,

3, The remainder theorem state~ that per) = R,
4, The factor theorem states that if per) = 0, then x - r is a factor of p(x),

5, The limitation on zeros. A polynomial of degree n can have at most n zeros, meaning that

the equation p(x) = 0 can have at most n roots, The uniqueness theorem is an immediate
consequence, as wil be shown,

6, Synthetic division is an economical procedure (or algorithm) for producing the q(x) and R

of the division algorithm, It is often used to obtain R, which by the remainder theorem
equals per). This path to per) may be preferable to the direct computation of this
polynomial value,

7, The product n(x) = (x - xo)(x ., x I) . , , (x - xn) plays a central role in collocation theory.
Note that it vanishes at the arguments xo, Xi, , , , , Xn which are our collocation arguments,
The error of the collocation polynomial wil be shown to be

yCn+ 1)( ;)n(x)
y(x) - p(x) = (n + 1)!

17
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where ; depends upon x and is somewhere between the extreme points of collocation,
provided x itself is, Note that this formula does reduce to zero at xo, xv" , , Xn so that p(x)
does collocate with y(x) at those arguments, Elsewhere we think of p(x) as an

approximation to y(x),

Solved Problems

2.1. Prove that any polynomial p(x) may be expressed as

p(x) = (x - r)q(x) + R

where r is anynumber, q(x) is a polynomial of degree n -1, and R is a constant,

This is an example of the division algorithm. Let p(x) be of degree n,

p(x) = anxn + an_1xn-1 + ' , , + ao

Then p(x) - (x - r)anxn-i = qi(X) = bn_1xn-I +, , ,

wil be of degree n - 1 or less, Similarly,

qi(X) - (x - r)bn_ixn-z = qz(x) = cn_zxn-Z +, , ,

will be of degree n - 2 or less. Continuing in this way, we eventually reach a polynomial qn(x) of degree
zero, a constant, Renaming this constant R, we have

p(x) = (x - r)(anXn-i + bn_ixn-Z + ' , ,) + R = (x - r)q(x) + R

2.2. Prove per) = R, This is called the remainder theorem,

Let x = r in Problem 2,1. At onee, p(r) = 0, q(r) + R.

2.3. Ilustrate the '''synthetic division" method for performing the division described in Problem

2,1, using r = 2 and p(x) = x3 - 3x2 + 5x + 7,

Synthetic division is merely an abbreviated version of the same operations described in Problem
2,1. Only the various coeffcients appear. For the p(x) and r above, the starting layout is

r = 21 1 -3 5 7 --coeffcients of p(x)

1

Three times we "multiply by rand add" to complete the layout.

r = 21 1 -3 5 7
2 -2 6

1 - 1 3 13 --the number R'-
coeffcients

of q(x)

Thus, q(x)=xz-x+3 and R=f(2)=13 This may be verified by computing (x-r)q(x)+R, which
wil be p(x), It is also useful to find q(x) by the "long division" method, starting from this familiar

layout:
(x - 2)lx3 - 3x2 + 5x + 7

Comparing the resulting computation with the "synthetic" algorithm just completed, one easily sees the
equivalence of the two.
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2.4, Prove that if per) = 0, then x - r is a factor of p(x), This is the factor theorem, The other
factor has degree n - 1.

If per) = 0, then 0 = Oq(x) + R making R = 0, Thus, p(x) = (x - r)q(x),

2.5, Prove that a poly no mi al of degree n can have at most n zeros, meaning that p(x) = 0 can have
at most n roots,

Suppose n roots exist. Call them ri, rz, . . . , rn, Then by n applications of the factor theorem,

p(x) = A(x ~ fl)(X - rz) , , . (x - rn)

where A has degree 0, a constant. This makes it clear that there can be no other roots. (Note also that
A = an')

2.6, Prove that at most one polynömial of degree n can take the specified values Ykat given

arguments Xb where k = 0, 1, , . . , n,

Suppose there were two such polynomials, Pi(X) and pz(x), Then the difference p(x) = Pi(X) - P2(X)
would be of degree n or less, and would have zeros at all the arguments Xk: P(Xk) = O. Since there are
n + 1 such arguments this contradicts the result of the previous problem, Thus, at most one polynomial
can take the specified values, The following chapters display this polynomial in many useful forms. It is
called the collocation polynomial.

2.7, Suppose a polynomial p(x) of degree n takes the same values as a function y(x) for x =
XO, Xi, , , , , xn. (This Is called collocation of the two functions and p(x) is the collocation
polynomiaL.) Obtain a formula for the differenc~ between p(x) and y(x),

Since the difference is zero at the points of collocation, we anticipate a result of the form

y(x) - p(x) = C(x -xo)(X -Xl)' , ,(x -xn) = Cn(x)
which may be taken as the definition of C. Now consider the following function F(x):

F(x) = y(x) - p(x) - Cn(x).

This F(x) is zero for x =Xo, Xl' . . . , Xn and if we choose a new argument xn+1 and

C y(xn+i) - P(Xn+I)
n(xn+i)

then F(xn+1) will also be zero, Now F(x) has n + 2 zeros at least. By Rolle's theorem F'(x) tben is
guaranteed n + 1 zeros between those of F(x), while F"(x) isguaranteed n zeros between those of

F'(x). Continuing to apply Rolle's theorem in this way eventually shows that F(n+i)(x) has at least one
zero in the interval from Xo to xn, say at x = ç. Now calculate this derivative, recalling that the (n + l)th
-derivative of p(x) will be zero, and put x equal to ç:

0= in+I)(ç) - C(n + I)!

This determines C, which may now be substituted back:

in+1)(ç)
y(xn+i) - p(xn+1) (n + I)! n(xn+i)

Since Xn+i can be any argument between Xo and Xn except for xo, . . , , Xn and since our result is clearly
true for xo, . . . , Xn also, we replace Xn+i by the simpler x:

(n+1)(ç)
y(x) - p(x) =~ ,'" n(x)

This result is often quite useful in spite of the fact that the number ç is usually undeterminable, because
we can estimate in+I)(ç) independently of ç.
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2.8. Find a first-degree polynomial which takes the values y(O) = land y(l) = 0, or in tabular

form, ~~
The result p(x) = 1 -x is immediate either by inspection or by elementary geometry, This is the

collocation polynomial for the meager data supplied,

2.9. The function y(x) = cos !.nx also takes the values specified in Problem 2,8, Determine the

difference y(x)- p(x),

By Problem 2,7, with n = 1,

n2 cos ln; ,
y(X)-p(X)= - 82 x(x-1)

Even without determining ; we can estimate this difference by

n2
Iy(x) - p(x)! :;gX(X - 1)

Viewing p(x) as a linear approximation to y(x), this error estimate is simple, though generous: At x = l
it suggests an error of size roughly .3, while the actual error is approximately cos ln - (1 - D = ,2.

2.10. As the degree n increases indefinitely, does the resulting sequence of collocation polynomials
converge to y(x)?

The answer is slightly complicated, For carefully chosen collocation arguments Xk and reasonable
functions y(x), convergence is assured, as wil appear later, But for the most popular case of equally

spaced arguments Xk' divergence may occur. For some y(x) the sequence of polynomials Îs convergent

for all arguments x. For other functions, convergence is limited to a finite interval, with the error
y (x) - p (x) oscilating in the mann 

er shown in Fig, 2-1. Within the interval of convergence the

oscillation dies out and lim (y - p) =0, but outside that interval y(x) - p(x) grows arbitrarily large as n
increases. The oscillation is produced by the n(x) factor, the size being infiuenced by the derivatives of
y(x). This error behavior is a severe limitation on the use of high~degree collocation polynomials,

y(:r) - p(:r)

interva! of
convergence

Fig.2-i
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Supplementary Problems

2.11. Apply synthetic division to divide p(x) = x3 - XZ + x-I by x - 1. Note that R = f(l) = 0, so that x-I is

a factor of p(x) and r = 1 is a zero of f(x),

2.12. Apply synthetic division to p(x) = 2x4 - 24x3 + ioOxz - 168x + 93 to compute p(l). (Divide by x-I and

take the remainder R.) Also compute p(2), p(3), p(4), and p(5). .

2.13. To find a second-degree polynomial which takes the following values:

Xk 0 1 2

Yk 0 1 0

we could write p (x) = A + Bx + Cx2 and substitute to find the conditions

O=A l=A+B+C O=A +2B +4C

Solve for A, B, and C and so determine this collocation polynomiaL. Theoretically the same procedure

applies for higher-degree polynomials, but more effcient algorithms wil be developed,

2.14. The function y(x) = sin l.ix also takes the values specified in Problem 2.13, Apply Problem 2.7.to show
that

y(x) - p(x) =
.i3 cos l.i; x(x _ l)(x _ 2)

48

where ; depends on x.

2.15. Continuing Problem 2.14, show that

Iy(x) - p(x)1 ~ I::X(X - l)(x - 2)1

This estimates the accuracy of the collocation polynomial p(x) as an approximation to y(x), Compute
this estimate at x = l and compare with the actual error.

2.16. Compare y i (x) and p i (x) for x = l,

2.17. Compare y"(x) and pl/(x) for x = l.

2.18. Compare the integrals of y(x) and p(x) over the interval (0,2),

2.19. Find the unique cubic polynomial p(x) which takes the following values.

Xk 0 1 2 3 I

Yk 0 1 16 81

2.20. The function y(x) = x4 also takes the values given in the preceding problem, Write a formula for the
difference y(x) - p(x), using Problem 2,7.

2.21. What is the maximum of Iy(x) - p(x)1 on the interval (0, 3)?



Chapter 3

Finite Differences

FINITE DIFFERENCES
Finite differences have had a strong appeal to mathematicians for centuries, Isaac Newton was

an especially heavy user, and much of the subject originated with hirn. Given a discrete function,
that is, a finite set of arguments Xk each having a mate Yk, and supposing the arguments equally
spaced, so that Xk+l - Xk = h, the differences of the Yk values are denoted

tiYk = Yk+l - Yk

and are called first differences, The differences of these first differences are denoted

ti2Yk = ti(tiYk) = tiYk+l - tiYk = Yk+2 - 2Yk+l + Yk

and are called second differences, In general,

tinYk = tin-lYk+l ~ tin-lYk

defines the nth differences,

The difference table is the standard format for displaying finite differences, Its diagonal pattern
makes each entry, except for the Xk, Yb the difference of its two nearest neighbors to the left.

Xo Yo

tiYo

Xl Yl ti2yo
tiYl ti3yo

X2 Y2 ti2Yi ti4yo
tiY2 ti3Yi

X3 Y3 ti2Y2

tiY3

X4 Y4

Each differences proves to be a combination of the Y values in column two, A simple example is
ti3yo = Y3 - 3Y2 + 3Yi - Yo' The general result is

k ~ .(k)
ti Yo = :90 ( - 1)' i Yk-l

where (n is a binomial coeffcient.

DIFFERENCE FORMULAS

Difference formulas for elementary functions somewhat parallel those of calculus, Examples
include the following:

1. The differences of a constant function are zero, In symbols,

tiC = 0,

where C denotes a constant (independent of k),
2, For a constant tirnes another function, we have

ti(CUk) = CtiUk

3. The difference of a surn of two functions is the sum of their differences:

ti(Uk + Vk) = tiUk + tiVk

22
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4, The linearity property generalizes the two previous results to

Ll(CiUk + CZVk) = CiLlUk + CZLlVk

where Ci and Cz are constants,
5, The differenees of a produet are given by the formula

Ll(UkVk) = UkLlvk + Vk+iLluk

in which the argument k + 1 should be noted,

6, The differenees of a quotient are

Ll(~:)
VkLluk - UkLlVk)

Vk+i Vk

and again the argument k + 1 should be noted,
7, The differenees of the power function are given by

LlCk = Ck(C -1)

The special case C = 2 brings LlYk = Yk'

8. The differenees of sine and eosine functions are also reminiscent of corresponding results of
calculus, but the details are not quite so attractive.

Ll(sin k) = 2sin ~ cos (k + Ð

Ll (cos k) = - 2 sin ~ sin ( k + Ð

9, The differenees of the logarithm function are a similar disappointment. With Xk = Xo + kh,
we have

Ll(log Xk) = log (1 +~)

When h/xk is very small this makes. Ll(lOgXk) approximately h/xb but otherwise the
reciprocal of x, which is so prominent in the calculus of logarithms, is quite remote,

10, The unit error funetion, for which Yk = 1 at a single argument and is otheniise zero, has a
difference table consisting of the successive binomial coeffcients with alternating signs, The
detection of isolated errors in a table of Yk values can be based on this property of the unit
error function,

11. The oseilating error function, for which Yk = :! 1 alternately, has a difference table
consisting of the successive powers of 2 with alternating signs,

12. Other functions of special interest wil be studied in succeeding chapters, and the

relationships between difference and differential calculus wil be of continuing interest.

Solved Problems

3.1. Compute up through third differences of the discrete function displayed by the Xk Yk columns
of Table 3.1. (The integer variable k also appears for convenience.)

The required differences appear in the remaining three columns. Table 3,1 is called a dilerence
table, Hs diagonal structure has become a standard format for displaying differences. Each entry in the
difference columns is the difference of Its two nearest neighbors to the left,
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Table 3.1

k Xk Yk AYk A2Yk A3Yk

0 1 1

7

1 2 8 f- 12

19 "- 6

2 3 27 ~ 18

37 '- 6

3 4 64 '- 24
61 "- 6

4 5 125 - 30
91 - 6

5 6 216 - 36
127 "- 6

6 7 343 ~ 42
169

7 8 512

Any such table displays differences as shown in Table 3.2,

Table 3.2

o Xo Yo

Ayo

Xl Yi AZyo

Ayi A3yo

Xz yz AZyi

Ayz A3Yi

X, y, AZyz

AY:i

X4 Y4

Ayo = Yi - Yo = 8 - 1 = 7

AZyo = Ayi - Ayo = 19 -7 = 12 etc,

2

3

4

For example,

3.2. What is true of all fourth and higher differences of the function of Problem 3,1?

Any such differences are zero, This is a special case of a result to be obtained shortly,

3.3. Prove that Ll3yo = Y3 - 3Y2 + 3Yi - Yo'

Either from Table 3.2 or by the definitions provided at the outset,

A'yo = AZyl - AZyo =(y; - 2yz + Yi) - (yz - 2Yi + Yo) = y, - 3yz + 3Yi - Yo '

3.4. Prove that Ll4yo = Y4 - 4Y3 + 6yi - 4yi + Yo.

By definition, A4yo = A'yi - A'yo. Using the result of Problem 3.3 and the almost identical

A'Yi = Y4 - 3y, + 3yz - Yi

obtained by advancing all lower indices, the re9uired result follows at once.

rCHAP, 3
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3.5. Prove that for any positive integ€r k,

k ~ .(k)
ß Yo= LJ (-1)' . Yk-ii=O L

. where the familiar symbol for binomial coeffcients,

(k)= k! k(k-1)"'(k-i+1)i i!(k-i)! i!
has been used,

The proof will be by induction, For k = 1, 2, 3, and 4, the result has already been established, by
definition when k is 1. Assurne it true when k is so me particular integer p:

LlPYo = ~ ( - 1Y(~)Yp_¡

By advancing all lower indices we have also

LlPYi = ~ ( - 1Y(~)Yp-¡+1

and by a change in the summation index, namely, i = j + 1,p-l ( )
LlPYi = Yp+l - ~ ( - l)i /: 1 YP-

It is alsoconvenient to make a nominal change of summation index, i = j, in our other sum:

p-I ( )
LlPYo = :¿ (- l)i ~ Yp-i + ( - 1Yyoi~O J '

Then LlP+1yo = LlPYi - LlPYo = Yp+1 - ~i (_ l)i( (.: J + (~) JYP-i - ( - 1Yyo1=0 J J
Now using

(: J + (~) = (~::)

(see Problem 4,5) and making a final change of summation index, j + 1 = i,P '(P + 1) p+l '(P + i)
LlP+iyo = Yp+1 + B ( - 1)' i Yp+l-i - ( - 1Yyo = 6 ( - I)' i YP+l-¡

Thus our result is established when k is the integer P + 1. This completes the induction,

3.6. Prove that for a constant function all differences are zero,

Let Yk = C for all k. This is a constant function. Then, for all k,

LlYk = Yk+1 - Yk = C - C = 0

3.7. Prove ß(CYk) = CßYk'

This is analogous to a result of calculus, Ll(CYk) = CYk+1 - CYk = CLlYk'

Essentially this problem involves two functions defined for the same arguments Xk' One function
has the values Yb the other has values Zk = CYk' We have proved LlZk = CLlYk'

3.8. Consider two functions defined for the same set of arguments Xk' Call the values of these
functions Uk and Vk' Also consider a third function with values

Wk = CiUk + CZVk
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where Cl and C2 are two constants (independent of Xk)' Prove

~Wk = Ci~Uk + C2~Vk

This is the linearity propert of the difference operation,

The proof is direct from the definitions,

LlWk = Wk+I - Wk = (C1Uk+I + CZVk+l) - (CiUk + CZVk)

= C1(Uk+1 - Uk) + Cz(Vk+I - Vk) = C1Lluk + CZLlVk

Clearly the same proof would apply to sums of any finite length,

3.9. With the same symbolism as in Problem 3,8, consider the function with values Zk = UkVk and
prove ~Zk = Uk~Vk + Vk+I~Uk'

Again starting from the definitions,

Llzk = Uk+1Vk+I - UkVk = Uk+IVk+1 - UkVk+1 + UkVk+1 - UkVk

= Vk+I(Uk+1 - Uk) + Uk(Vk+I - Vk) = UkLlVk + Vk+iLluk

The result !:zk = Uk+I!:Vk + V~LlUk cotild alsóbe próved,

3.10. Compute differences of the function displayed in the first two columns of Table 3,3, This may
be viewed as a type of "error function," if one supposes that all its values should be zero but
the single 1 is a unit error, How does this unit error affect the various differences?

Some of the required differences appear in the other columns of Table 3,3,

Table 3.3

Xo 0
0

Xl 0 0
0 0

Xz Ò 0 1

0 1

X3 0 1 -4
1 -3

X4 1 -2 6
-1 3

Xs 0 1 -4
0 -1

X6 0 0 1

0 0

X7 0 0
0

X8 0

This error infiuences a tri angular portion of the difference table, increasing for high er differences

and having a binomial coeffcient pattern,

3.11. Compute differences for the function displayed in the first two columns of Table 3.4, This may
be viewed as a type of error function, each value being a roundoff error of amount one unit.
Show that the alternating :l pattern leads to serious error growth in the high er differences,

Hopefully, roundoff errors wil sei dom alternate in just this way,
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Some of the required differences appear in the other columns of Table 3.4. The error doubles for
each higher difference,

Table 3.4

Xo 1

-2
Xl -1 4

2 -8
Xz 1 -4 16

-2 8 -32
X3 -1 4 -16 64

2 -8 32
X4 1 -4 16

-2 8
Xs -1 4

2
X6 1

3.12. One number in this list is misprinted. Which one?

1 2 4 8 16 26 42 64 93

Calculating the first four differences, and displaying them horizontally for a change, we have

1 2 4 8 10 16 22 29
1 2 4 2
1 2 -2
1 -4 6

6
4 0

-4

6 7
1

1

and the impression is inescapable that these binomial coeffcients arise from a data error of size 1 in the
center entry 16 of the original list. Chan ging it to 15 brings the new list

1 2 4 8 15 26 42 64 93

from which we find the differences

1 2 4 7 11 16 22 29
1 2 3 4 5 6 7

which suggest a job weIl done, This is a very simple example of data smoothing, which we treat much
more fully in a later chapter. There is always the possibility that data such as we have in our original list
comes from a bumpy process, not from a smooth one, so that the bump (16 instead of 15) is real and not
amisprint. The above analysis can then be viewed as bump detection, rather than as error correcting.

Supplementary Problems
3.13. Calculate up through fourth differences for the following Yk values. (Here it may be assumed -that

Xk = k.)

k 0 1 2 3 4 5 6

Yk 0 1 16 81 256 625 1296
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3.14. Verify Problem 3.5 for k = 5 by showing directly from the definition that

ASyo = Ys - 5Y4 + lOY3 - lOY2 + 5yi - Yo

3.15. Irnitating Problem 3,9, prove that A Uk = VkAuk - UkAvkVk Vk+IVk'

3.16. Calculate differences through the fifth order to observe the effect of adjacent "errors" of size 1.

k 0 1 2 3 4 5 6 7

Yk 0 0 0 1 1 0 0 0

3.17. Find and correct a single error in these Yk values.

k 0 1 2 3 4 5 6 7 I

Yk 0 0 1 6 24 60 120 210

3.18, Use the linearity property to show that if Yk = e, then

AYk = Yk+1 - Yk = 3e + 3k + 1 A2Yk = AYk+1 - AYk = 6k + 6 A3Yk = AZYk+1 - AZYÆ = 6

3.19. Show that if Yk = e, then A4Yk = 24.

3.20. Show that if Yk = 2k, then AYk = Yk'

3.21. Show that if Yk = C\ then AYk = Ck(C - 1).

3.22. Compute the missing Yk values from the first differences provided

Yk 0
AYk 2 4 7 11 16

3.23. Compute the missing Yk and AYk values from the data provided,

Yk

AYk

A2Yk

6

1

5

4 13 18 24

3,24. Compute the missing Yk values from the data provided,

Yk 0 0 0 6 24 60

AYk 0 0 6 18 36

A2Yk 0 6 12 18

A-'Yk 6 6 6 6 6 6

3.25. Find and correct amisprint in this data.

Yk i 3 11 31 69 113 223 351 521 739 1011

3.26, By advancing all subscripts in the formula A2yo = Y2 - 2Yi + Ya, write similar expansions for A2yi and
A2Y2' Compute the surn of these second differences. It should equal AY3 - Ayo = Y4 - Y3 - Yi + Ya.

3,27. Find a function Yk for which AYk = 2Yk'
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3.28. Find a function Yk for which ~2Yk = 9Yk' Can you find two such functions?

3.29. Continuing the previous problem, find a function such that ~2Yk = 9Yk and having Yo = 0, Yi = 1.

3.30. Prove ~(sin k) = 2 sin l cos (k + D.

3.31. Prove ~(cos k) = - 2 sin hin (k + D.

3.32. Prove ~(Iogxd = log (1 + h/xd where Xk =Xo + kh.



Chapter 4

Factorial Polynomials

FACTORIAL POLYNOMIALS
Factorial polynomials are defined by

Yk = k(n) = k(k - 1) , , , (k - n + 1)

where n is a positive integer. For example, k(2) = k(k - 1) = k2 - k, These polynomials playa central
rote in the theory of finite differences because of their convenientproperties, The various differences
of a factorial polynomial are again factorial polynomials, More specifically, for the first difference,

!1en) = nk(n-l)

which is reminiscent of how the powers 01 x respond to differentiation. Higher differences then
become further factorial polynomials of diminishing degree, until ultimately

!1nk(n) = n!

with all higher differences zero,'
The binomiaZ coeffcients are related to factorial polynomials by

(k) = k(n)n n!
and therefore share some of the properties of these polynomials, notably the famous recursion

(~ : ~) - C : 1) = (~)

which has the form of a finite difference formula,
The simple recursion

k(n+i) = (k - n )k(n)

follows directly from the definition of factorial polynomials, Rewriting it as

k(n+l)k(n)=-k-n
it may be used to extend the factorial idea successively to the integers n = 0, - 1, -2, ' , , , The basic
formula

!1k(n) = nk(n-l)

is then true for all integers n,

STIRLING'S NUMBERS

Stirling's numbers of the first kid appear when factorial polynomials are expressed in standard
polynomial form, Thus

k(n) = s~n)k + ' , , + s~n)kn = 2: s~n)kí

the s~n) being the Stirling numbers, As an example,

k(3) = 2k - 3k2 + k3

30
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which makes S~3) = 2, S~3) = -3, and S~3) = 1. The recursion formula

s~n+l) = S~~l - nS~n)

permits rapid tabulation of these Stirling numbers.
Stirling's numbers of the second kid appear when the powers of kare represented as

combinations of factorial polynomials, Thus

kn = s~n)kCl) + ' , , + s~n)k(n) = ¿ S~n)k(i)

the s~n) being the Stirling numbers. As an example,

k3 = k(l) + 3k(2) + k(3)

so that S~3) = 1, S~3) = 3, and S~3) = 1. The recursion formula

s~n+l) = S~~)l + zs~n)

permits rapid tabulation of these numbers, A basic theorem states that each power of k can have
only one such representation as a combination of factorial polynomials. This assures the unique
determination of the Stirling numbers of the second kind, '

REPRESENTATION OF ARBITRARY POLYNOMIALS
The representation of arbitrary polynomials as combinations of factorial polynomials is a natural

next step, Each power of k is so represented and the results are then combined, The representation
is unique because of the basic theorem just quoted, For example,

k2 + 2k + 1 = (k(2) + k(l)l + 2k(1) + 1 = k(2) + 3k(1) + 1

Differences of arbürary polynomzals are conveniently found by first representing such polyno-
mials as combinations of factorial polynomials .and then applying our formula for differencing the
separate factorial terms,

The principal theorem of the chapter is now accessible, and states that the difference of a
polynomial of degree n is another polynomial, of degree n ~ 1. This makes the nth differences of
such a polynomial constant, and stil high er differences zero,

Solved Problems

4.1. Consider the special function for which Yk = k(k - 1)(k - 2) and prove LlYk = 3k(k - 1),

ßYÆ = YÆ+i - Yk = (k + l)k(k - 1) - k(k - l)(k - 2) = ((k + 1) - (k - 2))k(k - 1) = 3k(k - 1)

In tabular form this same result, for the first few integer values of k, is given in Table 4.1.

4.2. This generalizes Problem 4,1, Consider the special function

Yk = k(k - 1) , , , (k - n + 1) = kCn)

(Note that the upper index is not apower.) Prove, for n? 1, '

ßYk = nkCn-1)

a result which is strongly reminiscent of the theorem on the derivative of the nth power
function,

ßYÆ = Yk+! - Yk = ((k + 1) . , . (k - n + 2)) - (k . . . (k - n + 1))

= ((k + 1) - (k - n + l))k(k - 1) . , , (k - n + 2) = nk(n-I)
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Table 4.1

k Yk åYk

0 0
0

1 0
0

2 0
6

3 6
18

4 24
36

5 60

4.3. Prove that if Yk = k(n\ then 1!:,zYk = n(n - 1)k(n-Z),

Problem 4,2 can be applied to AYk rather than to h.

AZk(n) = AAk(n) = Ank(n-i) = n(n - l)k(n-Z)

Extensions to higher differences proceed just as with derivatives,

4.4. Prove ¡)nk(n) = n! and ¡)n+lk(n) = 0,

After n applications of Problem 4,2, the first result follows, (The symbol k(O) can be interpreted as
1.) Since n! is constant (independent of k) its differences are all O.

4.5. The binomial coeffcients are the integers

(k) k(n) k!
----

. n n! n!(k-n)!

Prove the recursion

(:: ~)= C ~ 1) + (:)

Using factorial polynomials and applying Problem 4,2,

(k + 1) _ ( k ) = (k + l)(n+i) _ k(n+l) = Ak(~+I) = (n + l)k(n) kin) = (k)n+1 n+1 (n+1)! (n+1)! (n+1)! (n+1)! n! n
which transposes at once into what was to be proved. This famous result has already been used,

4.6. Use the recursion for the binomia! coeffcients to tabulate these numbers up through k = 8,

The first column of Table 4.2 gives (~) which is defined to be 1. The diagonal, where k = n, is 1 by

definition. The other entrIes result from the recursion. The table is easily extended,

4.7. Show that if k is a positive integer, then k(nl and (:) are ° for n? k.r For n? k the symbol

(:) is defined as k(nl/n!)
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Table 4.2~ 0 1 2 3 4 5 6 7 8

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 1Ù 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

Note that k(k+I) = k(k - 1) . , '0. For n ? k the factorial k(n) wil contain this 0 factor, and so wil

(:).

4.8. The binomial coeffcient symbol and the factorial symbol are oftenused for nonintegral k,

Calculate k(n) and (~) for k = ! and n = 2, 3,

k(Z) = Gf) = ~ G - 1) = - ¡

(~) = k;;) = ~ ( - Ð = - ~

k(3) = Gt) =~ G- 1)G-2) =~

(:) = k;;) = ~ G) = 1~

4.9. The idea of factorial has also been extended to upper indices wh ich are not posítive integers,

It follows from the definition that when n is a positive integer, k(n+l) = (k - n )k(n), Rewriting
this as

k(n)=~k(n+i)k-n
and using it as adefinition of k(n) for n = 0, -1, -2, , , " show that k(O) = 1 and

k(-n) = 1/(k + n)(n),

With n = 0 the first result is instant, For the second we find successively

k(-I) = ~ klO) = ~ =--k + 1 k + 1 (k + 1)(1) k(-Z) 1 (-I) 1 1
= k + 2 k = (k + 2)(k + 1) (k + 2l2)

and so on, An inductive proof is indicated but the details will be omitted. For k = 0 it is occasionally
convenient to define klO) = 1 and to accept the consequences.

4.10. Prove that ~k(n) = nk(n-l) for all íntegers n,

For n ? 1, this has been proved in Problem 4.2, For n = 1 and 0, it is immediate. For n negative,
say n = -p,

Ak(n) = Ak(-p) = A 1 1 _ 1 .
(k+plp) (k+1+p),.,(k+2) (k+p)"'(k+1)1 (1 1 ) -p

(k+p)"'(k+2) k+1+p -k+1 =(k+1+p)".(k+1)
n

(k + 1 _ n)(I-n) = nk(n-1)
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This result is analogous to the fact that the theorem of calculus "if f (x) = xn, then f' (x) = nxn- 10' is
also true for all integers,

4.11. Find I:k(-),
By the previous problems, Ak(-l) = _k(-Z) = - 1/(k + 2)(k + 1),

4.12. Show that kC2) = -k + k2, k(3) = 2k - 3k2 + k3, k(4):: -6k + 11k2 - 6k3 + e,

Directly from the definitions:

k(Z) = k(k - 1) = -k + kZ

k(3) = k(2)(k - 2) = 2-k - 3e + k3

k(4) = k(3)(k - 3) = -6k + iie - 6e + k4

4.13. Generalizing Problem 4,12, show that in the expansion of a factorial polynomial into standard
polynomial form

k(n) = s\n)k + ' , , + s~n)kn = ¿ s~n)ki

the coeffcients satisfy the recursion

sfn+l) = Sf~)i - nSfn)

These coeffcients are called Stirling's nnmbers of the first kid,

Replacing n by n + 1,

en+l) = sln+l)k + ' . . + s~n++1I)kn+1

and using the fact that k(n+i) = k(n)(k - n), we find

sln+I)k +, , ,+ s~n++il)kn+l = (s\n)k +, , ,+ s~n)knl(k - n)

Now compare coeffcients of ki on both sides. They are

s)n+i) = Si"-\ - ns~n)

for i = 2, . . . , n, The special cases s\n+l) = -nsln) and s~n++/) = s~n) should also be noted, by comparing
coeffcients of k and kn+I.

4.14. Use the formulas of Problem 4.13 to develop abrief table of Stirling's numbers of the first
kind,

The special formula s\n+l) = -ns\n) leads at Once to column one of Table 4.3, For example, since
SP) is clearly 1,

S12) = _Sll) = - 1 spi = -2s12) = 2

and so on, The other special formula fills the top diagonal of the table with ls. Our main recursion then
completes the fable. For example,

S~3) = S12) - 2S~2) = (- 1) - 2(1) = -3

S~4) = S13) - 3s~3i = (2) - 3( -3) = ii

S~4) = S~3) - 3S~3) = (-3) - 3(1) = -6
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and so on, Through n = 8 the taple reads as folIows:

Table 4.3~ 1 2 3 4 5 6 7 8

1 1

2 -1 1

3 2 -3 1

4 -6 11 -,6 1

5 24 -50 35 -10 1

6 -120 274 -225 85 -15 1

7 720 -1,764 1,624 -735 175 -21 1

8 -5,040 13,068 -13,132 6,769 -1,960 322 -28 1

4.15. Use Table 4,3 to expand k(5),

Using row five of the table, k(5) = 24k - 50kz + 35k3 - lOk4 + k5,

4.16. Show that e = ei) + k(2), e = k(I) + 3e2)+ k(3), e = k(I) + 7k(2) +' 6k(3) + k(4),

Using Table 4,3,

k(l) + k(Z) = k + (-k + e) = e

k(lj + 3k(Z) + e3) = k + 3( -k + kZ) + (2k - 3kz + k3) = k3

k(l) + 7eZj + 6e3) + k(4) = k + 7( -k + e) + 6(2k - 3e + k3) + (-6k + 11e - 6e + e) = e

4.17 As a necessary preliminary to the following problem, prove that apower of k can have only
one representation as a combination of factorial polynomials,

Assurne that two such representations exist for kP.

kP = A1k(l¡ + ' . , + Apk(P) kP = Bik(I) + ' , , + Bpk(P)

Subtracting leads to

0= (Ai - Bi)ei) + ' , , + (Ap - Bp)k(P)

Since the right side is a polynomial, and no polynomial can be zero for all values of k, every power of k
on the right side must have coeffcient O. But kP appears only in the last term; hence Ap must equal Bp'
And then kP-1 appears only in the last term remaining, which wil be (Ap-1 - Bp_1)k(P-I); hence

Ap_i = Bp_i' This argument prevails right back to Ai = Bi'
This proof is typical of unique representation proofs which are frequently needed in numerical

analysis. The analogous theorem, that two polynomials cannot have identical values without also having
identical coeffcients, is a c1assic result of algebra and has already been used in Problem 4,13,

4.18. Geheralizing Problem 4,16, show that the powers of k can be represented as combinations of
factorial polynomials

kn = s\n)ei) + ' , , + s~n)k(n) = L sin)k(i)

and that the coeffcients satisfy the recursion sin+I) = Si~)1 + isin), These coeffcients are called
Stirling's numbers of the second kid ,



36 FACTORIAL POLYNOMIALS (CHAP, 4

We proceed by induction, Problem 4,16 already having established the existence of such
representations for small k, Suppose

kn = s\n)k(I) + ' , , + s~n)k(n)

and then multiply by k to obtain

kn+I = ks\n)k(I) + ' , , + ks~n)k(n)

Now notice that k ' k(i) = (k - i)k(i) + ik(i) = k(i+l) + ik(i) so that

kn+1 = s\n)(eZ) + k(l)) + ' , , + s~n)(k(n+i) + nk(n))

This is already a representation of kn+i, completing the induction, so that we may write

kn+1 = s\n+I)k(I) + ' , , + s~:~l)k(n+l)

By Problem 4,17, coeffcients of k(i) in both these last lines must be the same, so that

s¡n+l) = s¡i:\ + isln)

for i = 2, ' . , ,n, The special cases s\n+l) = s\n) and s~n++/) = s~n) should also be noted, by comparing
coeffcients of k(l) and k(n+ I).

4.19. Use the formulas of Problem 4.18 to develop abrief table ofStirling's numbers of the second
kind,

The special formula s\n+l) = s\n) leads at once to colunin one of Table 4.4, since sP) is clearly 1. The
other special formula produces the top diagonaL. Our main recursion then completes the table. For
example,

S~3) = s\z) + 2s~Z) = (1) + 2(1) = 3 S~4) = S\3) + 2s~3) = (1) + 2(3) = 7

S~4) = S~3) + 3S~3) = (3) + 3(1) = 6

and so on. Through n = 8, the table reads as follows:

Tabl~ 4.4~ 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

4.20. Use Table 4.4 to expandk5 in factorial polynomials,

Using row five of the_table, k' = k(l) + 15k(Z) + 25k(3) + 10k(4) + k(5),

4.21. Prove that the nth differences of a polynomial of degree n are equal, higher differentes than

the nth being zero,

Call the polynomial P(x), and consider its values for a discrete set of equally spaced arguments
xo, Xl' Xz, . . . . It is usually convenient to deal with the substitute integer argument k which we have
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used so frequently, related to X by Xk - Xo = kh where h is the uniform difference between consecutive x
arguments, Denote the value of our polynomial for the argument k by the symbol Pk, Since the change
of argument is linear, the polynomial has the same degree in terms of both x and k, and we may write it
as

Pk = ao + aik + azk2 + ' , , + ankn

Problem 4,18 shows that each power of k can be represented as a combination of factorial polynomials,
leading to a representation of Pk itself as such a combination.

Pk = bo + bik(I) + bzk(Z) + . , , + bnk(n)

Applying Problem 4.2 and the linearity property

/1Pk = bi + 2bzk(l) + . , . + nbnk(n-I)

and reapplýing Problem 4.2 leads eventually to /1"Pk = n! bn- So all the nth differences are this number,
They do not vary with k and consequently higher differences are zero,

4.22. Assuming that the following Yk values belong to a polynomial of degree 4, compute the next
three values,

E8
o 1 2 3

1

4 5 6

Bo 1 2 o

A fourth-degree polynomial has constant fourth differences, according to Problem 4.21. Calculating
from the given data, we obtain the entries to the left of the line in Table 4,5,

Table 4.5

o -2
5 21 511 1

16 30
-2 10 14

4 4

Assuming the other fourth differences also to be 4 leads to the entires to the right of the line from
which the missing entries may be predicted: Ys = 5, Y6 =~26, Y7 = 77.

Supplementary Problems

4.23. Compute the factorials: 6(3), 6(6), 6(7, (l(zL, (l(3L, (l(4),

4.24. Compute the factorials: 6(-1), 6(-Z), 6(-3), (W-l), (l(-zi, (l(-3).

6 (6) (6) (l) (l) (l)
4.25, Compute the binomial coeffcients: (3)' 6 ' 7 ' 2 ' 3 ' 4'

4.26. Compute differences through fourth order for these values of Yk = k(4).

I ;, I

0 1 2 3 4 5 6 7

I
0 0 0 0 24 120 360 840
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4.27. Apply Problem 4,2 to express the first four differences of Yk = k(4) in terms of factorial polynomials,

4.28. Apply Problem 4,2 to express the first five differences of Yk = k(5) in terms of factorial polynomials,

4.29. Use Table 4,3 to express Yk = 2k(3) - k(2) + 4k(l) - 7 as a conventional polynomiaL.

4.30. Use Table 4,3 to express Yk = e6) + k(3) + 1 as a conventional polynomiaL.

4.31. Use Table 4.4 to express Yk = l(2k4 - 8e + 3) as a combination of factorial polynomials.

4.32. Use Table 4.4 to express Yk "" 80k3 - 30e + 3k5 as a combination of factorial polynomials,

4.33. Use the result of the previous problem to obtain AYk in terms of factorial polynomials, Then apply Table
4.3 to convert the result to a conventional polynomial

4.34. Use the result of Problem 4.32 to obtain AYk and A2Yk in terms of factorial polynomials, Then apply

Table 4,3 to convert both results to conventional polynomials,

4.35. Assuming that the following Yk values belong to a polynomial of degree 4, predict the next three values,

I :, I

0 1 2 3 4 5 6 7

I
1 -1 1 -1 1

4.36. Assuming that the following Yk values belong to a polynomial of degree 4, predict the next three values,

I :, I

0 1 2 3 4 5 6 7

I
0 0 1 0 0

4.37. What is the lowest degree possible for a polynomial which takes these values?

. k 0 1 2 3 4 5
,

Yk 0 3 8 15 24 35

4.38. What is the lowest degree possible for a polynomial which takes these values?

ta
o

o

1 2 3 4

81 1 1 1

4.39. Find a function Yk for which AYk = k(2) = k(k - 1).

4.40. Find a function Yk for which AYk = k(k - l)(k - 2).

4.41. Find a function Yk for which AYk = e = k(2) + k(l).

4.42. Find a function Yk for which AYk = e.

4.43. FÍnd a function Yk for which AYk = l(k +l)(k + 2),



Chapter 5

Summation

Summation is the inverse operation to differencing, as integration is to differentiation, An
extensive treatment appears in Chapter 17 but two elementary results are presented here,

1. Telescoping sums are sums of differences, and we have the simple but useful
n-l
:¿ LlYk = Yn - Yo
k=O

analogous to the integration of derivatives. Arbitrary sums may be converted to telescoping
sums provided the equation LlYk = Zk can be solved for the function Yk, Then

n-l n-l
:¿ Zk = :¿ LlYk = Yn - Yo
k=O k=O

Finite integration is the pracess of obtaining Yk fram

LlYk = Zk

where Zk is known, Since it obviously follows that
n-l

Yn = Yo + 2: Zk
k=O

finite integration and summation are the same problem, As in integral calculus, however,
there are times when explicit finite integrals (not involving ~) are usefuL.

2, Snmmation by parts is another major result of summation calculus and involves the formulan-l n-l
:¿ U LlVi = UnVn - UoVo - :¿ V LlUii=O i=O

which resembles the corresponding integration by parts formula.
Application of this formula involves exchanging one summation for a (presumablý)

simpler summation, if one of the ~'s is known, the formula serves to determine the üther.

Infinite series mayaiso be evaluated in certain cases where the partial sums respond to the
telescoping or summation by parts methods,

Solved Problems
n-l

5.1. Prove ~ LlYk = Yn - Yo,
k=O

This is a simple but useful result, Since it involves the summation of differences, it is usually
compared with an analogous result of calculus involving the integration of a derivative. First notice that

LlYa = Yi - Ya

LlYa + LlYi = (Y1 - Ya) + (Y2 - Y1) = Y2 - Ya

LlYa + LlYi + LlY2 = (Yi - Ya) + (Y2 - Yi) + (Y3 - Y2) = Y3 - Ya

,

which ilustrate the sort of telescoping sums involved. In general,

n-I

L LlYk = (Yi - Ya) + (Y2 - Y1) + (Y3 - Y2) + . , . + (Yn - Yn-i) = Yn - Ya
k~a

39
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all other Y values occurring both plus and minus, Viewed in a table of differences, this result lookseven
simpler. The sum of adjacent differences gives the difference of two entries in the row above,

Yo Yn

LlYo LlYi LlYi LlYn-I

Similar results hold elsewhere in the table,

5.2.
n n(n + 1)(2n + 1)

Prove 12 + 22 + ' , , + n 2 = L i2 =i=! 6
We need a function for which Lly¡ = ¡2, This is similar to the integration problem of calculus, In this

simple example, the y¡ could be found almost by intuition, but even so we apply a method which handles
harder problems just as weIl. First replace ¡2 by a combination of factorial polynomials, using Stirling's
numbers.

Lly¡ = ¡z = ¡(2) + ¡(t)

A function having this difference is

1 1
y¡ = - ¡(3) + _ ¡(2

3 2
as may easily be verified by computing LlYi' Obtaining y¡ from Lly¡ is called finite integration. The
resemblance to the integration of derivatives is obvious. Now rewrite the result of Problem 5.1 as

n

¿ LlYi = Yn+ I - YI and substitute to obtain
Î=l

f ¡2 = (~(n + 1)(3) + ~ (n + 1/2)) - (~(1)(3) + ~ (1)(2))i~1 3 2 3 2
(n + l)n(n - 1) (n + l)n n(n + 1)(2n + 1)3 + 2 6

5.3.
" 1

Evaluate the series i~O (i + 1)(i + 2) ,

-1
By an earlier result M(-I) = (i + 1)(i + 2)' Then, using Problem 4,9 to handle 0(-1),n-I 1 n-I 1

S = 2: - 2: Ll¡(-l) = -(n(-I) - 0(-1)) = 1 --"¡~o(i+l)(i+2) ¡~O n+1
The series is defined as lim Sn and is therefore equal to 1.

5.4. Consider two functions defined for the same set of arguments Xb having values Uk and Vk'

Prove n-l n-l
:: Ui /ivi = U"V" - UoVo - :: Vi+i/iUii=O i=O

This is called summation by parts and is analogous to the result of calculus

r" u(x)v'(x) dx = u(x,,)v(x,,) - u(xo)v(xo) - r" v(x)u'(x) dxxi) Xo
The proof begins with the result of Problem 3.9, slightly rearranged.

u¡ Llv¡ = Ll(u¡v;) - V¡+I Llu¡
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Sum from i = 0 to i = n - 1,
n-l n-l n-l
:¿ u; ~v; = :¿ ~(u;v;) - :¿ V;+l ~u;i=O i=O i=O

,and then apply Problem 5.1 to the first surn on the right. The required result follows.

x
5.5. Evaluate the series 1: iRi where -1 .: R .: 1.

i~O

Since ~R; = R;+l - R; = R;(R - 1), we rnay put u; = i and v; = R;/(R - 1) and apply summation by
parts. Take the finite surn

n-l . n-l Rn n-l Ri+l
S =:¿ iR' =:¿ u~v=n .--o-:¿-n ;~O ;~o" R - 1 ;~O R - 1

The last sum is geometrie and responds to an elementary formula, making

nW R(l-W)
Sn = R - 1 + (1 - R)2

Since nW and W+1 both have limit zero, the value of the infinite series is lim Sn = RI(l - R)2.

5.6. A coin is tossed until heads first shows, A payoff is then made, equal to i dollars if heads first
showed on the ith toss (one dollar if heads showed at once on the first toss, two dollars if the
first head showed on the second toss, and so on). Prob ability. theory leads to the series

1G) + 2(¡) + 3G) + . , , = to iGY

for the average payoff, Use the previous problem to compute this series,

By Problem 5.5 with R = t ¿ iGY = mim = 2 dollars,
i=O

x
5.7. Apply summation by parts to evaluate the se ries 1: ¡ZRi,

i=O

Putting u; = i2, v; = R; I(R - 1) we find ~u; = 2i + 1 and so

n-l . n-l Rn n-l Ri+l
Sn= ¿ i2R'=:¿ u;~v;=n2~-0-:¿ -(2i+1)

;~O ;~O R - 1 ;~O R - 1
Rn 2R n-l . R n-l .=n2-__:¿ iR'--:¿ R'

R - 1 R - 1 ;~O R - 1 ;~O

The first of the two remaining sums was evaluated in Problem 5.5 and the second is geometric. So we
come to

n2Rn 2R (nw R(l - W)J R 1 - W
Sn = R - 1 - R - 1 R - 1 + (1 - R)2 - R - 1 ' 1 - R

and letting n ~ 00 finally achieve lim Sn = (R + R2)1 (1 - R)3,

5.8. A coin is tossed until heads first shows, A payoff is then made, equal to i2 dollars if heads first
x

showed on the ith toss. Probability theory leads to the series 1: i2(!Y for theaverage payoff,
Evaluate the series. i=O

By Problem 5.7 with R = t ¿ i2(~Y = G + l)/m = 6 dollars.
i=O
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Supplementary Problems

5.9.
n

Use finite integration (as in Problem 5,2) to prove I: i = 1 + 2 + ' , , + n
;=1

n(n + 1)

2

5.10. Evaluate t i3 by finite integration.
i=l

5.11. Show that ~~~ Ai = ~ ~ 11 by using finite integration, (See Problem 3,21.) This is, of course, the

geometrie sum of elementary algebra.

5.12. Show that ~~: G) = (k: 1) - (k: 1)'

~ 1
5.13. Evaluate by finite integration: i~O (i + 1)(i + 2)(i + _.

~ 1
5.14. Evaluate i~I i(i + 2) ,

~
5.15. EvaluateI: i3Ri for - 1 ~ R ~ 1.

;=0

5.16. Alter Problem 5.8 sothat the payoff is i3, Use Problem 5,15 to evaluate the average payoff, which is
~

I: i3Gt
;=0

5.17. Alter Problem 5,8 so that the payoff is +1 when i is even and -1 when i is odd, The average payoff is
~

I: (- 1YGt Evaluate the series,
i=l

5.18. Evaluate it1 log (1 + 7)'

N
5.19. EvaluateI: in in terms of Stirling's numbers,

;=1

5.20. Evaluate i~l Lu: n)).

5.21. EvaluateI: inRi.
;=0

5.22. Express a finite integral of LlYk = l/k in the form of a summation, avoiding k = O.

5.23. Express a finite integral of LlYk = log k in the form of a summation,



Chapter 6

The Newton Formula

The collocation polynomial can now be expressed in terms of finite differences and factorial
polynomials, The summation formula

k (k) "
Yk = ~ i ~IYo

is proved first and leads directly to the Newton formula for the collocatioii polynomial, which can b~
written as n (k) "

Pk = ~ i ~iyo

An alternative form of the Newton formula, in terms of the argument Xk, Inay be obtained using

Xk :. Xo + kh, and proves to be

(~Yo) " (~2yO) (~nyo)P(Xk) = Yo + h (Xk - xo) + 2! h2 (Xk - XO)(Xk - Xl) + . . ,+ n! hn (Xk - xo) , , , (Xk - xn-l)

The points of collocation are Xo, , , , , Xno At these points (arguments) our polynomial takes the
prescribed vahies Yo, , ", , , Yn'

Solved Problems

6.1. Prove that

Yi = Yo + ~Yo Y2 = Yo + 2~yo + ~2yo Y3 = Yo + 3~yo + 3~2yo + ~3yo

and infer similar results such as

~Y2 = ~Yo + 2~2yo + ~3yo
~ 2Y2 = ~ 2yo + 2~ 3yo + ~ 4yo

This is merely a preliminary to a more 'general result, The first result is obvious, For the second,
with one eye on Table 6.1,

Y2 = Yi + ÔYi = (Yo + ôYo) + (ôYo + ô2yo)

leading at once to the required result. Notice that this expresses Y2 in terms of entries in the top diagonal

of Table 6.1. Notice also that almost identical computations produce

ÔY2 = ôYo + 2ô2yo + ô3yo Ô2Y2 = ô2yo + 2ô3yo + ô4yo

etc" expressing the entries on the "Y2 diagonal" in terms of those on the top diagonaL. Finally,

Y3 = Y2 + ÔY2 = (Yo + 2ôyo + ô2yo) + (ôYo + 2ô2yo + ô3yo)

leading quickly to the third required result, Similar expressions for ÔY3, Ô 2y3, etc., can be written by

simply raising the upper index on each Ô,

Table 6.1

Xo Yo
ôYo

ô2yo
ô3yo

ô4yo

Xl Yi
ôy¡

Ô2Y1
Ô3yi

X2 Y2
ÔY2

Ô2Y2X3 Y3
ÔY3

X4 Y4

43
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6.2. Prove that for any positive integer k, Yk = itO C) ~iyo' (Here ~ °Yo means simply Yo,)

The proof will be by induction. For k = 1, 2, and 3, see Problem 6.1. Assurne the result true when k
is some particular integer p.

P (P) .
YP =:¿ . ß'yo;=0 l

Then, as suggested in the previous problem, the definition of our various differences makes

ßyp = ~ (~) ßi+lyo

also true. We now find

t",ii'

P (P). p+l ( P ) .
YP+ I = YP + ßyp =:¿ . ßlyo +:¿ . _ 1 ßlyo

J~O J i~l J

= Yo+ ~ ((~) + C ~ 1) J ßjyo+ N+1yo

p ( + 1) p+l ( + 1)= Yo +:¿ p. ß% + ßP+lyo =:¿ p. . ßjyoj~1 J j~O J
Problem 4,5 was used in the third step. The summation index may now be changed from j to i if desired,
Thus our result is established when k is the integer P + 1, completing the induction.

6.3. Prove that the polynomial of degree n, 1 1
Pk = Yo + k ~Yo + - k(2) ~2yo + ' , . + - k(n) ~nyo2! n!n 1 n (k)

= ¿: ; kU) ~iyo = ¿: . ~iyo
i=O I. i=O 1

takes the values Pk = Yk for k = 0, 1, . , . , n. This is Newton's formula,

Notice first that when k is 0 only the Yo term on the right contributes, all others being 0, When k is 1
only the first two terms on the right contribute, all others being 0, When k is 2 only the first three terms
contribute. Thus, using Problem 6.1,

Po=Yo Pi = Yo + ßyo = Yi pz = Yo + 2ßyo + ß2yo = yz

and the nature of oUf proof is indicated. In general, if k is any integer from 0 to n, then kU) wil be 0 for
i ? k. (It will contain the factor k - k.) The sum abbreviates to

:¿k 1 (.) .

P= -k'ß'yk .1 0
i~OI'

and by Problem 6.2 this reduces to Yk' The polynomial of this problem therefore takes the same values
as OUf Yk function for the integer arguments k = 0, . . . , n. (The polynomial is, however, defined for any
argument k.)

6.4. Express the result of Problem 6.3 in terms of the argument Xb where Xk = Xo + kh,

Notice first that

k = Xk -Xo
h

k -1 =Xk-I -Xo Xk -Xih -¡ k _ 2 = Xk-2 - Xo _ Xk - X2h --¡
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and so on, Using the symbol P(Xk) instead of Pb we now findA~ A~ A~
P(Xk) = Yo + h (Xk - xo) + 2' h2 (Xk - XO)(Xk - xi) + ' , , + n! hn (Xk - xo) , , , (Xk - xn-i)

which is Newton's formula in its alternative form.

6.5. Find the polynomial of degree three which takes the fqur values listed in the Yk column below

at the corresponding arguments Xk' '
The various differences needed appear in the remaining columns of Table 6,2.

Table 6.2

k Xk Yk AYk A2Yk A3Yk

0 @) CD

G)
1 @ 3 Q)

5 @)
2 CI 8 7

12
3 10 20

Substituting the circ1ed numbers in their places in Newton's formula,2 3 4
P(Xk) = 1 + 2 (Xk - 4) + 8 (Xk - 4)(Xk - 6) +48 (Xk - 4)(Xk - 6)(Xk - 8)

which can be simplified to

P(Xk) = ;4 (2xk - 27x7c + 142xk - 240)

though often in applications the first form is preferable.

6.6 Express the polynomial of Problem 6,5 in terms of the argument k,

Directly from Problem 6,3,
3 4

Pk = 1 + 2k + - k(2) + - k(3)2 6
which is a convenient form for computing Pk values and so could be left as is, It can also be rearranged
into

11 1 2
Pk = 1 +-k --e+-k36 2 3

6.7. Apply Newton's formula to find a polynomial of degree four or less which takes the Yk values
of Table 6,3,

The needed differences are circ1ed, Substituting the circ1ed entries into their pI aces in Newton's
formula,

which is also

4 8 16
Pk = 1 - 2k + - k(2) - - k(3) + - k(4)2 6 24

1
Pk =3(2e - 16k3 + 40e- 32k + 3)
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Table 6.3

A3A2AYkXk

0 1
CD @

CD @
2 -1

2
1

-41

8
,3

-2
2

44 -1
2

5 1

Since k = Xk - 1, this result can also be written as

1
p(xk) = "3 (2x1- 24xt + 100x~ - 168xk + 93)

Supplementary Problems

6.8. Find a polynomial of degree four which takes these values,

Xk I 2 4 6 8 10

I
Yk I

0 0 1 0 0

6.9. Find a polynomial of degree two which takes these values,

~ 0 1 2 3 4 5 6 7

Yk 1 2 4 7 11 16 22 29

6.10. Find a polynomial of degree three which takes these values.

tB
3 4 5 6

Yk 6 24 60 120

6.11. Find a polynomial of degree five which takes these values,

~ 0 1 2 3 4 5

Yk 0 0 1 1 0 0

6.12. Find the cubic polynomial which includes these values,

tE 0 1 2 3 4 5

Yk 1 2 4 8 15 26

(See also Problem 3.12.)
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6.13. Expressing a polynomial of degree n in the form

Pk = ao + a1k(1) + a2k(2) + ' , , + ank(n)

calculate tip b ti 2p k, , . , , ti np k' Then show that the requirement

Pk = Yk k = 0, , , , , n
leads to tipo = tiYo, ti2po = ti2yo, etc. Next deduce

ao= Yo a1 =tiYo
1 2

a2 = 2 ti Yo
1 An

an =,u Yo
n,

and substitute these numbers to obtain on ce again Newton's formula.

6.14. Find a quadratic polynomial which collocates with y(x) = x4 at x = 0, 1, 2.

6.15. Find a cubic polynomial which collocates with y(x) = sin (:rx/2) at x = 0,1,2,3, Compare the two
functions at x = 4, Compare them at x = 5.

6.16. Is there a polynomial of degree four which collocates with y(x)= sin (:rx/2) at x = 0,1,2,3, 4?

6.17. Is there a polynomial of degree two which collocates with y(x) = x3 at x = - 1,0, I?

6.18. Find a polynomial of degree four which collocates with y(x) = lxi at x = -2, - 1,0, 1,2, Where is the
polynomial greater than y(x), and where less?

6.19. Find a polynomial of degree two which collocates with y(x) = VX at x = 0,1,4, Why is Newton's

formula not applicable?

6.20. Find a solution of ti3Yk = 1 for all integers k with Yo = tiYo = ti2yo = O.



Chapter 7

Operators and Collocation Polynomials

OPERATORS

Operators are used here and there in numerical analysis, in particular for simplifying the
development of complicated formulas, Some of the most interesting applications are carried out in a
spirit of optimism, without excessive attention to logical precision, the results subject to verification
by other methods, or checked experimentally,

A number of the formulas to be derived in this chapter are, in part, of historical interest,
providing a view of the numerical priorities of an earlier time, The attached names, such as Newton
and Gauss, indicate their importance in those times, Changes in computing hardware have reduced
their range of application, a point that wil be repeated in Chapter' 12 where certain classic

applications wil be offered,

The specific operator concepts now to be usedßre these:

1. The operator /) is defined by
/)Yk = Yk+i - Yk

We now think of /) as an operator which when offered Yk as an input produces Yk+i - Yk as
an output, for all k values under consideration,

L; ~ 0 ~ I Yk+i-Yk

The analogy between operator and an algorithm (as described inChapter 1) is apparent,
2, The operator E is defined by

EYk = Yk+i

Here the input to the operator is again Yk' The output is Yk+1

0~0~c;
Both /) and E have the linearity property, that is,

/)(CiYk + Cizd = Ci /)Yk + Ci /)Zk

E(CiYk + Cizk) = CiEYk + CiEzk

where Ci and Ci are any constants (independent of k). All the operators to be introduced
wil have this property,

3, Linear combinations of operators. Consider two operators, call them Li and Li, which

produce outputs Li Yk and LiYk from the input Yk, Then the sum of these operators is
defined as the operator which outputs LiYk + LiYk'

o ~ i Li+Li I ~ I LiYk+LiYk

A similar definition intro duces the difference of two operators,

48
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More gene rally , if Cl and C2 are constants (independent of k) the operator
C1L1 + C2L2 produces the output C1L1Yk + C2L2Yk'

Q -- I C1L1 + C2L2/ -- I CiL1Yk + C2L2Yk I

4, The product of operators Li and L2 is defined as the operator which outputs L1L2Yk' A

diagram makes this clearer.

c; . -- c; -- ~ -- c; -- i L1L2Yk 1
The operator Li is applied to the output praduced by L2, The center three parts of the
diagram together represent the operator L1L2,

LJ -- EJ -- I L1L2Yk/
With this definition o(product, numbers such as the Cl and C2 above mayaiso be thought
of as operators, For instance, C being any number, the operator C performs a
multiplication by the number C.

5, Equality of operators. Two operators Li and L2 are called equal if they produce identical
outputs for all inputs under consideration, In symbols,

Li =L2 if L1Yk = L2Yk

for all arguments k under consideration, With this definition a comparison of outputs shows
at once that for any operators Li, L2, and L3,

Li + L2 = L2 + Li

Li + (L2 + L3) = (Li + L2) + L3

L1(L2L3) = (L1L2)L3

L1(L2 + L3) = LiL2 + LiL3

but the commutative law of multiplication is not always true:

LiL2*L2Li

if either operator is a number C, however, equality is obvious fram a comparison of
outputs,

CLi=LiC

6, Inverse operators. For many of the other operators we shall use, commutativity wil also be
true, As a special case, Li and L2 are called inverse operators if

LiL2 = L2Li = 1

In such a case we use the symbols

1L-I=-Li = 2 L2
1L2=Lii= Li

The operator 1 is known as the identity operator and it is easy to see that it makes
t . L = L . 1 for any operator L.
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7, Simple equations relatig Ll and Einclude, among others,

E = 1 + Ll Ll2 = E2 - 2E + 1

ELl = LlE Ll3 = E3 - 3E2 + 3E - 1

Two related theorems, already proved earlier by other means, appear as follows in
operator symbolism:

Llk = to (-lyC)Ek-1 Ek = f (~) Ll1
1=0 1

8, The backward ditference operator V is defined by
VYk = Yk - Yk-I

and it is then easy to verify that
VE = EV = Ll

The relationship between V and E-1 proves to be
E-1 = 1- V

and leads to the expansion

~ k(k + 1) , . , (k + i - 1) .
Yk = Yo + L. .1 V'Yoi=1 I.

for negative integers k,

9, The central ditfer,ence operator is defined by
0= EII2 -' E-1I2

It follows that OEI/2 = Ll, In spite of the fractional arguments this is a heavily used
operator. It is closely related to the following operator.

10, The averaging operator is defined by

¡. = ~ (É1I2 + E-1/2)2

and is the principal mechanism by which fractional arguments can be eliminated from
central difference operations,

COLLOCATION POLYNOMIALS

The collocation polynomial can now be expressed in a variety of alternative forms, all equivalent
to the Newton formula of Chapter 6, but each suited to somewhat different circumstances, We

discuss the following, which find use beginning with Chapter 12.

1, Newton's backward formula

k(k+1) k",(k+n-1)
Pk=Yo+kVyo+ 2 V2yo+"'+ Vnyo! n!

represents the collocation polynomial which takes the values Yk for k = 0, -1, ., , , -no

2, The Gauss forward formula may be obtained by developing the relationship between E and
o and reads

~ r(k+i-1)" 2/-1 (k+i-1) 21 JPk = Yo + t:1 L 2i _ 1 0 YII2 + 2i 0 Yo
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if the polynomial is of even degree 2n and collocation is at k = -n" , , , n, It becomes

_~((k+i-l)021 (k+l)021+1 JPk-L, 2' Yo+ 2'+1 Y1I21=0 1 1
if the polynomial is of odd degree 2n + 1 and collocation is at k = -n, . . , , n + 1.

3, The Gauss backward formula may be derived in a similar way. Foreven degree it takes the
form

~ ((k + i-I) 21-1 (k + i) so21 J
Pk = Yo + 6. 2i _ 1 0 Y -112 + 2i v Yo

with collocation again at k = -n, , . . , n, One principal use of the two formulas of Gauss is
in deriving Stirling's formula.

4. Stirling's formula is one of the most heavily applied forms of the collocation polynomiaL. It

reads

Pk = Yo + (~) otiyo + (~) (~) 02yo + (k ; 1) 03tiyo

(~)(k + 1) 04 , , ,+ (k+ n -1) 02n-1 +(~)(k + n -1) 02n+ 4 3 Yo + 2n - 1 tiyo 2n 2n _ 1 Yo
and is a very popular formula. Needless to say, collocation is at k = -n, . , . , n,

5. Everetts formula takes the form

(k) (k + 1) 2 (k + 2) 4 ( k + n) 2nPk = 1. Y1 + 3 0 Y1 + 5 0 Y1 + ' , ,+ 2n + 1 0 Y1

_ (k - 1) _ (k) 02 _ (k + 1) 04 _'" _ (k + n - 1) 02n1 Yo 3 Yo 5 Yo 2n + 1 Yo
and may be obtained by rearranging the ingredients of the Gauss forward. formula of odd
degree, Collocation is at k = -n, , . , , n + 1. Note that only even differencesappear.

6, Bessel's formula is arearrangement of Everetts and can be written as

Pk = tiY112 + (k - Ð OY1/2 + (~)ti02Y1/2 + Hk - ÐG)03y112

(k+n-i) 2 (1)( 1)(k+n-i) 2n+1+ ' , , + 2n tio nY1/2 + 2n + 1 k - 2 2n 0 Y1I2

Solved Problems

7.1. Prove E = 1 + Ll,

By definition of E, EYk = Yk+l; and by definition of 1 + A,

(1 + A) = 1 ' Yk + AYk = Yk + (Yk+1 - Yk) = Yk+1

Having identical outputs for all arguments k, the operators E and 1 + Aare equal. This result can also
be written as A = E - 1.

7.2. Prove E Ll = LlE,

EAYk = E(Yk+l - Yk) = Yk+2 - Yk+1 and AEYk = AYk+1 = Yk+2 - Yk+I
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The equality of outputs makès the operators equal. This is an example in which the commutative law of
multiplication is true.

7.3. Prove ~2=E2-2E+l,
Using various operator properties,

A2 = (E - l)(E - 1) = E2 - 1. E - E' 1 + 1 = E2 - 2E + 1

k "(k)
7.4. Apply the binomial theorem to prove ~ kyo = Æo ( - i)' i Yk-i'

The binomial theorem, (a + bl = t e)ak-ibi, is valid as long as a and b (and therefore a + b)

commute in multiplication, In the present situation these elements wil be E and - 1 and these do
commute, Thus,

/)/ = (E - II = i (- 1r(~)Ek-ii=O I
Noticing that Eyo = Yi, E2yo = Y2' etc" we have finally

k ~ "(k)
A Yo = f2 (- I)' i Yk-

which duplicates the result ofProblem 3.5.

k (k) "
7.5. Prove Yk = I: . Syo'

i=O I

Since E = 1 + A, the binomial theorem produces Ek = (1 + A)k = t e) Ai, Applying this operator

to Yo, and using the fact that Ekyo = Yk, produces the required result at once, Note that this duplicates

Problem 6,2,

7.6. The backward ditference is defined by VYk = YÆ - Yk-1 = ~Yk-1' Clearly it involves assigning a
new symbol to Yk -.Yk-i, Show that VE = EV =~, E-1 = i - V,

VEYk = VYk+l = Yk+l - Yk = AYk EVYk = E(Yk - Yk-1) = Yk+1 - Yk = AYk

Since these are true for all arguments k, we have VE = EV = A = E - 1.
Using the symbol E-1 for the operator defined by E-1Yk = Yk-I, we see that EE-IYk and E-1EYk are

both Yk' In operator language this means that these two operators are inverses: EE-I = E-1E = 1.

Finally, as an exercise with operator calculations,

v = E-1EV = E-1A = E-1(E - 1) = 1 - E-I and E-1 = 1 - V

7.7. Backward differences are normally applied only at the bottom of a table, using negative k
arguments as shown in Table 7,1. Using the symbols V2YÆ = VVYÆ, V3YÆ = VV2Yb etc" show

that ~nYk = VnYk+n'

Since A = EV, we have An = (EVr. But E and V commute, so the 2n factors on the right side may
be rearranged to give An = vnEn. Applying this to Yb AnYk = vnEnYk = VnYk+n'
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Table 7.1

k x y

-4 X-4 Y-4
VY-3

-3 X-3 Y-3 V2Y_i

VY-2 V3Y_i

-2 X-2 Y-2 V2Y_1 V4yo

VY-i V3yo

-1 X-I Y-I V2yo

VYo

0 Xo Yo

7.8. Prove that

Y-1 = Yo - VYo Y-2 = Yo - 2Vyo + V2yo Y-3 = Yo - 3Vyo + 3V2yo - V3yo

-kk(k+1)"'(k+i-1) .
and that in general for k a negative integer, Yk = Yo + i~1 i! V'Yo'

Take the general case at once: Yk = Ekyo = (E-I)-kyo = (1 - V)-kyO' With k a negative integer the

binomial theorem applies, making

= ~ (_l)i(-k)Vi = ~ (_l)i (-k)(-k - 1)' "(-k - i + l)ViYk L. ,Yo Yo + L.. " Yo;=0 L ;=1
~ k(k + 1) , , , (k + i-I) V'

= Yo + L. ., 'yoi~I 1.
The special cases now follow for k = - 1, -2, -3 by writing out the sum,

7.9. Prove that the polynomial of degree n which has values defined by thefollowing formula

reduces to Pk = Yk when k = 0, -1, ' , , , -n, (This is Newton's backward difference formula,)

k(k + 1) k ' , . (k + n - 1)
Pk=yo+kVyo+ V2yo+"'+ , vnyo~! n,

.ç k(k + 1) . . . (k + i - 1) t"i
= Yo + LJ ., v Yoi=1 1.

The proof is very much like the one in Problem 6.3. When k is 0, only the first term on the right
side contributes, When k is - 1, only the first two terms contribute, all others being zero, In general, if k
is any integer from 0 to -n, then k(k + 1) , . , (k + i-I) wil be 0 for i? -k, The sum abbreviates to

~ k(k + 1) , , , (k + i-I) Vi
Pk = Yo+ L. ., Yoi~I 1.

and by Problem 7,8 this reduces to Yk' The polynomial of this problem therefore agrees with our Yk
function for k = 0, - 1, , , , , -no

7.10. Find the polynomial of degree three which takes the four values listed as Yk in Table 7,2 at the
corresponding Xk arguments,

The differences needed appear in the remaining columns of Table 7,2,
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Table7.2

k Xk Yk VYk V2Yk V3Yk

-3 4 1

2

-2 6 3 3

5 8)
-1 8 8 ø

@
0 10 @

Substituting the circled numbers in their places in Newton's backward difference formula, -7 4
Pk = 20 + 12k +2k(k + 1) +'6k(k + l)(k + 2)

Notice that except for the arguments k this data is the same as that of Problem 6.5, Eliminating k by the
relation Xk = 10 + 2k, the formula found in that problem

1
P(Xk) = 24 (2xk - 27x¡ + 142xk - 240)

is again obtained, Newton's two formulas are simply re 
arrangements of the same polynomiaL. Other

rearrangements now follow.

7.11. The central difference operator 0 is defined by 0 = E1/2 - E-1I2 so that Dy1I = Y1 - Yo = L\yo =

VY1, and so on, Observe that E1/2 and E-1/2 are inverses and that (E1I2? = E, (E-1/2? = E-1,
Show that L\nYk = OnYk+n12'

From the definition of 0, we have OEII2 = E - 1 = A and An = onEn12. Applied to Yb this produces

the required result.

7.U. In 0 notation, the usual difference table may be rewritten as in Table 7,3,

Table 7.3

k Yk Ô ô2 ô3 ô4

-2 Y-2
OY-3/2

-1 Y-1 02Y_1

°Y-1I2 03Y_l/2

0 Yo
02yo 04yo

OYI/2 03Yi/2

1 Y1
02yi

OY3/2

2 Y2

Express 0Yl/2, 02yo, 02y1l2, and 04yo using the L\ operator.

By Problem 7.11, oYl/ = Ayo, 02yo = A2y_l, 03Y1/2 = A3y_i, 04yo = A4Y_2'
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7.13. The averaging operator ¡i is defined by ¡i = !(E1/2 + E-1I2) so that ¡iYÍi2 = !(Yl + Yo), and so on,
Prove ¡i2 = 1 + !o2,

First we compute ¿P = E - 2 + E-1, Then tt2 = HE + 2 + E-1) = !(62 + 4) = 1 + !62.

7.14. Verify the following for the indicated arguments k:

k = 0, 1 Yk = Yo + (~) OY1I2

Yk = Yo + (~) OY1I2 + (~) o2yo

(k) (k) 2 (k + 1) 3Yk = Yo + 1 OY1I2 + 2 O Yo + 3 O Y1I2

(k) (k) 2 (k + 1) 3 (k + 1) 4Yk = Yo + 1 OY1I2 + 2 0 Yo + 3 O Yl/ + 4 O Yo,

k= -1, 0,1

k= -1, 0,1,2

k= -2, -1,0,1,2

For k = 0 only the Yo terms on the rightcontribute, When k = 1 all right si des correspond to the
operator

1 + 6E1I2 = 1 + (E - 1) = E

which does produce Yi' For k = - 1 the last three formulas lead to

1 - 6E1I2 + 62 = 1 - (E - 1) + (E - 2 + E-1) = E-I

which pro duces Y_i.When k = 2 the last two formulas bring

1 + 26E1/2 + 62 + 63E1I2 = 1 + 2(E - 1) + (E - 2 + E-I)(l + E- 1) =' E2

producing Y2' Finally when k = - 2 the last formula involves

1 - 26E1I2 + 362 - 63EI12 + 64 = 1 - 2(E - 1) + (E - 2 + E-I)(3 - (E - 1) + (E - 2 + E-1)) = E-2

leading to Y-2'
The formulas of this problem generalize to form the Gauss forward formula, It represents a

polynomial either of degree 2n

~ ((k + i-I) 21-1 (k +i - 1) 21 JPk = Yo + ;: 2i _ 1 6 Y1I2 + 2i 6 Yo

taking the values Pk = Yk for k = -n, . , , , n, or of degree 2n + 1

= ~ ((k + i-I) 62i + ( k + i) 621+1 J
Pk L. 2' Yo 2' + 1 Y1I21=0 I I

taking the values Pk = Yk for k = -n, . . , , n + 1. (In special cases the degree may be lower.)

7.15. Apply Gauss' formula with n = 2 to find a polynomial of degree four or less which takes the Yk
values in Table 7.4,

The differences needed are listed as usual. This resembles a function used in ilustrating the two
Newton formulas, with a shift in the argument k and an extra number pair added at the top. Since the
fourth difference is 0 in this example, we anticipate a polynomial of degree three. Substituting the
circled entries into their places in Gauss' formula,

3 4
Pk = 3 + 5k + 2 k(k - 1) +"6 (k + l)k(k - 1)

If k is eliminated by the relation Xk = 6 + 2k, the cubic already found twice before appears on ce again,
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Table 7.4

k Xk Yk

-2 2 -2
3

-1 4 1 -1
2 4

0 6 Q) Q) @
æ @

1 S S 7

12

2 10 20

7.16. Apply Gauss' forward formula to find a polynomial of degree four or less which takes the Yk
values in Table 7.5,

The needed differences are circled.

Table 7.5

k Xk Yk

-2 1 1

-2
-1 2 -1 4

2 -8
0 3 CD e @

@ 0
1 4 -1 4

2

2 5 1

Substituting into their places in the Gauss formula,

_ _ 2k _ 4 k(k - 1) (k + l)k(k - 1) 6 (k + l)k(k - l)(k - 2)Pk - 1 2 + 8 6 + 1 24
which simplifies to 1

Pk =3 (2k4 - se + 3)

Since k = Xk - 3, this result can also be written as

( ) 1( 4 3 0P Xk = 3 2xk - 24xk + 100xk - 168xk +93)

agreeing, of course, with the polynomial found earlier by Newton's formula.

7.17. Verify that, for k = -1, 0, i,

(k) (k + 1) 2Yk = Ya + 1 ÓY -112 + 2 Ó Ya

and, for k = -2, -1,0,1,2,

(k) (k + 1) 2 (k + 1) 3 (k + 2) 4Yk = Ya + 1 óy -112 + 2 Ó Ya + 3 Ó Y -112 + 4 óYa
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For k = 0, only the Yo terms on the right contribute. When k = 1 both formulas involve the operator

1 + 6E-li2 + 62 = 1 + (1 - E-1) + (E - 2 + E-1) = E

which does produce Yi, For k = -1 both formulas involve

1 - 6E-1/2= 1 - (1 - E-1)= E-1

which does produce Y_i' Continuing with the second formula, we find, for k = 2,

1 + 26E-li2 + 36z + 63E-li2 + 64 = 1 + 2(1 - E-I) + (E - 2 + E-1)(3 + 1 - E-1 + E - 2 + E-1) = E2

and, for k = -2,

1 - 26E-1I2 + 62 - 63E-1/2 = 1 - 2(1 - E-1) + (E - 2 + E-1)(1 - 1 + E-1) = E-z

as required,
The formulas of this problem can be generalized to form the Gauss backward formula, It represents

the same polynomial as the Gauss forward formula of even order and can be verified as above.

.ç ((k + i-I) 2;-1. (k + i) 2; J
Pk=YO+6 2i-1 6 Y-li2+ 2i 6yo

7.18. Prove
(k ~ i) + (k + i.- 1) = ~ (k ~ i - 1),21 21 1 21 - 1

From the definitions of binomial coeffcients,

(k ~ i) + (k + i. - 1) = (k ~ i - l)((k + i) + (k _ i)J ~21 21 21-1 21
as required,

7.19. Deduce Stirling's formula, given below, from the Gauss formulas,

Adding the Gauss formulas for degree 2n term by term, dividing by two, and using Problem 7,18,

~ ((k + i-I) 2;-1 k (k + i-I) 2; JPk = Yo + 6 2i _ 1 6 ¡iYo + 2i 2i _ 1 6 Yo

(k) k (k) (k + 1) k (k + 1)=Yo+ 1 6¡iyo+i 1 62yo+ 3 63¡iyo+¡ 3 64yo

(k + n - 1) "2n-l k (k + n - 1) "Zn
+ . , , + u ¡iYo + - u Yo2n-1 2n 2n-1

This is Stirling's formula.

7.20. Apply Stirling's formula with n = 2 to find a polynomial of degree four or less which takes the
Yk values in Table 7,6,

The differences needed are again listed, Substituting the circ1ed entries into their pi aces in Stirling's
formula,

Pk=3+2+5k+3e+ 4+4(k+1)k(k-1)2 2 2 6
which is easily found to be a minor re arrangement of the result found by the Gauss forward formula.

7.21. Prove
(k + i - 1) ö2; + ( k + i.) Ö2;+1 = ( k + i) ö2; _ (k + i - 1) ö2; ,2i Yo 2i + 1 Y1I2 2i + 1 Yi 2i + 1 Yo
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Table 7.6

k Xk Yk Ö Öl Ö3 Ö4
,

-2 2 -2
3

-1 4 1 -1
(6 @

0 6 Q) Q) @
(2 @

1 8 8 7
12

2 10 20

The left sidebecomes (using Problem 4,5)

(( k + i) _ (k + i - l)J 62i + (k + i) 62i+I = (k + i )(62i(1 + 6El12) J _ (k + i-I) 62i2i + 1 2i + 1 Yo 2i + 1 Y1I2 2i + 1 Yo 2i + 1 )'0
_ ( k + i) 62i (k + i-I) 62i- 2i + 1 Y1 - 2i + 1 Yo

where in the last step we used 1 + 6E1I2 = E,

7.22. Deduce Everett's formula from the Gauss forward formula of odd degree,

Using Problem 7.21, we have at oiice

~ (( k + i) . 2i (k + i-I) :ü JPk = f5 2i + 1 6 Yi - 2i + 1 6 Yo

(k) (k + 1) (k + 2) ( k + n )= 1 Y1 + 3 62Yi + 5 64yi + ' , ,+ 2n + 1 62nYi

_ (k - 1) _ (k) 62 _ (k + 1) 64 _'" _ (k + n - 1) 62n1 Ya 3 Ya 5 Ya 2n + 1 Yo
which is Everett's formula. Since it is arearrangement of the Gauss formula it is the same polynoriinal
of degree 2n + 1, satisfying Pk = Yk for k = -n, ' . , , rì + 1. It is a heavily used formula because of its
simplicity, only even differences being involved,

7.23. Apply Everett's formula with n = 2 to find a polynomial of degree five or less which takes the
Yk values of Table 7,7,

The needed differences are circled,

Table 7.7

k Xk Yk Ö Öl ö3 ö4

-2 0 0
-1

-1 1 -1 10

CD
9

@)
108

@)0 2
127 324

1 3 @ @ @
569 660

2 4 704 1102

1671

3 5 2375
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Substituting the circ1ed entries into their places inEverett's formula,

Pk = 135k + 442 (k + 1)k(k -1) + 336 (k + 2)(k + l)k(k - l)(k - 2)6 120
_ 8(k _ 1) _ 118 k(k - l)(k - 2) 216 (k + l)k(k - 1)(k - 2)(k - 3)6 120

which can be simplified, using Xk = k + 2, to P(Xk) = x~ - xk - xk.

7.24. Show that

(k + i-I) 2; k - ~ (k + i-I) 2;+1 _ ( k + i) o2; _ (k + i-I) 2;2i ¡io Y1I2 + 2i + 1 2i O Y1I2 - 2i + 1 Y1 2i + 1 O Ya
The left side corresponds to the operator

oZi(k + i.- I)! (E + 1 + 2~ - 1 (E _ l)J = oZi(k + i.- 1)( ~ + i E k ~ i-I)21 2 21 + 1 21 21 + 1 21 + 1
The right side corresponds to the operator

'OZi(( k + i)E _ (k + i - l)J = oZi(k + i - 1)(~ E k - i-I)2i+1 2i+1 2i 2i+1 2i+1
so that both sides are the same,

7.25. Show that Bessel's formula is arearrangement of Everetts formula,.

Bessel's formula is

~((k+i-1) Zi 1 ( 1)(k+i-1) Zi+I JPk = 6 2i tlO YiiZ + 2i + 1 k - 2 2i O YiiZ

= tlYIl2 + (k - Ð OYiiZ + (~)tlOZYiiZ + ~ (k - Ð(~) O3Y1l2

(k + n - 1) Zn 1 ( l)(k + n - 1), 2n+1+ ' , , + 2n tlO YiiZ + 2n + 1 k - 2 2n O YiiZ
By the previous problem it reduces at once to Everett's,

7.26. Apply Bessel's formula with n = 1 to find a polynomial of degree three or less which takes the
YÆ values in Table 7,8,

Table 7.8

k Xk Yk'

-1 4 1

2
0 6 Q) Q)

(2 @)
1 8 @ ø

12
2 10 20

The needed differences are circ1ed and have been inserted into their pI aces in Bessel's formula, Needless
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to say, the resulting polynomial is the same one already found by other formulas.

_ 3 + 8 5(k 1) 3 + 7 k(k - 1) 1 ()( 1) k(k - 1)P --+ -- + +- 4k--k 2 2223 22
This can be verified to be equivalent to earlier results.

Supplementary Problems

7.27. Prove V= OE-l12 = 1 - E-I = 1 - (1 + M-I.

7.28. Prove VI + oZ¡iz = 1 + !oz.

7.29. Prove EIIZ = ¡i +!o and E-IIZ = ¡i - !o,

7.30. Two operators Li and Lz commute if L¡Lz = LzL¡, Show that ¡i, O, E, b, and V all commute with one
another,

7.31. Prove ¡io = !bE-I + !b,

7.32. Prove b = !OZ + oV1 + ~oz,

7.33. Apply Newton's backward formula to the following data, to obtain a polynomial of degree four in the
argument k:

k -4 -3 -2 -1 0

Xk 1 2 3 4 5

Yk 1 -1 1 -1 1

Then use Xk = k + 5 to convert to a.polynomial in Xk' Compare the final result with that of Problem 6,7,

7.34. Apply Newton's backward formula to find a polynomial of degree three which includes the following
Xk, Yk pairs: ~~ 3 4 5 6

1206 24 60

Using Xk = k + 6, convert to a polynomial iIl Xk and compare with theresult of Problem 6.10.

7.35. Show that the change of argument Xk = Xo + kh converts Newton's backward formula into

. VYo VZYo Vnyo
P(Xk) = Yo + h (x - xo) + 2!hz (x - xo)(x - X-i) + ' , , + n !hn (x - xo) , , , (x - X-n+1)

7.36. Apply Problem 7,35 to the data of Problem 7,34 to produce the cubic polynomial directly in the
argument Xk'

7.37. Apply the Gauss forward formula to the data below and compare the result with that of Problem 6,8.
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k -2 -1 0 1 2

Xk 2 4 6 8 10

Yk 0 0 1 0 0

7.38. Apply the Gauss backward formula to the data of Problem 7,37.

7.39. Apply the Gauss backward formula to the data of Problem 7.34, with the argument k shifted so that
k = 0 at x = 6,

7.40. Apply the Gauss forward formula to the data below and compare the result with that of Problem 6,11.

k -2 -1 0 1 2 3

Xk 0 1 2 3 4 5

Yk 0 0 1 1 0 0

7.41. Verify that for k = -1, 0

Yk = Ya + (~) OY-I/2

and that for k = -2, -1,0, 1

(k) (k + 1) Z (k + 1) . 3Yk = Ya + 1 oY-lI + 2 O Ya + 3 O Y-I/Z

These can also be considered forms of the Gauss backward formula, the degree of these polynomials
being odd rather than even,

7.42. Apply Stirling's formula to the data of Problem 7.37, '

7.43. Apply Stirling's formula to the data of Problem 6,9, Choose any three equally spaced arguments and let
them correspond to k = -1, 0, 1.

7.44. Apply Everetts formula to the data of Problem 7,34, with the center pair of arguments corresponding to
k=O and 1.

7.45. Apply Everetts formula to the data of Problem 7.40,

7.46. Apply Everetts formula to the data of Problem 6,9,

7.47. Apply Bessel's formula to the data of Problem 7.44,

7.48. Apply Bessel's formula to the data of Problem 7.40,

7.49. Prove £1IZ = !o + f. = (1 + ~OZ)1I2 + !o = 1 + !o + loz + ' . , ,

7.50. Show that f.-l = 1 - lo2 + I~8O4 - 1tZ4O6 +, , '.

7.51. Prove O(hgk) = f.hogk + f.gkok



Chapte'r 8

Unequally Spaced Arguments

The collocation polynomial for unequally spaced arguments Xo, , , , , Xn may be found in several
ways, The methods of Lagrange, determinants, and divided differences wil be presented in this
chapter.

1, Lagrange's formula is n

p(x) = :¿ L¡(X)Yi
i=O

where Li (X ) is the Lagrange multipliedunction

Li(x) = (x -Xo)(r -Xl)'" (x -Xi-I)(X -Xi+l) '." (x -Xn),
(Xi - XO)(Xi - Xl) , , , (Xi - Xi-I)(Xi - Xi+l) , , , (Xi - Xn)

having the properties

Li(Xk) = 0 for.k =1 i L;(Xi) = 1

Lagrange's formula does represent the collocation polynomial, that is, P(Xk) = Yk for
k = 0, , , , , n, The function

n

n(x) = (x - xo) , , , (x - xn) = I1(x - Xi)
i=O

may be used to express the Lagrange multiplier function in the more compact form
n(x)

L.(x) =i (x - xi)n' (x;)

The closely related function

Fk(x) = I1 (x - Xi)
i*k

leads to a second compact representation of the Lagrange multiplier function,

L.(x) = F;(x)i F;(Xi)

2, A determinant form of the collocation polynomial p(x) is

p(X) 1 X x2 " , xn

Yo 1 Xo x5 " , Xô

Yi 1 Xl xi " , x'j 1=0
....................... .
Yn 1 Xn x2 " , xnn n

since P(Xk) = Yk for k = 0, . . . , n, It finds occasional use, mostly in theoretical work.

3, The first divided difference between Xo and Xl is defined as

Yi - YoY(XO,Xi)=-Xl -Xo

with a similar formula applying between other argument pairs,

62
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Then higher divided differences are. defined in terms of lower divided differences, For
example,

Y(Xo, x¡,.xz) =y(Xi, xz) - Y(Xo, Xl)
Xz-Xo

is a second difference, while

( ) _ y(x¡, , , , , xn) - y(xo, , . . , Xn-l) ,y Xo, X¡, , , . , Xn -
Xn -Xo

is an nth difference, In many ways these differences play roles equivalent to those of the
simplerdifferences used earlier.

A difference table is again a convenient 'device for displaying differences, the standard
diagonal form being used.

',:.:t;c':';
Xo Yo

y(xo, Xl)
y(xo, Xl, xz)

y(xo, Xl' Xz, X3)
Y(Xo, Xl' Xz, X3, X4)

Xl Yi
Y(Xi' Xz)

Y(Xi' Xz, X3)
Y(X¡, Xz, X3, X4)

Xz yz
Y(Xz, X3)

Y(Xz, X3, X4)X3 Y3
Y(X3' X4)

X4 Y4

The representation theorem

,n y¡
Y(Xo, Xl' ' , , , Xn) = ¿: r(x.)

1=0 I L

shows hòw each divided difference may be represented as a combination of Yk values, This should be
compared with a corresponding theorem in Chapter 3,

The symmetry property of dlvided differences states that such differences are invariant under all
permutations of the arguments Xb provided the Yk values are permuted in thesame way. This very
useful result is an easy consequence of the representation theorem,

Divided differences and derivatives are related by

y(n+I)(S)
y(x, Xo, , , , , xn) = (n + 1)!

In the case of equally spaced arguments, divided differences reduce to ordinary finite differences;
specifically,

~nyo

y(xo, X¡, . . , , xn) = n! hn

A useful property of ordinary finite differences may be obtained in this way, namely,

~nyo = y(n)(s)hn

For a function y(x) with bounded derivatives, all yn(x) having abound independent of n, it
follows that, for small h,

lim ~nyo = 0

for increasing n, This generalizes the result found earlier for polynomials and explains why the
higher differences in a table are often found to tend toward zero,

The collocation polynomial may now be obtained in terms of divided differences, The classic
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result is Newton's divided dierence formula,

p(x) = Yo + (x - xo)y(xo, Xi) + (x - Xo)(X - Xi)Y(Xo, Xi, Xz)

+ ' . , + (x - Xo)(X - Xi) , , ,(x - Xn-i)Y(Xo, , , , , Xn)

the arguments ,Xk not being required to have equal spacing, Thisgeneralizes the Newton formula of
Chapter 6, anrl in the case of equal spacing reduces to it,

The error y(x) - p(x), where y(x) and p(x) collocate at the arguments xo, , , , ,Xn, is stil given
by the formula obtained earlier,

yCn+ i)( ;)n(x)
y(x) - p(x) = (n + 1)!

since we are stil discussing the same collocation polynomial p(x), An alternative form of this error,
using divided differences, is

y(x) - p(x) = y(x, Xo, ' , , , xn)(x - xo) , , , (x - xn)

Solved Problems

8.1. What values does the Lagrange multiplier function

L.(x) = (x - xo)(x - Xi) , . , (x - X¡_i)(X - X¡+i) , . , (x - Xn)
, (X¡ - Xo)(X¡ - Xi) , , , (X¡ - X¡_i)(X¡ - X¡+i) , " (X¡ - xn)

take at the data points x = Xo, Xl' , , , , Xn?

Firstnotice that the numerator factors guarantee L;(Xk) = 0 for k =1 i, and then the denominator
factors guarantee that L¡(x¡) = 1.

n

8.2. Verify that the polynomial p(x) = I: L¡(x)y¡ takes the value Yk at the argument Xb for¡=o .
k = 0, ' , , n, This is Lagrange's formula for the collocation polynomiaL.

n

By Problem 8,1, P(Xk) = L L¡(xdy¡ = Lk(Xk)Yk = Yk so that Lagrange's formula does provide the
collocation polynomial. ¡~O

n

8.3. With n(x) defined as the product n(x) = TI (x - Xi), show that¡=o

Lk(x) = n(x)
(x - xk)n' (xd

Since .i(x) is the product of n + 1 factors, the usual process of differentiation produces .i' (x) as the
sum of n + 1 terms, in each of which one factor has been differentiated. If we define

Fk(x) = TI (x -Xi)
i*k

to be the same as .i(x) except that the factor x - Xk is omitted, then

.i'(X) = Fo(x) +, , ,+ F;(x)

But then at x = Xk all terms are zero except Fk(Xk), since this is the only term not containing x - Xk' Thus

.i'(Xk) = r~(Xk) = (Xk - xo) , , , (Xk - Xk-i)(Xk - Xk+l) . , , (Xk - xn)

n(x) Fk(x) = Fk(x) = Lk(x)

(x - Xk).i'(Xk) .i'(Xk) Fk(Xk)
and
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8.4. Show that the determinant equation

p(x) i x x2 " , xn

Ya i Xa xõ .. , Xô

Yi i Xl xi " , x7 1=0

Yn i Xn X~ ,., X~

also provides the collocation polynomial p(x),

Expansion of this determinant using minors of the first-row elements would clearly produce a

polynomial of degree n. Substituting x = Xk and p (x) = Yk makes two rows identical so that the
determinant is zero, Thus P(Xk) = Yk and this polynomial is the collocation polynomial. As attractive as
this result is, it is not of much use due to the diffculty of evaluating determinants of large size.

8.5. Find the polynomial of degree three which takes the values prescribed below,

Xk 0 1 2 4

Yk 1 1 2 5

The polynomial can be written directly,

( ) = (x - l)(x - 2)(x - 4) 1 + x(x - 2)(x - 4) 1 + x(x -l)(x - 4) 2 + x(x - l)(x - 2) 5P x (0 - 1)(0 - 2)(0 - 4) 1(1 - 2)(1 - 4) 2(2 - 1)(2 - 4) 4(4 - 1)(4 - 2)

It can be ,rearranged into p(x) = M _x3 + 9xz - 8x + 12),

Compute divided differences through the third for the Yk values in Table 8,1.

The differences are listed in the last three columns,

Table 8.1.

Xk Yk

0 1

0

1 1
ii

1
i-TI

2 2 1
¡;

3i
4 5

For example,

5-2 3
y(2, 4) = 4-2 =2

1 - 0 1
y(O, 1, 2) = 2 _ 0 = 2

~- 1_~
y(l, 2, 4) = 4 _ 1 - 6

i -! __1.
y(O, 1, 2, 4) = 4 _ 0 - 12
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8.7. Prove y(xo, Xi) = Y(Xi, XO), This is ealled symmetry of the first divided difference,

This is obvious from the definition but can also be seen from the fact that

( ) Yo Y1YXO,X1 =-+-XO-X1 X1-XO

since interchanging Xo with x iand Yo with Y1 here simply reverses the order of the two terms on the right,

This procedure can now be applied to higher differences.

8.8. Prove y(xo, Xl' X2) is symmetric,

Rewrite this difference as

y(Xo, xi, xz) =Y(Xi, xz) - y(xo, xi) =~ (Yz - Y1 _ Y1 - Yo)Xz - Xo Xz - Xo Xz - Xi Xl - Xo
~ + .~ + Yz

(xo - xi)(xo - xz) (xi - XO)(Xi - xz) (xz - xo)(xz - Xl)

Interchanging any two arguments Xj and Xk and the corresponding Y values now merely interchanges the
Yj and Yk terms on the right, leaving the overall result unchanged. Since any permutation of the
arguments Xk can be effected by successive interchanges of pairs, the divided difference is invariant
under all permutations (of both the Xk and Yk numbers),

8.9. Prove that, for any positive integer n,
n Yi

y(Xo, Xl' , " , Xn) = 2: P(X.)1=0 I I

where F7(x¡) = (Xi - XO)(Xi - Xl) , , , (Xi - Xi-i)(Xi - Xi+l) , , , (Xi - Xn), This genetalizes the
results of the previous two .problems,

The proof is by induction. We already have this result for n = 1 and 2, Suppose it true for n = k,
Then by definition,

. y(xo, Xi, . . , , Xk+l) =Y(X1, . , . , Xk+1)"' y(xo, . . . , Xk)Xk+1 -Xo

Since we have assumed our result true 'for differences of order k, the coeffcient of Yk on the right, for
i = 1, 2, , , , , k, wil be 1 (1 1 J

(Xi - Xl) , . . (Xi - Xk+1) (Xi - Xo) . . , (Xi - Xk)

where it is understood that the factor (Xi - Xi) is not involved in the denominator products. But this
coeffcient re duces to 1 1

(Xi - xo) . , , (Xi - Xk+l) F7+I(Xi)

as claimed. For i = 0 or i = k + 1 the coeffcient of Yi comes in one piece instead of two, but in both cases
is easily seen to be wh at is claimed in the theorem with n = k + 1, that is,

1

(xo - Xl) , , , (xo - Xk+l)

1

(Xk+1 -xo)'" (Xk+! -Xk)

This completes the induction and proves the theorem.

8.10. Prove that the nth divided difference is symmetric,



CHAP, 8) UNEQUALLY SPACED ARGUMÉNTS 67

This follows at once from the previous problem. If any pair of arguments are interchanged, say xj
and Xb the terms involving Yj and Yk on the right are interchanged and nothing else changes.

8.11. Evaluate the first few differences of y(x) = XZ and x3,

Take y(x) = xi first. Then

xi -x6
y(xo,xi)=-=XI +XoXi -Xo Y(Xo, Xl' Xz) = (Xz + Xl) - (Xi + Xo)Xz -Xo = 1

Higher differences will clearly be 0, Now take y(x) = x3.

Y(Xo, Xi' xz)

xf -x6 z z
y(xo, XI) = - = XI + XiXo + XoXl -Xo

(X~ + XZXi + xi) - (xi + XiXo + X6)
=xo+xI +xz

Xi -Xo

Y(Xo, Xi' xz, X3)
(Xi+XZ+X3)-(XO+Xi+XZ) 1

X3 -Xo

Again higher differences are clearly zero. Notice that in both cases all the differences are symmetrie

polynomials,

8.ll. Prove that the kth divided difference of a polynomial of degree n is a polynomial of degree

n - k if k ~ n, and is zero if k :; n,

Call the polynomial p(x). A typical divided difference is

( ) P(Xi) - p(xo)p Xo, Xl =
Xi-Xo

Thinking of Xo as fixed and XI as the argument" ihe various parts of this formula can be viewed as
functions of Xi' In particular, the numerator is a polynomial in Xl' of degree n, with a zero at XI = Xo, By

the factor theorem the numerator contains Xi - Xo as a factor and therefore the quotient, which is
p(xo, Xi)' is a polynomial in Xl of degree n ~ 1. By the symmetry of p(xo, Xi) it is therefore also a
polynomial in Xo of degree n - 1. The same argument may now be repeated, A typieal second difference
is

p(Xo, Xl' xz) =P(Xi, xz) - p(xo, Xi)
Xz -Xo

Thinking of Xo and Xi as fixed, and Xi as the argument, the numerator is a polynomial in Xz, of degree
n - 1, with a zero at Xz = Xo, By the factor theorem p(xo, XI' xz) is therefore a polynomial in Xz of degree

n - 2, By the symmetry of p(xo, Xi' xz) it is also a polynomial in either Xo or Xi' again of degree n - 2,
Continuing in this way the required result is achieved. An induction is called for, but it is an easy one
and the details are omitted,

8.13. Prove that Newton's divided difference formula

p(x) = Yo + (x - xo)y(xo, Xl) + (x - xo)(x - X I)Y(XO' Xl' XZ)

+ ' , , + (X - Xo)(x - Xl) , , , (X - Xn-I)Y(Xo, , , , , Xn)
represents the collocation polynomiaL. That is, it takes the values P(Xk) = Yk for k = 0, ' . . , n,

The fact that p(xo) = Yo is obvious, Next, from the definition of divid/ed differences, and usingsymmetry, _
YÆ - Yo + (Xk - xo)Y(XO,Xk)

y(xo, xd = y(xo, Xi) + (Xk -Xi)Y(XO, Xi' Xk)

y(xo, Xi' Xk) = y(xo, Xi' xz) + (Xk -xi)y(xo, Xi' Xz, Xk)

y(Xo, . . . ,Xn-i, xd = y(xo, . , . ,xn-i) + (Xk - xn-I)Y(XO' . . . ,Xn-i, xd
. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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For example, the second line follows from

y(Xo, Xl' Xk) = Y(Xi' Xo, Xk) =y(xo, Xk) - Y(X1, xo)Xk-X1 -

For k = 1 the first of these proves p(x i) = .Ýi' Substituting the second into the first brings

Yk = Yo + (Xk - xo)y(xo, Xi) + (Xk - XO)(Xk - Xi)Y(XO, Xi, Xk)

which for k = 2 proves p(xz) = Yz' Successive substitutions verify P(Xk) = Yk for each Xk in its turn until
finally we reach

Yn = Yo + (xn - xo)y(xo, X i) + (xn - xo)(xn - X I)Y(Xo, Xl' XZ)

+'" + (Xn -XO)(Xn -Xi)'" (Xn -Xn_I)Y(XO,' ., , Xn-i, Xn)

which proves p(Xn) = Yn-

Since this Newton formula represents the same polynomial as the Lagrange formula, the two are
just rearrangements of each other.

r 8.14. Find the polynomial of degree three which takes the values given in Table 8,1.

Using Newton's formula, which involves the differençes on the top diagonal of Table 8.1,

p(X) = 1 + (x - 0)0 + (x - O)(x - I)! + (x - O)(x - l)(x - 2)( -~)2 U
whieh simplifies to p(x) = -l-x3 + 9x2 - 8x + 12), the same result as found by Lagrange's formula.

Supplementary Problems

8.15. Use Lagrange's formula to produce a cubic polynomial which includes the following Xb Yk number pairs,
Then evaluate this polynomial for x = 2, 3, 5,

Xk 0 1 4 6

Yk 1 -1 1 -1

8.16. Use Lagrange's formula to produce a fourth-degree polynomial which includes the following Xk, Yk
number pairs. Then evaluate the polynomial for x = 3.

Xk 0 1 2 4 5

Yk 0 16 48 88 0

8.17, Deduce Lagrange's formula by determining the coeffcients ai in the partial fractions expansion

p(X)=i~
n(x) i=OX -Xi

(Multiply both sides by x - Xi and let x approach Xi as limlt, remembering that p(x;) = Yi for collocation.)

Th I . Yie resu t IS ai = --( )'
n Xi
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8.18. 3xz +x + 1 . , .Apply Problem 8.17 to express 3 6 zll 6 as a sum of partial fractlOnsx-x+ x-
ao . ai az-+-+-

X-Xo X-Xi X-Xz

(Hint, Think of the denominator as .i(x) for some xo, Xh Xz and then find the corresponding Yo, Yi, Yz'

This amounts to regarding p (k) as a collocation polynomial. J

8.19. Xz + 6x + 1
Express (Xz _ l)(x _ 4)(x _ 6) as a sum of partial fractions,

8.20. Show that

L () Ix -Xo (x -xo)(x -Xi) (x -xo) , "(x -xn-1)oX = +-+ +"'+
Xo - XI (Xo - Xi)(XO - Xz) (XO - Xi) , , , (XO - Xn)

Similar expansions can be written by symmetry for the other coeffcients,

8.21. Write the three-point Lagrange formula for arguments Xo, Xo + E and Xi and then consider the limit as E

tends to 0, Show that

( )=(Xi-X)(X+Xl-2xo) ( ) (x-XO)(Xi-X) '() (x-xo)Z ( ) !( _ )Z( _ ) "'(f:)P X ( _ ')Z Y Xo + (_') Y Xo + ( _ )Z Y X i + 6 x Xo x X i Y "XI Xo XI Xo Xi Xo
This determines a quadratic polynomial in terms ofy(xo), y'(xo), and y(xi),

8.22. Proceed as in the previous problem, beginning with the Lagrange formula for arguments Xo, Xo + E,

Xl - E, XI to represent a cubic polynomial in terms of y(xo), y'(xo), y(xi), and y'(xi)'

8.23. Calculate divided differences through third order for the following Xk, Yk pairs:

Xk I 0 1 4 6

Yk 1 -1 1 -1

8.24. Find the collocation polynomial of degree three for the Xb Yk pairs of Problem 8,23. Use Newton's

formula, Compare your result with that obtained by the Lagrange formula.

8.25. Rearrange the number pairs of Problem 8,23 as folIows:

Xk 4 1 6 0

Yk 1 -1 -1 1

Compute the third divided difference again, It should be the same number as before, illustrating the
symmetry property.

8.26. Calculate a fourth divided difference for the following Yk values:

Xk 0 1 2 4 5

Yk 0 16 48 88 0
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8.27. Apply Newton's formula to find the collocation polynomial for the data of Problem 8,26, What value
does this polynomial take at x = 3?

1 Xo Yo

1 XI, Y1
8.28. Show that

I ~

Yol
1 Xz Yz

y(xo, Xl' xz) = Z
Yi

\ 1 Xo

XoY(Xo, Xl) = ri

1 Xl xi1 Xl
1 Xz x~

8.29. For y(x) = (x - xo)(x - Xl) , , . (x - xn) = n(x), prove that

Y(Xo, Xl' . . . , xp) = 0

y(xo, Xl" '" Xn, X) = 1

Y(Xo, Xh ' . . , Xn, X, z) = 0

for p = 0, 1, , . " n

for all X

for all x, z

8.30. Show that

Y(Xi' xo) + y(xo, X-i) ( Xi +X-i)
p(x)=Yo+ 2 (X-XO)+Y(Xi, 

Xo, Li)(X-XO) x---

Y(Xz, Xl' Xo, X-i) + y(Xi, Xo, X-i, X-z) ( )( )( )+ 2 X-Xl X-Xo X-X_i
( xz+x-z)+Y(XZ,X1,Xo,L1,Lz)(X-XO)(X-Xi)(X-Li) x- 2

is another way of writing the collocation polynomial, by verifying

P(Xk) = YÆ fork=-2,-1,0,1,2

This is a generalization of Stirling's formula for unequal spacing. It can be extended to higher degree.
Bessel's formula and others can also be generalized,

8.31. Show that for arguments which are equally spaced, so that Xk+I - Xk = h, we have
Anyo

y(xo, Xl' . . , ,Xn) = --hnn.

8.32. Divided differences with two or more arguments equal can be defined by limiting processes. For
example, y(xo, xo) can be defined as lim y(x, xo), where !im X = Xo. This implies that

( ) I, Y (x) - Yo i ( )Y Xo, Xo = 1m Y XoX -Xo

Verify this directly when y(x) = XZ by showing that in this case y(x, xo) = X + Xo so that lim y(x, xo) =
y'(xo)=2xo' Also verify it directly when y(x)=x3 by showing first that in this case y(x,xo)=
XZ +xxo +x6.

8.33. In the second divided difference

y(Xo, x, Xz) =y(X, Xz) - y(xo, Xz)X -Xo

the right side may be viewed as having the form f(x) - f(xo) with Xz considered a constant. If!im X = Xo,we define X - Xo
y(xo, Xo, Xz) = lim y(xo, x, X2)

This implies that y(xo, xo, xz) = y'(x, xz) i X =Xo
Verify this directly when y (x) = x3 by showing first that in this case

y(xo, x, Xz) = X + Xo + Xz while y(x, Xz) = x2 + XXz + X~



Chapter 9

Splines

Instead of using a single polynomial, presumably of high degree, to represent a given function
over an interval to achieve a required accuracy, we may instead join together several polynomial

segments, each of low degree, The classic example is, of course, a set of line segments, each fit to the
given data over a subinterval. Such an approximation is continuous but has a first derivative with
discotitinuities at the interval ends, the corners (Fig, 9-1), It is the basis for elementary interpolations
in tablesand for the trapezoidal rule for numerical integration, The implicit assumption that between
data points the given function is almost linear may be reasonable if the points are close enough
together,

t,~,

IIJIi

I

I

I !/i

I'r-
:r¡

T
.\11

T
Xi¡

Fig, 9.1 A primitive spline,

In Chapter 14 we wil fit parabolic segments (quadratic polynomials ) together to develop
Simpson's rule for numerical integration, Other examples using slightly higher degree polynomials
wil also be given, In all these cases there wil be corners where the segments are joined,

We now consider a method in which cubic segments are pieced together in such a way that the
corners are rounded, both the first and se co nd derivatives of the approximation being continuous,
High-degree polynomials have an oscilatory character. One of degree n can have as many as n - 1
turning points. When such a polynomial representsa given function accurately, it. is usually by
oscillating back and forth across the function, This has undesirable side effects, poor approximation
of the derivative to mention only one, The spline approximation now to be, derived avoids such

oscilations, because it consists of low-degree segments, The word spline is borrowed from the
drafting instrument of the same name, a flexible strip used in drawing curves,

Given an interval (a, b) = I divided into n subintervals by thé points Xo = a, Xl' X2, , , , , Xn = b, a
cubic segment is to be fit on each subinterval, taking specified values Yi at the points Xi; with first and
second derivatives on adjacent subintervals agreeing in value at the join, ,The points Xl to Xn-l are
ealled the nodes, or knots, of the spline (Fig. 9-2), Details of the development of these spline

segments wil be worked out in the solved problems, and examples wil be provided,

_ cubic segments

knot/'- I
(f', f" continuous)

T
Xo

I Yi

l
Xi

T
Xn

Fig.9-2
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Solved Problems

~ì.
i

A polynomial of degree three, a cubic, has four coeffcients, In a common representation

p(x) = Co + C1X + czxz + C3X3

With the conventions of Fig, 9-2, the n cubic segments together wil involve 4n coeffcients,
How does this compare with the number of conditions being imposed upon the spline?

The point is that ordinarily we expect 4n coeffcients to be weIl determined by 4n conditions, Here
we have four conditions to be met at each of the knots Xl to Xn-1, namely, the segment on either side

must reach this point, and the first two derivatives have to agree, This comes to 4n - 4 conditiàns, At
the two endpoints we areasking only for collocation, two more conditions, making a grand total of
4n - 2. The spline is, therefore, not completely defined by the specifications given, Two degrees of
freedom remain, Som~times these are used to make the second derivative zero at the endpoints, leading
to what is called the natural spline, Alternatively one mayrequire the end segments to match the end
derivative values of the given function, if these are known or can be approximated. A third option, of
reducing the specifications at knots Xi and Xn-1, wil also be explored.

9.2. Let the subintervals of Fig, 9-2 be called 11 to In, so that Ii = (Xi-V Xi)' Also define
hi=xi-xi-l, noting that the subintervals need not be of equal length, If Si(X) is the spline

segment on Ii, show that
X. -x X -x. 1S;'(x)=C-1T+Ci h.l-i I

for constants C and i = 1, , , , , n,

On l¡ the spline segment is cubic, so its first derivative wil be quadratic and the second derivative
linear. It remains to verify the continuity at each knot Xk for k = 1, , , . , n - 1. The segment Sk touches
this knot at its right end while Sk+i touèhes it at its left end, The required derivatives are thus

S%(xk) = Ck-1 Xk -Xk + Ck Xk - Xk-Ihk hk

and S" (x+) = C Xk+1 -Xk+ C Xk -Xkk+I k k k+I-hk+i hk+1

both of which reduce to Ck' Continuity is thus assured and we discover that the constants Ck are in fact
the common values of spline second derivatives,

9.3. Integrate the result of the preceding problem twice to obtain the spline segments and then

impose the requirement that segments pass through appropriate knots to determine the
constants of integration,

The two integrations manage

SC) (x¡-xf (X-Xi_i)3 )i X = C-i 6h. + Ci 6h + c¡(X¡ - x + di(x - Xi-I)i i
the last two terms being the linear function introduced by the constants of integration, For collocation at
the knots, we must have Si(Xi-i) = Yi-I and Si(Xi) = Yi' These conditions fix Ci and di and lead to

S.( )=C. (xi-xf C.(X-Xi-I)3 (. _ C_iM)Xi-X (.- CM)~i X i-I 6h. + i 6h. + Yi-i 6 h + Yi 6 .I 1 1 hi
as may be verified by inserting Xi- i and Xi'

9.4. It remains to ensure the continuity of the first derivatives. To airange this, differentiate the
result of the preceding problem and compare adjoining values as in Problem 9,2,
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Differentiating

S'(x) = -C_ (x¡ -x)Z + C. (x -X¡_I?+Y¡ - Y¡-ii iI2h. i. -, 2h¡ h¡
C¡- C¡-l h¡

6

so the required derivatives at knot Xk are

S'( _)=hkC +hkC +Yk-Yk-Ik Xk 6 k-I 3 k hk

S' (+)- _hk+IC _hk+IC +~k+I-Ykk+1 Xk - 3 k 6 k+1 hk+iand

Since these are to be equal, we have, for k = 1, . . . , n - 1,

hk C hk + hk+i C + hk+i C =Yk+1 - Yk
6 k-I + 3 k 6 k+1 hk+i

Yk - Yk-I

hk

which is a linear system of n - 1 equations for the constants Co to C. Asobserved earlier, the system is
underdetermined. We are two equations short.

There is an interesting way to include two additional equations in the linear system, keeping our
options open and preserving the general character of the matrix, First let

h¡+l
(l¡ = h¡ + hi+1

ß¡ = 1 - (l¡
h¡

h¡ +h¡+1

d¡ = 6 (Y¡+i - Y¡ _ Y¡ - Y¡-i)h¡ + h¡+1 h¡+1 h¡
for i = 1, ' . . , n - 1. The system can then be rewritten, still for i = 1, . , . , n - 1, as

ß¡C;-i + 2C¡ + (l¡C¡+1 = d¡

Now take two additional conditions in the form

2Co + (loC1 = do ßnCn-1 + 2Cn = dn

with (lo, do, ßn, and dn at our disposal. The combined system then takes this shape:

2 (lo 0 Co do

ßi 2 0:1 Cl di
o ßz 2 Cz dz

=

2 (ln-Z 0 Cn-z dn-z

ßn-i 2 a'n-l Cn-I dn-i
0 ßn 2 C" dii

The coeffcient matrix is tripIe diagonal, all other elements being zero.

9.5. How can the linear system of the preceding problem be used to find a natural spline?

Choose 0"0' do, ßn, and dn as zero, The top and bottom equations then force Co and Cn to be zero
also and this is what identifies the natural spline. The system is reduced to order n - 1 for determining
the remaining Cl to C - i '
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9.6. Similarly, how can we arrange that the end conditions

be met?
S~(xo) = l~ S~(Xn) = y~

Borrowing appropriate formulas from Problem 9.4, we have

S'( +) - - h1 C _ h1 C + Yi - Ya - '1 Xo - 3 0 6 I h1 - Yo

and S/( -) hn C hn C Yn - Yn-I /nXn =6' n-1+3 n+ h Yn
n

whieh are easilyconverted to

and

2Co + CI = i (Yi - Yo - ,)
hi hi. Yo

Cn-1 + 2Cn =: (Y~ _Yn - Yn-i)n hn
Now comparing with the first and last equations of the linear system, namely 2Co + a'OC1 = do and

ßnCn-i + 2Cn = dn, suggests the choices

d = i (Y1 - Yo _ ,)o hi h1 Yo

which wil, in fact, provide the required end values.

a'o= 1 = ßn
_ i (, Yn - Yn-i)dn -h Yn hn n

9.7. Fit cubic spline segments to the function fex) = sinx on the interval (0, Jt), Use just the two

interior points Jt /3 and 2Jt /3,

The corresponding data set is

Xi 0 n/3 2n/3 n

Y¡ 0 0/2 0/2 0

with i = 0, , , , ,3 and all h¡ = n/3, There are three cubic segments to find, The uniform h¡ values at once
make a'i, a'z, ß1, and ßz all equal to !' Then

d =~ (2_ 0/2) = _ 270i h h h 2nZ

with the same result for dz' This leads us to the equations

1 1 -1.70
zCO+2Ci +zCz =2T
i 1 -270
ZC1 +2CZ+ZC3 =2T

and to the matter of end conditions. The natural spline is certainly appropriate here because the sine
function does have zero second derivatives at the endpoints, So we set Co and C3 to zero, The remaining
system then quiekly yields Cl = Cz = -270/5n2, Substituting into the formulas of Problem 9,3 finally
produces the spline segments, which after simplifications are these:

S ( )=(-270) 3 (90)1 X lOn3 X + 5n X

(-270)(2n )3 ( n)3 30Sz(x)= ~ --x + x-- +-10n3 3 3 5
(-270) (90)S3(X)= lOn3 (n-x)3+ 5n (n-x)
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Problem 9.19 asks that these cubics be verified by checking all the conditions imposed upon them, The
simplicity of the example has allowed exact values to be carried throughout. Notice also that the central
"cubic" segment is actually quadratic,

9.8. Again fit cubic segments to the sine function, this time asking that endpoint first derivatives
equal sine derivatives,

The new endpoint conditions are S;(O) = 1 and S~(n) = - 1. From Problem 9,6 we find

da = d3 = (~) e;; - 1)a'a= ßn = 1

so the new linear system is

2Ca+ Cl =(~)e;;-l)
12Ci + -C _ -2702 Z --2nz

1

ZCi + 2Cz+ ~C3= -2702 2nz

Cz + 2C3 = (~)e2': - 1)

1

ZCa+

./

and has this solution:

Ca=C3=1801Oz --n n
Cl = Cz=~- 90

n nZ

Substituting into the S¡(x) formulas of Problem 9.3, we again have the cubic segments, Verification that
these segments meet all conditions imposed upon them is requested as Problem 9,20, where it mayaIso
b,e found that the end values of SI/(x) are not zero,

(99. A third way to obtain a well-determined system for spline approximation is to relax our

¡ . requirements slightly, For example, omitting the segments SI(X) and Sn(x), we can ask S2(X)

and Sn-I(X) to take care of the endpoint collocations, This also eliminates continuity
requirements at Xl and Xn-l' which are no longer knots, Show that the resulting problem will
have just as many conditions to be met as coeffcients available to meet them,

There wil now be n - 2 instead of n cubic segments, with 4n - 8 coeffcients available. But there
will be only n - 3 rather than n - 1 knots. With four requirements per knot, this makes 4n - 12

conditions to be satisfied, Since collocation is also required at Xa, Xl, Xn-l, and Xn the count of conditions
climbs to 4n - 8.

9.10. Modify the developments in Problems 9,2 to 9.4 to meet the requirements suggested in

Problem 9.9,

A careful rereading of the problems mentioned wil show that a great deal can be saved, The center
n - 3 equations of oUf linear system, as presented in Problem 9.4, are stil valid because they refer to
knots Xz to Xn-z where no changes are being made, These already provide n - 3 equations for the n - 1

coeffcients Cl to Cn-i. The other two needed equations wil make Sz(xa) = Ya and Sn-I(Xn) = Yn'

Returning to the S¡(x) formula given in Problem 9.3, these conditions can be implemented, After some
algebraic manipulation they can be induced to take the form

2Ci+ a'ICZ = di ßn-iCn-Z + 2Cn-1 = dn-i
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with the following definitions:
2(hih~ - hi)

Cli (h 1+ hZ)3 - (hi + hz)h~

2(h~_ihn - h~)

ßn-I = (hn-i + hn? - (hn-i + hn)h~-i

( hi + hz h1)
12hz Ya - h; Yi + hi Yz

di (hi + hi? - (hi + hz)h~

( hn-i+hn h~ )12hn_i Yn - h Yn-1 +h Yn-Zd,,-i = 3n-i n;l
(hn-i + hn) - (hn-i + hn)hn-i

The final form of the system is then

2 Cli 0
ßz 2 Clz

o ß3 2

Cl

Cz

C3

d1

dz

d3

2 etn-3

ß,!-2 2

0 ßn-i

o Cn-3

Cn-Z

Cn-i

dn-3

dn-z

dn-1

a'n-2

2

again tripIe diagonal, all other elements being zero.

9.11. Apply the method just developed to f(x) = sin X on the interval (0, n) using three equally
spaced interior points.

There are four subintervals, with spline segments to be found for the inner two. The one knot wil
be at Xz = n12. This makes it clear why we are not continuing the earlier example, which had one fewer
interval. There would be no knots at all and a single cubic would interpolate the four given points, The
present data set is

X¡ 0 nl4 nl2 3nl4 n

Y¡ 0 012 1 0/2 0

with all h¡ = n14. The formulas for Cl¡ and ß¡ now apply only at the knot Xz and yield Clz = ßz =~. We also
find dz = 48(0 - 2)1 nZ and then the one equation

~ C 2C ~ C _ 48(0 - 2)2 i + z + 2 3 - nZ
Turning to more recent formulas, Cli = 0, ß3 = 0, and

di = d3 = 32(1 -: 0)
n"

so our linear system is the following:

2Ci =d1 i
-2 C i + 2Co + ~ C - (30)" 2 3- 2 di

2C3 = di
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Solving, and appealing again to Problem 9,3, we come to these two spline segnients:

Sz(x)
16(1 - \Í)(.i - 2x? + (4\Í -7)(4x - .i)3 (8\Í - 2)(2.i - 4x) + (19 - 4\Í)(4x - Jt)

+12.i3 12.i
16(1 - \Í)(2x - .i)3 + (4\Í -7)(3.i - 4x? (8\Í - 2)(4x - 2.i) + (19 - 4\Í)(3.i - 4x)+ .12.i3 12.iS3(X)

With a little patience it can be verified that S2 joins the first three points, S3 the last three, and that they
make a proper knot at Xz. This is all that was required. Bonuses such as S~(O) = 1 or S~(.i/2) = - 1 would
have been nice, but there is no point in being greedy. The approximations 1.05 and - 1.09 wil have to
do,

9.12. What is the error of a spline approximation?

It can be shown that

5
max If(x) - S(x)1 ~384 max Ir)(x)1 H4

where H is the largest of the h¡ and the maxima are on the interval i.

9.13. Ap¡:Hy the error bound of Problem 9,12 to the spline of Problem 9,7,

The fourth derivative 9f sinx is, of course, bounded by 1 and H = .i/3. Thus

5 .i4
max Isinx - S(x)1 ~-- = ,016

38481

9.14. How weIl does a spline approximate the derivative t(x)?

It can be shown that

max If'(x) _ S'(x)1 ~ max If(4)(x)1 H3
24

9.15. Apply the formula of Problem 9,14 to the spline of Problem 9,12,

We find H3/24 = .05 approximately. Generally speaking, splines are quite good approximations to
derivatives,

9.16. What is meant by saying that a spline is a global approximation to f(x)?

The segments of the spline are not determined independently of each other. Bach is linked with all
the others, The set of coeffcients Ci which identify the segments is determined by one linear system. By
way of contrast, one could fit a cubic polynomial to the first four points, Xo to X3, then another to set X3
to X6, and so on across the interval ¡, Each segment would then be found independently of the others,
but the continuity properties of the spline at knots would almost surely be absent.

9.17. Show that the natural spline on (a, b) uniquely minimizes

f f"(xf dx

among all functions f(x) which have continuous second derivatives and satisfy f(x¡) = y¡ at the
knots,
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First note that

f f"(x? dx - f S"(X)2 dx = f (f"(x) - S"(xW dx + 2 f S"(x)(f"(x) - S"(x)) dx

with S(x) the cubic spline, Integration by parts over each subinterval converts the last integral as
follows:

f' S;'(x)(f(x) - S;'(x)) dx = S;'(x)(f' 

(x) - S;(x))I~:_l - f'If'(X) - S;(x))SP)(x) dxXi-l Xi-l
= S;'(x)(f'(x) - S;(x ))1~:-1 - SP)(x)(f(x) - S¡(x))~:_i + f' (f(x) - S¡(x ))Si4)(x) dx

Xi-l

The last two terms vanish since fex) equals S¡(x) at the knots and Si4)(x) is zero, Summing what is left
for i = 1, , , . , n there is cancellation of an interior values leaving

S"(b)(f'(b) - S'(b))- S"(a)(f'(a) - S'(a))

which also vanishes since S is the natural spline,. Notice that this remnant would stil vanish if we
assumed instead that f' and S' agree at the endpoints, In either case, reordering the original equation
just slightly,

f S"(X)2 dx = f f"(x)2dx - f (f"(x) - S"(xW dx

which does make thefirst integral smaller than the second.

9.18. j Fit a cubic spline to this data,

x¡ 0 2 2,5 3 3.5 4 4,5 5 6

y¡ 0 2,9 3.5 3.8 3,5 3,5 3,5 2.6 0

Choosing the natural spline, the system of Problem 9.4 provides seven equations for the seven
interior Ci' Their solution, rounded to two places, follows:

i 1 2 3 4 5 6 7

C¡ -,23 -.72 -4,08 2,65 ,69 -5.40 -.70

A plot of the nine data points and the spline segments appears as'Fig, 9-3, Recallng that the C are the
second-derivative values at the data points, with Co and Cs zero, it is reassuring to observe their

behavior across the interval, particularly the large values more or less where expected.

y¡

-I ..J1 'e..", \" 'e/ \/ \/ \i \/ \/ \/ \
/

i Xi

3

2

o 2 3 .5 6-I

Fig.9.3
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SupplementaryProblems

9.19. Verify that the spline of Problem 9,7 meers all the conditions imposed upon it,

9.20. Verify that the first cubic segment in Problem 9,8 is

S (x) = Co (:: _ X)3 + Ci x3 _ Conz (1 _ 3X) + (0 _ c1nZ) 3x1 2 3 2 54 n 2 54 n
and find the other two segments. Verify that they meet the requirements imposed upon them,

9.21. Verify the details given in Problem 9,10,

9.22. Find the natural spline that passes through these points.

c; 0
(! 0

1

o

2 3

B1 o

9.23. Apply the procedure of Problem 9.10 to the preceding data, finding a spline of two segments on the
center two subintervals. The only knot wil be at x = 2, but the spline must also, of course, passthrough
the two endpoints,

9.24. The case in which all data points fall on a straight line is hardly one that calls for a spline, but it is worth
a moments attention. Recall that the constants C¡ are values of the second derivative and in this case
must all be zero, How does our linear system manage this?

9.25. What happens to our linear system if all data points fall on a parabola?



Chapter 10

Osculatin9 Polynomials

Osculating polynomials not only agree in value with a given function at specified arguments,

which is the idea of collocation, but their derivatives up to some order also match the derivatives of
the given function, usually at the same arguments, Thus for the simplest osculation, we require

P(Xk) = Y(Xk) P'(Xk) = y'(Xk)

for k = 0, i, , , , , n, In the language of geometry, this makes the curves representing our two
functions tangent to each other at these n + i points, Higher-order osculationwould also require
P"(Xk) = Y"(Xk)' and so on, The corresponding curves then have what is called contact of higher
order, The existence and uniqueness of osculating polynomials can be proved by methods resembling
those used with the simpler collocation polynomials,

Hermite's formula, for example, exhibits a polynomial of degree 2n + i or less which has

first-order osculation, It has the form n n
p(x) = L U¡(x)y¡ + L V;(x)y;¡=o ¡=o

where y¡ and y; are the values of the given function and its derivative at Xi' The functions U¡(x) and
V; (x ) are polynomials having properties similar to those, of the Lagrange multipliers L¡(x) presented
earlier. In fact,

U¡(X) = (1- 2L;(x¡)(x - x¡)lL¡(x)f

V;(x) = (x -x¡)(L¡(x)lZ

The error of Hermite's formula can be expressed in a form resembling that of the collocation error
but with a high er-order derivative, an indication of the greater accuracy obtainable by osculation,

The error is (Zn+Z)(;)

y(x)-p(x)=~~ ,~" (ir(x)lZ

A method of undetermined coeffcients may be used to obtain polynomials having high 

er-order

osculation, For example, taking p(x) in standard form

p(x) = Co + CiX + czxz + ' , , + C3n+Zx3n+Z

and requiring P(Xk) = Yk, p'(xd = Yk, P"(Xk) = y" for the arguments xo, , , , , Xn leads to 3n + 3
equations for the 3n + 3 coeffcients Ci' Needless to say, for large n this wil be a large system of

equations, The methods of a later chapter may be used to solve such a system. In certain cases
special devices may be used to effect simplifications,

Solved Problems

n n
10.1. Verify that P (x) = I: U¡(x )y¡ + I: V; (x )y; wil be a polynomial of degree 2n + 1 or less,¡=o ¡=o

satisfying P(Xk) = Yk, P'(Xk) = Yk provided

(a) U¡(x) and V; (x ) are polynomials of degree 2n + 1.

(b) U¡(Xk) = O¡k, V;(Xk) = 0,

80
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(e) U:(Xk) = 0, V:(Xk) = D¡k'

rO for i =1 kwhere D¡k = li for i = k'

The degree issue is obvious, since an additive combination of polynomials of given degree is a
polynomial of the same or lower degree. Substituting x = Xk we have

..
P(Xk) = Uk(Xk)Yk + 0 = Yk

and similarly substituting x = Xk into p'(x),

P'(Xk) = V~(Xk)Y~ = Y~

all other terms being zero,

10.2. Recallng that the Lagrangian multiplier L¡(x) satisfies L¡(Xk) = D¡b show that

~" U¡(X) = (1- 2L:(x¡)(x - x¡))L¡(x)f V;(x) = (x - x;) (L¡(x)f

meet the requirements listed in Problem 10,1.

Since L¡(x) is of degree n, its square has degree 2n and both U¡(x) and V;(x) are of degree 2n + 1.
For the second requirement we note that U;(Xk) = V;(Xk) = 0 for k *" i, since L¡(Xk) = O. Also,
substituting x = Xi,

U¡(X¡) = (L¡(;;)f = 1 V;(x¡) = 0

so that U¡(Xk) = b¡k and V;(Xk) = O. Next calculate the derivatives

U;(x) = (1 - 2L;(x;)(x - x;))2L;(x)L¡(x) - 2L;(x¡)(L¡(x)f

V;(x) = (x -x¡)2L¡(x)L;(x) + (L¡(x)f

At once U;(Xk) = 0 and V;(Xk) = 0 for k *" i because of the L¡(Xk) factor. And for x = Xi, U;(x;) =
2L;(x¡) - 2L;(x¡) = 0 since L¡(x¡) = 1. Finally, V;(x¡) = (L¡(x¡)f = 1. The Hermite formula is therefore

n

p(x) = L (1- 2L;(x;)(x -x¡))L¡(x)fy¡ + (x -x;)(L¡(x)fy;
/=0

10.3. A switching path between parallel railroad tracks is to be a cubic polynomial joining positions
(0,0) and (4,2) and tangent to the lines y = 0 and y = 2, as shown in Fig, 10-1. Apply
Hermite's formula to produce this polynomiaL.

Fig.l0.l

The specifications ask for a cubic polynomial matching this data.

Xk Yk Y~

0 0 0

4 2 0
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With n = 1, we have

X-Xl
Lo(x) = Xo - X i

X -Xo
L1(x) = Xi-XO

1
Lb(x) = Xo - XI

1
L;(x)=XI_xo

and substituting into Hermite's formula (only the Yi term need be computed since Yo = yb = y; = 0),

(X - 4) (X - O)Z 1p(x)= 1-2- - '2=-(6-x)xZ4- 0 4 - 0 16
The significance of this switching path is, of course, that it provides a smooth journey, Being tangent to
both of the parallel tracks, there are no sudden changes of direction, no corners. Since pl/(O) and p'!(4)
are not zero, there are, however, discontinuities in curvature, (But see Problem 10.7.)

10.4. Obtain a formula for the difference between y(x) and its polynomial approximation p(x),

The derivation is very similar to that for the simpler collocaaon polynomi.aL. Since y(x) = p(x) and
y'(x) = p'(x) at the arguments xo, . , . ,Xn we anticipate a result of the form

y(x) - p(x) = C(.i(x)f

where .i(x) = (x - xo) , , , (x- xn) as before. Accordingly we define the function
F(x) = y(x) - p(x) - C(.i(x))Z

which has F(Xk) = F'(Xk) = 0 for k = O. ' . , ,n. By choosing any new argument Xn+i in the interval
between Xo and xn, and making

c = y(Xn+l) - P(Xn+l)
(.i(xn+i)f

we also make F(Xn+1) = O. Since F(x) now has n + 2 zeros at least, F'(x) wil have n + 1 zeros at

intermediate points, It also has zeros at Xo, ' . , , xn, making 2n + 2 zeros in all 

, This implies that FI/(x)

has 2n + 1 zeros at least. Successive applications of Rolle's theorem now show that F(3)(x) has 2n zeros
at least, F(4)(X) has 2n - 1 zeros, and so on to F(Zn+Zl(x) which is guaranteed at least one zero in the
interval between Xo and xn, say at x = t. Calculating this derivative, we get

F(zn+Z)(t) = izn+z)(t) - C(2n + 2)! = 0

which can be solved for C. Substituting back,

" izn+Z)(t)
Y(Xn+1) - P(Xn+l) = (2n + 2)! (.i(Xn+i))Z

Recallng that Xn+1 can be any argument other than Xo, , . , , Xn and noticing that this result is even true
for Xo, . , , ,Xn (both sides being zero), we replace Xn+i by the simpler x:

y(Zn+Z)(t) z

y(x) - p(x) (2n + 2)! (.i(x))

10.5. Prove that only one polynomial can meet the specifications of Problem 10,1.
Suppose there were two. Since they must share common Yk and y~ values at the arguments Xk' we

may choose one of them as the p(x) of Problem 10.4 and the other as the y(x). In other words, we may
view one polynomial as an approximation to the other. But since y(x) is now a polynomial of degree
2n + 1, it follows that izn+Z)(t) is zero. Thus y(x) is identical with p(x), and our two polynomials are
actually one and the same.

10.6. How can a polynomial be found which matches the following data?
Xo

Xl

Yo

Yi

yb

y~

y~

y';
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In other words, £1t two arguments the values of the polynomial and its first two derivatives are
specified.

Assurne for simplicity that Xo = O. If this isnot true, then a shift of argument easily achieves it. Let

1
p(x) = Yo + xyh + zx2y~ + Ax3 + Bx4 + Cx5

with A, B, and C to be determined. At x = Xo = 0 the specifications have already been met, At x = Xi
they require 3 4 5 ,1211Ax¡ + Bx¡ + CXi = Y1 - Yo -xiYo -Zx1YO

3Axî + 4Bxi + 5Cxi = Y; - yh -X1Y~

6Axl + 12Bxî + 20Cxi = Y~ - Y~

These three equations determine A, B, C uniquely.

10.7. A switching path between parallel railroad tracks is to join positions (0,0) and (4,2). To
avoid discontinuities in both direction and curvature the following specifications are made:

Xk Yk Y~ Y~

0 0 0 0

4 2 0 0

Find a polynomial wh ich meets these specifications,

Applying the procedure of Problem 10,6,

p(x) = Ax3 + Bx4 + Cx5

the quadratic portion vanishing entirely. At Xl = 4 we find

64A + 256B + 1024C '; 2 48A + 256B + 1280C = 0 24A + 192B + 1280C = 0

from which A = ;;°8' B = - N8, C = 2~6' Substituting, p(x) = 2~6(80X3 - 30x4 + 3x5),

Supplementary Problems

10.8. Apply Hermite's formula to find a cubic polynomial which meets these specifications,

Xk Yk Y~

0 0 0

1 1 1

This can be viewed às a switching path between nonparallel tracks.

10.9. Apply Hermite's formula to find a polynomial which meets these specifications,

Xk Yk Y~

0 0 0

1 1 0

2 0 0



84 OSCULATING POLYNOMIALS (CHAP, 10

10.10. Apply the method of Problem 10.6 to find a fifth-degree polynomial which meets these specifications,

Xk Yk Y~ Y~

0 0 0 0

1 1 1 0

This is a smoother switching path than that of Problem 10,8.

10.11. Find two second-degree polynomials, one having P1(0) = p;(O) = 0, the other havingp2(4) = 2, p~(4) = 0,
both passing through (2,1), as shown in Fig, 10-2, Show that p;(2) = p~(2) so that a pair of parabolic
arcs also serves as a switching path between parallel tracks, as weil as the cubic of Problem 10,3,

\0. Q)

Fig.10-2

10.12. Find two fourth-degree polynomials, one having Pi(O) = p;(O) = p';(O) = 0, the other having P2(4) = 2,
p;(4) = p~(4) = 0, both passing through (2,1) with p~(2) = p~(2) = O. This is another switching path for

which direction and curvatlire are free of discontinuities, like the fifth-degree polynomial of Problem
10,7, Verify this by showing that first and second derivatives agree on both sides of (0,0), (2,1), and
(4,2) where the four pieces of track are butted together.

10.13. From Hermite's formula for two-point osculation derive the midpoint formula

PII = ~ (Yo + Yi) + ~ L(yb - y;)

where L =X1 -Xo.

10.14. Show that the error of the formula in Problem 10,13 is L V4)( ç)/384,

10.15. Find a polynomial of degree four which meets the following conditions:

Xk Yk Y~

0 1 0

1 0 -
2 9 24

Note that one of the y ~ values is not available.

10.16. Find a polynomial of degree four which meets these conditions,

Xk Yk Y~ Y~

0 1 -1 0

1 2 7 -
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10.17. Find a polynomial of degree three which meets these conditions.

Xk Yk Y~

0 1 -2
1 1 4



Chapter 11

The Taylor Polynomial

TA YLOR POL YNOMIAL

The Taylor polynomial is the ultimate in osculation, For a single argument xo the values of the
polynomial and its first n derivatives are required to match those of a given function y (x), That is,

(i)( ) _ (i)() f ' - 0 1P xo - Y xo or 1 - , "'" n
The existence and uniqueness of such a polynomial wil be proved, and are classical results of
analysis, The Taylor formula settles the existence issue directly by exhibiting such a polynomial in
the form n (i)( )

p(x) = 2: y ,~o (x - xoYi=O 1,

The error of the Taylor polynomial, when viewed as an approximation to y(x), can be expressed
by the integral formula

1 IX

y(x) - p(x) =, in+1)(xo)(x - xo)n dxon, Xo

Lagrange's error formula may be deduced by applying a me 

an value theorem to the integral

formula, It is
. y(n+l)(.;) n+l

y(x) - p(x) = (n + I)! (x - xo)

and clearly resembles our error formulas of collocation and osculation,
If the derivatives of y(x) are bounded independently of n, then either error formula serves to

estimate the degree n required to reduce Iy(x) - p(x)\ below a prescribed toleranceover a given
interval of arguments x,

Analytic functions have the property that, for n tending to infinity, the above error of

approximation has limit zero for all arguments x in a given intervaL. Such functions are then

rèpresented by the Taylor series x y(i)(xo) .
. y(x) = 2: -: (x - xo)''i=O l.

The binomial series is an especially important case of the Taylor series, For -1 -cx -c 1 we have

(1 + xy = ~o (~)Xi

DIFFERENTIATION OPERATOR D
The differentiation operator D is defined by

D=h!!
dx

The exponential operator Itay then be defined by

ekD = i ki.Di
i=O i!

86
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and the Taylor series in operator form becomes

Y(Xk) = ekDyo(xo)

The relationship between D and ß may be expressed in either of the forms

D 1 2 1 3ß+l=e D=ß--ß +-ß -..,2 3
both of which involve "infinite series" operators.

The Euter transformation is another useful relationship between infinite series operators, It may
be written as

-1 1 ( 1 1 2 1 3 J
(1 + E) = - 1 - - ß + - ß - - ß +'"2 2 4 8

by using the binomial series,
The Bernoull numbers Bi are defined byx xl.

~1 = ¿ :¡ Bix'e - i=O L.

Actually expanding the left side into its Taylor series we shall find Bo = 1, Bi = -t B2 = t and so on,
These numbers occur in various operator equations. For example, the indefinite summation operator
ß -1 is defined by

ßFk = Yk
A -1Fk=u Yk

and is related to D by
x 1ß-1=D-1 ¿-BDi
i=O i! i ,

where the Bi are Bernoulli numbers, The operator D-1 is the familiar indefinite integral operator.
The Euler-Maclaurin formula may be deduced from the previous relationship,n-l Ln 1 h

¿ Yi= Ykdk--'(yn-Yo)+-(y~-yb)+'"i=O 0 2 12
and is often used for the evaluation of either sums or integrals,

The powers of D may be expressed in terms of the central difference operator 0 by using Taylor
series, Some examples are the fòllowing:

( 12 12 , 22 12 . 22 . 32 )D = t1 0 - - 03 + - 05 - 07 + ' , ,3! 5! 7!
2 2 1 4 1 6 1 8 1 10D =0 --0 +-0 --0 +-0 -".12 90 560 3150

Solved Problems

11.1. Find the polynomial p(x), of degree n or less, which together with its first n derivatives takes
the values Yo, YÒ1), YÒ2), , , , , YÒn) for the argument Xo'

A polynomial of degree n can be written

p(x) = ao + ai(x - xo) + ' . . + an (x - xoY
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Successive differentiations produce
p(I)(X) = ai + 2az(x - xo) + . , , + nan(x - xot-i

p(2)(X) =2az+ 3, 2a3(X -xo)+'" +n(n - l)an(x -xot-Z

. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

p(n)(x) = n! an

The specifications then require

p(xo) = ao = Yo .p(l)(XO) = a¡ = y~l)
p(Z)(Xo) = 2az = yÒZ) p(n)(x~) = n! an = y~n)

Solving for the an coeffcients and substituting

p(x) = Yo + y~l)(X - xo) + ' , , + ~ y~n)(x - xot = i ~ y~)(x - XO)in. i~OI.

11.2. Find a polynomial p(x) of degree n, such that, at Xo = 0, p(x) and eX agree in value together
with their first n derivatives,

Since for eX derivatives of all orders are also eX,

Yo = y~l) = YÒ2) = , , . = y~/) = 1

The Taylor polynomial can then be written

()~ln 1013 1P x = L. ~ x = 1 + x + - x~ + - x +'" + ,xni=OI. 2 6 n,
11.3. Consider a second fi.iction y(x) also having the specifications of Problem 11.1. We shall think

of p(x) as a polynomial approximation to y(x), Obtain a formula for the difference

y(x) - p(x) in integral form, assuming in+1)(x) continuous between Xo and x,

Here it is convenient to use a different procedure from' that which led us to error estimates for the
collocation and osculating polynomials, We start by temporarily callng the difference R,

R = y(x) - p(x)

or in full detail

R(x, xo) = y(x) - y(xo) - Y / (xo) (x - xo) - -21 y"(XO)(X - xo? - , , . - ~ y(n)(xo)(x - xotn.

This actually defines R as a function of x and Xo' Calculating the derivative of R relative to xo, holding x
fixed, we find

R'(x, xo) = -y'(xo) + y'(xo) - y"(XO)(X -xo) + y"(XO)(X -xo)

- -21 y(3)(xo)(x - xo)Z + . , , - ~ y(n+l)(xo)(x - xotn.

i
= -,in+1)(xo)(x -xotn.

since differentiation of the second factor in each product cancels the result of differentiating the first
factor in the previous producL Only the very last term penetrates through, Having differentiated relative
to Xo, we reverse direction and integrate relative to Xo to recover R.

1 JXo
R(x, xo) = - n! x y(n+i)(u)(x - ut du + constant

By the original definition of R, R(xo, xo) = 0 and the constant of integration is 0, Reversing the limits,
1 JX

R(x, xo) =, in+1)(u)(x - ut du
n. .\0

which is known as an integral form of the error.
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11.4. Obtain Lagrange's form of the error fram the integral form,

Here we use the mean value theorem of calculus, which says that if fex) is continuous and w(x)
does not change sign in the interval (a,b) then

t f(x)w(x) dx = f(;) t w(x) dx

where ; is between a and b, Choosing w(x) = (x - xoY, we easily get

1
R(x, xo) = (n + I)! y\n+i)(;)(x - xoYTI

. where ; is between Xo and x but otherwise unknown. This form of the error is very popular because of
its elose resemblance to the terms of the Taylor polynomial. Except for a ; in place of an Xo it would be
the term which produced the Taylor polynomial of next higher degree.

11.5. Estimate the degree of a Taylor polynomial for the function y(x) = eX, with Xo = 0, which
guarantees approximations correct to three decimal pi aces for -1 -: x -: 1. To six decimal
places,

By the Lagrange formula for the error,

lex,: p(x)1 = IRI ~ (n: I)!

For three-place accuracy this should not exceed .0005, a condition which is satisfied for n = 7 or higher.
The polynomial

7 1

p(x) = ¿ ~Xi
i~O 1.

is therefore adequate, Similarly, for six-place accuracy IRI should not exceed .0000005, which will be
true for n = 10,

11.6. The operator D is defined by D = h~, What is the result of applying the successive powers ofD to y(x)? òx
We have at once Diy(x) = hiy(i)(x),

11.7. Express the Taylor polynomial in operator symbolism,

Let x - Xo = kh. This is the. symbolism we have used earlier, with Xk now abbreviated to x. Then
direct substitution into the Taylor polynomial of Problem 11.1 brings

~ 1 (.) . ~ 1 (.) .. ~ 1
p(x) = L. ~ yo' (x - xo)' = L. ~ yd k'h' = L. ~ k'D'y(xo)i~O 1. i~O 1. i~O 1.

A common way of rewriting this result is

(~ 1 . .)p(x),= ::iik'D' y(xo)

or in terms of the integer variable k alone as

(~ 1 . .)Pk = L. ~ k'D' Yo
,~o 1.

where as usualp(xk) = Pk'
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11.8. A function y (x) is called analytic on the interval Ix - xol ~ r if as n.. 00,
lim R(x, xo)== 0

for all arguments x in the interval. It is then custoinary to write y(x) as an infinite series,
called a Taylor series

y(x) = lim p(x) = 'f ~ y~)(x - xoY
i=O i.

Express this in operator form,

Proceeding just as in Problem 11.7, we find y (Xk) = c~o ~ ki Di )yO' This is our first "infinite series

operator," The arithmetic of such operators is not so easy to justify as was the case with the simpler
operators used earlier.

1,,¡Ci!

11.9. The operator ekD is defined by ekD = f ~ kiDi, Write the Taylor series using this operator,i=O i!

We have at once Y(Xk) = ekDyo.

11.10. Prove eD = E,

By Problem 11,9 with k = 1 and the definition of E, y(xi) = Y1 = Eyo = eDyo making E = eD,

11.11. Develop the Taylor series for y(x) = In (1 + x), using xo = 0,

The derivatives are y(i)(x) = (- l)i+I(i - 1)!/(1 + x Y so that y(i)(O) = (- 1)i+1(i - I)!, Since y(O) =
In1=0, we have

~ (_lY+I 1 1 1
y(x) = In (1 +x) = 2. -;xi =x __X2+_X3 __x4+",;=1 i . 2 3 4

The familar ratio test shows this to be convergent for - 1 .: x .: 1. It does not, however, prove that the
series equals In (1 + x). To prove this let p(x) represent the Taylor polynomial, of degree n. Then by the
Lagrange formula for the error,

Iln (1 +x) - p(x)1 ~(n ~ I)!' n.I, , 'xn+1

For simplicity consider only the interval 0 ~ x .: 1. The series is applied mostly to this interval anyway.
Then the error can be estimated by replacing; by 0 andx by 1 to give Iln (1 +x) - p(x)1 ~ l/(n + 1) and
this does have limit O. Thus limp(x) = In (1 + x), which was our objective.

11.12. Estimate the degree of a Taylor polynomial for the function y(x) = In (1 + x), with xo = 0,
which guarantees three-decimal-place accuracy for 00: X 0: 1.

By the Lagrange formula for the error,

I ( ) () -= 1 n! n+I -= 1In 1 + x - P x 1= (n + I)! ' (1 + ;y' x = n + 1

Three-place accuracy requires that this not exceed' ,0005, which is satisfied for n = 2000 or higher. A
polynomial of degree 2000 would be needed! This is an example of a slowly convergent series,

11.13. Express the operator D in terms of the operator /:,

From eD = Ewe find D =lnE = In(l + il) = il- ~il2+ lil3- lil4+""

The validity of this calculation is surely open to suspicion, and any application of it must be care-
fully checked. It suggests that the final series operator wil produce the same result as the operator D,
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. 11.14. Express y(x) = (1 + x Y as a Taylor series,

For p a positive integer this is the binomial theorem of algebra. For other values of p it is the
binomia! series, Hs applications are extensive, We easily find

yU)(x) = pep - 1) , , , (p - i + 1)(1 + Xy-i = pU)(l + Xy-i

where pU) is again the factorial polynomiaL. Choosing Xo = 0

yU)(O) = pU)

and substituting into the Taylor series,
x (i) x ( )

Y(X)=¿~Xi=¿ ~ Xi
i=O i. i=O i

where (~) is the generalized binomial coeffcient, The convergence of this series to y (x) for - 1 0: x 0: J
can be demonstrated,

11.15. Use the binomial se ries to derive the Euler transformation,

The Euler transformation is an extensive re arrangement of the alternating series S = ao - a1 + az -
a3 + ' , , which we rewrite as

S = (1 - E + EZ - E3 +. , ')ao = (1 + E)-Iao

by the binomial theorem with p = - 1. The operator (1 + E)-l may be interpreted as the inverse
operator of 1 + E, A second application of the binomial theorem now follows,

1 ( A)-l
S == (1 + E)-Iao = (2 + A)-Iao = Z 1 + 2" ao

= ~ ( 1 - ~ + ~ Z _ ~ 3 + ' , ,) ao = ~ ( ao - ~ Aao + ¡ A Z ao - ~ A 3 ao + . , ,)

Our derivation of this formula has been a somewhat optimistic application of operator arithmetic. No
general, easy-to-apply criterion for ensuring its validity exists.

11.16. The Bernoull numbers are defined to be the numbers B¡ in the following series:

x ~ 1 .
y(x) = --1 =: L. :- B¡x'e - ¡=ol,

Find Bo, , , , , Bio'

The Taylor series requires that yU)(O) = Bi' but it is easier in this case to proceed differently,
Multiplying by eX - 1 and using the Taylor series for eX, we get

( 1 Z 1 3)( 1 Z 1 3 )X = x +Zx +6x +'" Bo+B1x +ZBzx +6B3X +'"

Now comparing the coeffcients of the successive powers of x,

Bo= 1
1

B¡= -Z
1

BZ=6 B3=0
1

B4= - 30 Bs=O

1
B6= 42 B7=0

1
Bs= - 30 B9=0

5
BlO= 66

The process could be continued in an obvious way.

11.17. Suppose !:Fk = Yk, Thenan inverse operator !: -1 can be defined by

Fk =!: -IYk
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This inverse operator is "indefinite" in that for given Yk the numbers Fk are determined except
for an arbitrary additive constant. For example, in the following table the numbers Yk are

listed as first differences. Show that the number Fa can be chosen arbitrarily and that the other
Fk numbers are then determined.~~ YI Y2 Y3 Y4

We have at once

Fi = Fa + Yo Fi = Fi + Yi = Fo + Yo + Yi F; = Fi + Y2 = Fa + Yo + Yi + Y2

k-I
and in general F" = Fa + ¿ Yi' The requirements plainly hold for an arbitrary Fo, and the analogy with

1=0

indefinite integration is apparent,

11.18. Obtain a formula for tl-i in terms of the operator D.

The result eD ='1 + A suggests

A -I = (eD _1)-1 = D-I(D(eD _1)-1)

where D-1 is an indefinite integral operator, an inverse of D. From the definition of Bernoull numbers,
x 1

A-1 = D-1 '" - BDiL. 'I '
1=0 L.

-i( 1 1 0 1 4 ) -I 1 1 1 3= D 1 - 2 D + 12 D" - no D +',. = D - 2 + 12 D - no D +.,.

As always with the indefinite integral (and here we also have an indefinite summation) the presence
of an additive constant may be assumed.

11.19. Derive the Euler-Maclaurin formula operationally.

Combining .the results of the previous two problems, we have
k-I

Fk = A - IYk = Fo + L Yi
1=0

( -I 1 1 1 3 )= D - 2 + 12 D - no D +,., Yk

From the first of these,
,,-1

F" - Fa= LYi
i=O

while from the second, 1 JX", I h h3
F" - Fr) = h . y(x) dx -:2 (Yn - Yo) + 12 (y;, - Y~) -no (y~3) - yò3)) +, . ,

.\0

so that finally, ,,- i 1 JX" 1 h
L Yi = h y(x) dx - 2 (Yn - Yo) + 12 (y ~ - Y~) + ' . .
1'--0 x()

which is the Euler-Maclaurin formula. The operator arithmetic used in this derivation is clearly in need
of supporting logic, but the result is u~eful in spite of its questionable pedigree and in spite of the fact
that the series obtained is usually not convergent.
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Supplementary Problems

11.20. Find the Taylor polynomials of degree n for sin x and cos x, using Xo = 0,

11.21, Express the error term in Lagrange's form, for both sin x and cos x. Show that as n -- 00 this error has
limit 0 for any argument x.

11.22. For what value of n wil the Taylor polynomial approximate sin x correctly to three decimal places for
0~x~nI2?

11.23. For what value of n wil the Taylor polynomial approximate cos x correctly to three decimal pi aces for
o ~x ~ n12? To six decimal places?

11.24. Express the operator ~ as aseries operator in D.

11.25. The functions sinh x and cosh x are defined by

sinh x = eX - e-x
2

coshx = eX + e-x
2

Show that their Taylor series are
x 1 2i+l

sinh x = 6 (2i + I)! x
x 1 2i

coshx = 6 

(2i)! 

x

11.26. Show by operator arithmetic that (j = 2 sinh ~D, f1 = cosh ~D.

11.27. Use the binomialseries to express ~ = ~(j2 + (jY1 + l(j2 as aseries in powers of (j, through the term in (j7,

11.28. Combinethe results of Problems 11.13 and 11.27 to express D.,as aseries in powers of (j, verifying these
terms through (j7.

12 12'32 12.32'52
D = (j - 22, 3! (j3 + 24, 5! (j5 - 26, 7! (j7 + ' , ,

11.29. Verify these terms of a Taylor series for D2:

D2 = (j2 _l. (j4 + L. (j6 _ ~ (j8 + ~ (j io _ , , .12 90 560 3150

by squaring the result of Problem 11.28 and collecting the various powers of (j,



Chapter 12

Interpolation

HISTORICAL PLACE
Previous chapters have consisted alm ost entirely of supporting theory, That theory wil noW be

used in several ways, beginning with the classic problem of interpolation, Interpolation is the
familiar process of estimating the values of a function y(x) for arguments between xo, , , , , Xn at
which the values Yo, , , . , Yn are known, Inverse interpolation simply proceeds in the opposite
direction, Subtabulation is the systematic interpolation of many values between each pair of
arguments Xi, Xi+l and so reducing the spacing of a table of values, perhaps from h to h/1O,

Prediction requires estimating a value y(x) for x outside the interval in which the data arguments
fall,

All these operations were much more pressing before the arrival of high-speed computers, which
now calculate values of all the familar functions by series or other nontabular ways, The formulas of
this chapter bear the names of prominent mathematicians of a century and more ago, when tables of
functions were indispensable, Their place in our subject is partly, but not entirely, historicaL. It is
interesting to see how the computational hurdles of an earlier time were surmounted, but important
ro note that tables of special functions are still constructed so that some of this work continues to
have a useful role,

METHODS OF SOLUTION
The.methods of interpolation.involve substituting for y(x) so 

me more easily computed function,

often a p()lynomial, and simplest of all a straight line, The values Yo, , , , , Yn may be introduced into
any of our polynomial formuhis (J'ewton, Everett", ,) which then becomes an algorithm for
interpolation, the output being an approximation to y(x), It was realized that using data from both
sides of the interpolation argument X "made sense" and led to better values or briefer computations,
The formulas of Stirling, Bèssel, and Everett were motivated by this reasoning and a study of the
errors involved provides logical support. At the ends of a table this could not be done and the
Newton forward and backward formulas had their turn. It was unnecessary to choose the degree of
the approximating polynomial in advance, simply to continue fitting differences from the table into
appropriate places as long as the results seemed to warrant. It was also realized that a point of
diminishing returns occurs, where results deteriorate instead of improve, and that this point depends
upon the accuracy of the tabulated values,

The alternative procedure of Lagrange fits the polynomial to the data without using finite
differences, The degree has to be chosen in advance, but the method has compensating advantages,
Aitken's method is another variant, not requiring equal spacing of tabular arguments or of the
polynomial's degree at the outset.

Osculating polynomials and the Taylor polynomial also find application to interpolation
problems in special circumstances.

INPUT AND ALGORITHM ERRORS
Input and algorithm errors occur in all these applications, Their impact on the completed

outputs can be estimated only up to a point. It is customary to identify three main error sources,

1. Input errors arise when the given values Yo,. . . , Yn are inexact, as experimental or
computed va lues usually are,

2. Truncation error is the difference y(x) - p(x), which we accept the moment we decide to

94
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use a polynomial approximation, This errór has been found earlier to be

y(x) - p(x) = Jt(x) in+i)(~)
(n + 1)!

Though ~ is unknown, this formula can stil be used at times to obtain error bounds,
Truncation error is one type of algorithm error, In prediction problems this error can be
substantial, since the factor Jt(x) becomes extremely large outside of the interval in which
the data arguments xo, , , , , Xn fall,

3, Roundolf errors occur since computers operate with a fixed number of digits and any excess
digits produced in multiplications or divisions are lost, They are another type of algorithm
error.

Solved Problems

U.L. Predict the two missing values of Yk'

k =Xk 0 1 2 3 4 5 6 7

Yk 1 2 4 8 15 26

This is a simple example, but it will serve to remind us that the basis on which applications are to
be made is polynomial approximation. Calculate some differences,

124711
1 2 3 4
1 1 1

Presumably the missing Yk values might be any numbers at all, but the evidence of these differences
points strongly toward a polynomial of degree three, suggesting that the six Yk values given and the two

to be predicted all belongto such a polynomial. Accepting this as the basis for prediction, it is not even
necessary to find this collocation polynomial. Adding two more ls to the row of third differences, we
quickly supply a 5 and 6 to therow of second differences, a 16and 22 as new first differences, and then
predict Y6 = 42, Y7 = 64, This is the same data used in Problem 6,12 where the cubic collocation
polynomial was found.

U.2. Values of y(x) = \I are listed in 'Table 12,1, rounded off to four decimal places, for

arguments x = 1.00(,01)1.06, (This means that the arguments run from 1.00 to 1.06 and are
equally spaced with h = ,01.) Calculate differences to il6 and explain their significance,

The differences are also listed in Table 12,1,
For simplicity, leading zeros are often omitted in recording differences, In (his table all differences

are in the fourth decimal place. Though the square root function is certainly not linear, the first
differences are almost constant, suggesting that over the interval tabulated and to four-place accuracy

this function may be accurately approximated by a linear polynomial. The entry !i 2 is best considered a
unit roundoff error, and its effect on high er differences follows the familar binomial coeffcient pattern
observed in Problem 3.10. In this situation one would ordinarily calculate only the first differences,
Many familiar functions such as VX, logx, sinx, etc" have been tabulated in this way, with arguments
so tightly spaced that first differences are alm ost constant and the function can be accurately

approximated by a linear polynomial.

U.3. Apply Newton's forward formula with n = 1 to interpolate for \/1.005,
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Table tl.1

x y(x) =\Í A. A.2 A.3 A.4 A.5 A.6

1.00 1.0000
50

1.01 1.0050 0
50 -1

1.02 1.0100 -1 2

49 1 -3
1.03 1.0149 0 -1 4

49 0 1

1.04 1.0198 0 0

49 0

1.05 1.0247 0

49

1.06 1.0296

Newton's formula reads (k) (k)Ll2y +, . , + (k)LlnyO
Pk = Yo + 1 LlYo + 2 0 n

Choosing n = 1 for a linear approximation we find, with k = x ~ xo

1

Pk = 1.0000 + 2 (.0050) = 1.0025

1.005 - 1.00 1

.01 2'

This is hardly a surprise. Since we have used a linear collocation polynomial, matching our y = ýX
va lues at arguments 1.00 and 1.01, we could surely have anticipated this midway result.

12.4. Wh at would be the effect of using a higher-degree polynomial for the interpolation of
Problem 12,3?

An easy computation shows the next several terms of the Newton formula, beginning with the
second difference term, to be approximately .00001. They would not affect our result at alL.

12.5. Values of y(x) = ýX are listed in Table 12.2, rounded off to five deciinal places, for arguments
x = 1.00(.05)1.30, Calculate differences to fi6 and explain their significance.

The differences are listed in Table 12.2.

Table tl.2

x y(x) = \Í A. A.2 A.3 A.4 A.5 A.6

1.00 1.00000
2470

1.05 1.02470 -59
2411 5

1.0 1.04881 -54 -1
2357 4 -1

1.5 1.07238 -50 -2 4

2307 2 3

1.0 1.09544 -48 1

2259 3

1.5 1.11803 -45
2214

1.0 1.4017
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Here the error pattern is more confused but the fluctuations of + and - signs in the last three columns
are reminiscent of the effects produced in Problems 3,10 and 3.11. It may be best to view these three
columns as error effects, not as useful information for computing the square root function.

12.6. Use the data of Problem 12,5 to interpolate for Vf,

Newton's forward formula is convenient for interpolations near the top of a table, With k = 0 at the
top entry Xo = 1.00, this choiee usually leads to diminishing terms and makes the decision of how many
terms to use almost automatic. Substituting into the formula as displayed in Problem 12.3, with
k = (x -xo)/h = (1.01 - 1.00)/,05 = t we find

1 2 ~ 6
PÆ = 1.00000 + 5 (.02470) - 25 ( - .00059) + 125 (.00005)

stopping with this term since it wil not affect the fifth decimal place. Notice that this last term uses the
highest-order difference which we feit, in Problem 12,5, to be significant for square root computations,
We have not trespassed into columns which were presumably only error effects, The value PÆ reduces to

PÆ = 1. 000000 + ,004940 + .000048 + ,000002 = 1. 00499

which is correct to five places. (It is a good idea to carry an extra decimal place during computations, if
possible, to control "algorithm errors" described in Chapter 1. In machine computations, of course, the
number of digits is fixed anyway, so this remark would not apply,)

12.7. Use the data of problem 12,5 to interpolate for VL.28,

Here Newton's backward formula is convenient and most of the remarks made in Problem 12,6
again apply, With k = 0 at the bottom entry Xo = 1.30, we have k = (x - xo)/h = (1.28 - 1.30)/,05 = -~,

Substituting into the backward formula (Problem 7.9)

k.. k(k + 1)"'2 k(k + l)(k + 2)"'3 k(k + 1) , , , (k + n - 1)Pk = Yo + vYo = 2 v Yo + 3' v Yo + ' . , + , Vnyo, n,
we obtain Pk = 1. 14017 + ( - Ð(,02214) + ( - ;5)( - ,00045) + ( - 1~5)(,00003)

= 1. 140170 - ,008856 + .000054 - ,000002 = 1.13137

which is correct to five places,

12.8. The previous two problems have treated special cRses of the interpolation problem, working
near the top or ne ar the bottom of a table, This problem is more typical in that data wil be
available on both sides of the point of interpolation, Interpolate for vT using the data of
Problem 12,5,

The central difference formulas are now convenient since they make it easy to use data more or less
equally from both sides, In Problem 12,15 we will see that this also tends to keep the truncation error
smalL. Everetts formula will be used,

(k) (k + 1) 2 (k + 2) 4 (k - 1) (k) 2 (k + 1) 4Pk = 1 Yi + 3 O Yi + 5 O Yi + ' , , - 1 Yo - 3 O Yo - 5 O Yo - , , ,

where higher-order terms have been omitted since we will not need them in this problem, Choosing
k = 0 at Xo = 1. 10, we have k = (x - xo)/ h = (1. 12 - 1. 10)/.05 =~, Substituting into Everetts formula,

Pk = (Ð(1.07238) + ( - 1~5)( - ,00050) + C5~8)( - .00002)

- ( -Ð(1.04881) - (1~5)( - .00054) - ( - 15~2)( - .00001)

= .428952 + ,000028 + .629286 + ,000035
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the two highest-order terms contributing nothing (as we hoped, since these are drawn from the error
effects columns). Finally Pk = 1.05830, which is correct to five places, Notice that the three

interpolations made in Table 12,2 have all been based on collocation polynomials of degree three.

12.9. The laboratory's newest employee has been asked to "look up" the value y(,3333) in table
NBS-AMS 52 of the National Bureau of Standards Applied Mathematics Series, On the
appropriate page of this extensive volume he finds abundant information, a small part of
which is reproduced in Table 12,3, Apply Everett's formula for the needed interpolation,

Table 12.3

x y(x)
;;z

.31 ,12234609 2392

.32 .12669105 2378

.33 .13105979 2365

,34 .13545218 2349

.35 .13986806 2335

Choosing x = 0 at Xo = .33, we have k = (x - xo)/h = (.3333 - ,33)/.01 = .33, WritiIig Everetts
formula through second differences in the form

Pk = kYi + (1 - k)yo + EJPyl - EoÔZyo

where Ei = (k ; 1) and Eo = (~), the interpolator will find all ingredients available in tables, For

k = .33, we find Ei = -.0490105, Eo = .0615395. Then

Pk = (,33)(.13545218) + (.67)(.13105979) + (- .0490105)(.00002349) - (,0615395)(,00002365)
= .13250667

This table was prepared with Everetts formula in mind.

12.10. Apply the Lagrange formula to obtain Vl from the data of Table 12.2,

The Lagrange formula does not require equally spaced arguments. It can of cOurse be applied to
such arguments as a special case, hut there are diffculties. The degree of the collocation polynomial

must be chosen at the outset. With the Newton, Everett, or other difference formulas the degree can be
determined by computing terms until they no longer appear significant. Each term is an additive
correction to terms already accumulated, But with the Lagrange formula a change of degree involves a
completely new computation, of all terms. In Table 12.2 the evidence is strong that a third-degree
polynomial is suitable, On this basis we may proceed to choose Xo = 1.05, ' . . ,X3 = 1.20 and substitute
into

(x -Xi)(X -xz)(x -x3) (x -xo)(x -xz)(x -X3)P = Yo + y¡
(xo - Xi)(XO - xz)(xo - X3) (x¡ - xo)(x1 - xz)(x¡ - X3)

(x -xo)(x -x¡)(x -X3) (x -xo)(x -Xi)(X -xz)+ ~+ h
(xz - xo)(xz - x ¡)(xz - X3) (X3 - XO)(X3 - X¡)(X3 - xz)

to produce

-8 84 . 56 -7
P = 125 (1.02470) + 125 (1.04881) + 125 (1.07238) + 125 (1.09544) = 1.05830

This agrees with the result of Problem 12.8.
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12.11. The problem of inverse interpolation reverses the mies of Xk and Yk, We may view the Yk
numbers as arguments and the Xk as values, Clearly the'new arguments are not usually equally
spaced, Given that ýX = 1.05, use the data of Table 12,2, to find x,

Since we could easily find x = (1. 05)Z = 1. 1025 by a simple multiplication, this is plainly another
"test case" of our available algorithms, Since it applies to uiiequally spaced arguments, suppose we use'
Lagrange's formula. Interchanging the roles of x and Y,

P
(y - Y1)(Y - Yz)(y - YJ) + (y - Yo)(Y - Yz)(y -: Y3)Xo Xi
(Yo - Yi)(Yo - Yz)(Yo - Y3) (Yi - YO)(Yi - YZ)(Y1 - Y3) ,

+ (y - Yo)(Y - Yi)(Y - Y3) + (y - Yo)(Y - Y1)(Y - Yz)Xi X3
(yz - Yo)(yz - Y1)(YZ - Y3) (Y3 - YO)(Y3 - YI)(Y3 - Yz)

With the same four Xb Yk pairs used in Problem 12,10, this becomes

p = ( -.014882)1.05 + (.97095)1. 10 + (.052790)1. 15 + ( - .008858)1.0 = 1. 1025

as expected.

12.12. Apply Everetts formula to the inverse interpolation problem just solved,

Since the Everett formula requires equally spaced arguments, we return x and Y to their original
roles. Writing Everetts formula as

1.05 = k(1.07238) + (k; 1)( -,00050) + (k ; 2)( -,00002)

+ (1 - k)(1.04881) - (:)(-.00054) _ (k ; 1)( -.00001)

we have a fifth-degree polynomial equation in k. This is a problem treated extensively in a later chapter,
Here a simple, iterative procedure can be used, First neglect all differences and obtain a first
approximation by solving

1.05 = k(1.07238) + (1 - k)(1.04881)

The result of this linear inverse interpolation is k = .0505, Insert this value into the ¿¡i terms, stil
neglecting the ¿¡4 terms, and obtain a new approximation from

1.05 = k(1.07238) + (1.0;05)( -.00050) + (1 - k)(1.04881) _ (.0~05)(,OOO54)

This proves to be k = .0501. Inserting this value into both the ¿¡Z and ¿¡4 terms then produces k = .0500,

Reintroduced into the ¿¡z and ¿¡4 terms this last value of k reproduces itself, so we stop. The
corresponding value of x is 1. 1025 to four places,

12.13. Interpolate for Y1.125 and Y1.175 in Table 12,2,

For these arguments which are midway between tabulated arguments, Bessel's formula has a strong
appeaL. First choose k = 0 at Xo = 1. 10, making k = (1. 125 - 1. 10)/.05 = l. The Bessel formula (Problem
7,25) is

(k) z (k + 1) 4Pk = ¡iylIZ + 2 ¡i¿¡ YlIZ + 4 ¡i¿¡yllz

if we stopat degree four. The odd difference terms disappear entirely because of the factor k -: l,
Substituting,

Pk = 1.06060 + ( - ~)( -.00052) + C~8)( -.000015) = 1.06066 '

with the ¿¡4 term again making no contribution, Similarly in the second case, with k = 0 now at Xo = 1. 15,
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we again have k =! and find Pk = 1.08397, By finding all such midway values, the size of a table may be
doubled, This.Is a special case of the problem of subtabulation.

12.14. In using a collocation polynomial p(x) to compute approximation~ to a function y(x), we
accept what is called a truncation error, y(x) - p(x), Estimate this error for our interpolations
in Table 12,1.

The formula for truncation error of a collocation polynomial was derived in Chapter 2 and is

y(x)-p(x)= ;r(x) y(n+1)(ç)(n + I)!

when the polynomial approximation is of degree n, For Table 12.1 we found n = 1 suitable, The
collocation points may be called Xo and Xl' leading to this error estimate for linear interpolation:

( .) () (x -xo)(x -xi) (Z)(f:)yx-px= 2 y",
Since h = ,01 and l2)(X) = - h-3/Z, we have

k(k - 1) hZlZ)(ç)

k(k - 1)

Iy(x) - p(x)1 ~ n (,0001)

For k between 0 and 1, which we arrange for any interpolation by our choiee of xo, the quadratie
k(k - 1) has a maximum size of l at the midpoint k =! (see Fig, 12-1), This allows us to complete our
truncation error estimate,

1

Iy(x) - p(x)1 ~ 32 (,0001)'~'
Fig. U.L

aild we discover that it cannot affect the fourth decimal place, Table 12,1 was prepared with linear
interpolation in mind, The interval h = .01 was chosen to keep truncation error this small.

12.15. Estimate truncation errors for our computations in Table 12.2,

Here for the most part we used Everett's formula for a cubic polynomial. For other cubic formulas
the same error estimate follows. Assuming equally spaced collocation arguments x_¡, Xo, Xi, and X2'

y(x) _ p(x) = (x - x_¡)(x - x~!(X - x¡)(x - Xi) l4)(ç)

(k + l)k(k - l)(k - 2)hV4)ç.
24

The polynomial (k + l)k(k - l)(k - 2) has the general shape of Fig. 12-2, Outside the interval
_ 1 -: k -: 2 it climbs sensationally, Inside 0 -: k -: 1 it does not exceed f. and this is the appropriate part
for interpolation. We now have, for the maximum error in cubic interpolation,

IY(x) - p(x)1 ~~. ~ h4 Il4)(ç)1 = ~ h4Il4)(ç)116 24 128
For this example h = .05 and i4\x) = - ih-7I, and hence Iy(x) - p(x)1 ~ ii(.00005) so that truncation
error has not affected our five-decimal calculations.
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Fig. U-2

12.16. How large could the interval length h be made in a table of Vi with a cubic formula stil

giving five-place accuracy? (Assurne 1;; x,)

This sort of question is naturally of interest to table makers, Our truncation error formula can be
written as

9 . 4(15)( 1 )
/y(x) - p(x)1 ~ 16 h 16 24

To keep this less than ,000005 requires h4~ ,000228, or very closely h -. g, This is somewhat 1arger than
the h = ,05 used in Table 12,1, but other errors enter our computations and it pays to be on the safe
side,

12.17. The previous problem suggests that Table 12,2 may be abbreviated to half length, if Everetts
cubic polynomial is to be used for interpolations, Find the second differences needed in this
Everett formula.

The result is Table 12.4, in which first ,differences may be ignored,

Table U.4

Xk Yk Ö ÖZ

1.00 1,00000
4881

1.0 1.04881 -217
4664

1.20 1.09544 -191
4473

1.30 1.4017

12.18. Use Table 12.4 to interpolate for y(1.15),

With Everetts formula and k = t1 1 1 1
Pk = 2 (1.09544) - 16 (-,00191) + 2 (1.04881) - 16 (-.00217) = 1.07238

as listed in Table 12,2, This confirms Próblem 12,16 in this instance,

12.19. Estimate the truncation error for a fifth-degree formula,

Assurne the collocation arguments equally spaced and at k = - 2, - 1, , , , , 3 as in Everetts
formula. (The position is actually immaterial.)

y(x) _ p(x) = n(x) in+1l(ç) = (k + 2)(k + l)k(k - l)(k - 2)(k - 3)(n + I)! 720 h6i6\ç)
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The numerator factor, for 0.: k .: 1, takes a maximum absolute value of zl1 at k =!, as may easily be
verified, making 1 225

Iy(x) - p(x)1 ~_. -. h6Il6)(ç)1720 64

12.20. For the function y (x) = ýX, and 1 ~ x, how. large an. interval h is consistent with five-place
accuracy if Everett's fifth-degree formula is to be used in interpolations?

For this function, l6)(X) = 9:1x-ii/z ~ 9:1, Substituting this into the result of the previous problem
and requiring five-placeaccuracy,

~ 225 945
720' 64' h6, 64 ~ .000005

leading to h ~ l approximately. Naturally tbe interval permitted with fifth-degree interpolation exceeds

that for third-degree interpolation,

f',f.. 12.21. For thefunction y(x) = sinx, how large an interval h is consistent with five-place accuracy if
Everett's fifth-degree formula is to be used in interpolations?

For this function y(6)(X) is bounded absolutely by 1, so we need 7~O . zl1. h6 ~ ,000005, leading to
h ~ ,317, This is the equivalent of 18° intervals, and me 

ans that only four values of the si ne function,

oesides sin 0 and sin 90° are needed to cover this entire basic interval!

12.22. A second source of error in the use of our formulas for the collocation polynomial (the first
source being truncation error) is the presence of inaccuracies in the data values, The numbers
Yb for example, if obtained by physical measurement wil contain inaccuracy due to the
limitations imposed by equipment, and if obtained by computations probably contain
roundoff errors, Show that linear interpolation does not magnify such errors.

The linear polynomial may be written in Lagrangian form,

p = kYi + (1 -k)yo

where' the Yk are as usual the actual data values. Suppose these values are inaccurate. With Y1 and Yo
denoting the exact but unknown values, we may write

Yo= Yo + eo Y1 = Yi +e1

where the numbers eo and e1 are the errors, The exact result desired is therefore

P=kY¡+(l-k)Yo

making the error of our computed result

P - p = kei + (1- k)eo

If the errors ek do not exceed E in magnitude, then

IP - pi ~ kE + (1 - k)E = E

for 0.: k .: 1. This means that the error in the computed value p does not exceed the maximum data
error. No magnification of error has occurred.

12.23. Estimate the magnification of data inaccuracies due to cubic interpolation,

Again using the Lagrangian form but assuming equally spaced arguments at k = - 1, 0, 1, 2, the

cubic can be written as

k(k - l)(k - 2) (k + l)(k - l)(k - 2) (k + l)k(k - 2) (k + l)k(k - 1)

p= -6. Y-i+ 2 Yo+ -2 Yi+ 6 Y2
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As in Problem 12,22, we let Yk = Yk + eb with Yk denoting the exact data values, If P again stands
for the exact result desired, then the error is

k(k - l)(k - 2) (k + l)(k - l)(k - 2) (k + l)k(k ~ 2) (k + l)k(k - 1)P - P = -6 e_i + 2 eo + _ 2 e1 + 6 ez
Notiee that for 0 ~ k ~ 1 the errors e_1 and ez have negative coeffcients while the other two have
positive coeffcients. This means that if the errors do not exceed E in magnitude,

_ -0 (k(k - l)(k - 2) (k + l)(k - l)(k - 2) . (k + l)k(k - 2) (k + l)k(k - l)Jip pl=E 6 + 2 + -2 + -6
which simplifies to IP - pi ~ (- e + k + l)E = mkE
Not surprisingly the quadratic magnification factor mk takes its maximum at k =! (Fig, 12-3) and so
IP - pi ~ iE. The data error E may be magnified by as much as i, This is, of course, a pessimistic
estimate, In certain cases errors may even annul one another, making the computed value p more
accurate than the data Yk'

mi:

k 0 k

Fig.12-3

U.24. What other source of error is there in an interpolation?

One source whieh is very important to keep in mihd, even though it is often entirely out of one's
control, is the continual necessity to make roundoffs during the carrying out of the algorithm. Working
to a limited number of digits, this cannot be avoided. Our various formulas, even they represent exactly
the same collocation polynomial, process the data involved in differing ways. In other words, they
represent different algorithms. Such formulas accept the same input error (data inaccuracies) and may
have the same truncation error but stil differ in the way algorithm roundoffs develop,

U.25. Describe how Taylor's series may be used for interpolation,

Consider the function Y = eX. But Taylor's series,

ex+t= eX' e' = eX(l + t+ !tZ +" ,)

Assurne the factor eX known, Truncating the series after the tZ term means an error (inside the
parentheses) of at most i(h/2? where h is the interval at which arguments are spaced in the table. This
assurnes that interpolation wil always be based on the nearest tabular entry, If h = ,05 this error is
(i¡~)10-6, or (2.6)10-6, This means that, stopping at the tZ term, accuracy to five digits (not decimal
pI aces) wil be obtained in the computed value of eH'. For example, using the data of Table 12.5 the
interpolation for eZ.718 runs as follows, With t = ,018, 1 + t + !tZ = 1.01816 and

eZ718 = eZ7°(1.01816) = (14.880)(1.01816) = 15.150

wh ich is correct to its full five digits. Our collocation polynomials would also produce this result,
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x 2.60 2.65 2.70 2.75 2,80

y = eX 13.464 14.154 14,880 15.643 16.445

Table U.5

12.26. How can Taylor se 
ries interpolation be used for the function y(x) = sin x?

Since sin x and cos x are usually tabulated together, we may express
sin (x :l t) = sin x :l t cos x - ~t2 sin x

Here, of course, t is measured in iadians. If the tabular interval is h = ,0001, as it is NBS-AMS 36, of
which Table 12.6 is abrief extract, then the above formula wil give accuracy to nine digits, since g(h/2f
is out beyond the twelfth place,

Table U.6

x sinx cosx

1.0000 .841470985 .540302306

1.0001 .841525011 .540218156

1.0002 ,841579028 .5401 34001

1.0003 .841633038 .540049840

12.27. Compute sio 1.00005 by the Taylor series interpolation.

With x = 1 and t = .00005,

sin 1.00005 = .841470985 + (.00005)(,540302306) - G)(10-S)(.8414 70985) = .841497999

12.28. Apply Newton's backward formula to the prediction of V1.32 in Tabie 12,2,

With k = 0 at Xo = 1.30 we find k = (1.32 - 1.30)/.05 =.4, Substituting into the Newton formula,

p = 1.4017 + (.4)(,02214) + (.28)( - .00045) + (.224)(,00003) = 1.4891

which is correct as far as it goes. Newton's backward formula seems. the natural choiee for such

prediction problems,since the supply of availabìe dfferences is greatest for this formula and one may
introduce difference terms until they do not contribute to the decimal places retained. This allows the

degree of the approximatingpolynomial to be chosen as the computation progresses,

12.29. Analyze the truncation error in prediction.

The truncation error of the collocation polynomial can be expressed as
k(k + 1) . , . (k + n) hn+iyC,,+i)(~)

(n + I)!

where the collocation points are at k = 0, -1, . . . , -n as is the case when Newton's backward formula
is used. For prediction, k is positive. The numerator factor grows rapidly with increasing k, more
rapidly for large n. as Fig. 12-4 suggests. This indicates that truncation error will not be tolerable beyond
a certain point, and that prediction far beyond the end of a table is dangerous, as might beanticipated,
The truncation error of a collocation polynomial is oscillatory between the points of collocation, but
on ce outside the interval of these points it becomes explosive.
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n = i

v
n.= 3

Fig. 12.4

f~"~

12.30. Predict V1,50 from the data of Table 12,2.

Withk = (1.0 - 1.0)/.05 = 4,

P = 1.4017 + (4)(.02214) + (10)( -,00045) + (20)(.00003) = 1.2483

while the correct result is 1.22474. Note also that higher difference terms, which we believe to be error
effects anyway, would only make the result worse because they are positive.

Supplementary Problems

12.31. From the data of Table 12,1 obtain v'1.012 and v'1.017 by linear interpolation, to four decimal places.
Would the second difference term affect the result? Would higher-order terms?

12.32. From the data of Table 12.1 obtainv'1.059 by linear interpolation, Note that if Newton's forward
formula isused (with k = 0 at x = 1.05) no second difference would be available in this case.

12.33. Interpolate for v'1.03 in Table 12,2,

12.34. Interpolate for v'1.26 in Table 12,2,.

12.35. Apply Stirling's formula to obtain v'1.12 from the data of Table 12.2. Does the result agree with that of
Problem 12,8?

12.36. Apply Everetts formula to Table 12.3, obtaining y(,315),

12.37. Apply the Lagrange formula to interpolate for y(1.50) using some of the following values of the normal
error function, y(x) = e-x2/2/y:,

Xk 1.00 1.0. 1.40 1.60 1.80 2,00

Yk ,2420 .1942 .1497 ,1109 .0790 .0540

The correct result is .1295,

12.38. Use Lagrange's formula to inverse interpolate for the number x corresponding to y = ,1300 in the data
of Problem 12.37.

12.39. Apply the method of Problem 12,12 to the inverse interpolation of Problem 12.38.

12.40. Apply Bessel's formula to obtain y(1.0), y(1.50), and y(1. 70) for the data of Problem 12.37.
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12.41. In a table of the function y (x) = sin x to four decimal places, what is the largest interval h consistent with

linear interpolation? (Keep truncation error weIl below ,00005,)

12.42. In a table of y(x) = sin x to five places, what is the largest interval h consistent with linear interpolation?

Check these estimates against familar tables of the sine function,

12.43. If Everett's cubic polynomial were used for interpolations, rather than a linear polynomial, how large an
interval h could be used in a four-decimal-place table of y(x) = sin x? In a five-placetable?

12.44. In quadratic approximation with Newton's formula, the function k(k - l)(k - 2) appears in the

truncation error estimate. Show that this function has the shape indicated in Fig, 12-5 and that for
o ~ k ~ 2 it does not exceed 2../9 in absolute value.

Fig.12.5

12.45. The function k(e -l)(e - 4) appears in the truncation error. estimate for Stirling's formula. Diagram

this for _ 2 ~ k ~ 2 and estimate its maximum absolute value for - l ~ k ~ t which is the interval to
which use of this formula is usually limited,

12.46. Show that the relative maxima and minima of the polynomials

increase in magnitude as their distance from the interval - 1 ~ k ~ 1 increases, These polynomials

appear in the truncation error for Stirling's formula. The implication is that this formula is most accurate
in the center of the range of collocatlon.

k(e - l)(e - 4) k(k2 -l)(e - 4)(e - 9)

12.47. Show that the relative maxima and minima of the polynomials

increase in magnitude with distance from the interval 0 ~ k ~ 1. These polynomials appear in the
truncation error for Everett's or Bessel's formula, The implication is that these formulas are most
accurate over this central interval.

(k + l)k(k - l)(k - 2) (k + 2)(k + l)k(k - l)(k - 2)(k - 3)

12.48. How large an interval h is consistept with interpolation by Everett's fifth-degree formula if the function
is y (x) = log x and five-place accuracy is required?

12.49. Estimate the magnification of data inaccuracies due to second-degree interpoiàtion. Follow the

argument of Problems 12.22 and 12,23, with 0 ~ k ~ 1.

12.50. Estimate the magnification of data inaccuracies due to fourth-degree interpolation, again for 0 ~ k ~ 1.

12.51. Apply Stirling's formula to compute y(2.718) from the data of Table 12.5.

12.52. Compute sin 1.00015 from the data provided in Table 12.6,
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12.53. Show that the Taylor series interpolation

( t) t t2log(x+t)=logx+log 1+- =logx+--~+",x x 2x2
may be truncated after the t2 term with six-decimal-place accuracy for 1.: x, provided the tabular
spacing is h = ,01.

12.54. Use Newton's backward formula to prediet Vi, Y1.40, and Y1.45 from the data of Table 12,2,

12.55. Prediet Y1.40 and Y1.50 from the data of Table 12,4.

12.56. Diagram the error of the quadratie polynomial of Problem 6,14, Show that the error equals zero at
x = - 3 as weIl as at the points of collocation, How can this be explained in terms of our collocation

error formula ir(x)i3)(;)/3!?

'f, 12.57. Ir. Problem 6,15 how can the zero error at x = 4 be explained in terms of the error formula
ir(x )i4)( ;)/ 4!?

12.58. Use the result of Problem 10,15 to estimate the missing y'(l),

12.59. Use the result of Problem 10,16 to estimate the missing y"(l),

12.60. Use the result of Problem 10.17 to estimate the missing y'(O) and y'(l),



Chapter 13

Numerical Differentiation

APPROXIMATE DERIVATIVES
Approximate derivatives of a function y(x) may be found from a polynomial approximation p(x)

simply by accepting p', p(2), p(3)" , , in pi 
ace of y i, yC2), y(3), , , : . Our collocation polynomials lead

to a broad variety of useful fOfmulas of this sort. The three well-known formu1as

y(x)
y(x + h) - y,(x)

h
y'(x) =y(x + h) - y(x - h)2h

y'(x) =y(x) - y(x - h)h

follow by differentiation of the Newton forward, Stirling, and Newton baekward formulas,
respectively, in each case only one term being used, More complicated formulas are available simply
by using more terms, Thus

, 1 ( (1) 2 3k2 - 6k + 2 3 J
y (x) = h 1\ Yo + k -"2 1\ Yo + 6 1\ Yo + . , ,

comes from the Newton formula, while

i () 1 (.I 2 3k2 - 1 3 )Y X = h u¡.Yo + ko Yo + 6 o ¡.Yo + ' ,. ,

results from differentiating Stirling's, Other collocation formulas produce similar approximations.
For second' derivatives one popular result is

1 ( 6e - 1 )
yC2)(X) = h2.\ o2yo + ko3¡.yo + 12 o4yo + ' , ,

and comes from the Stirling formula, Retaining only the first term, we have the familiar

y(2)(X) =y(x + h) - 2y(x) + y(x - h)

SOURCES OF ERROR IN APPROXIMATE DIFFERENTIATION

The study of test cases suggests that approximate derivatives obtained from collocation

polynomials be viewed with skepticism unless very accurate data are available, Even then the
accuracy diminishes with increasing order of the derivatives,

The basic diffculty is that y(x) - p(x) may be very small while y'(X) - p'(x) is very large. In
geometrical language, two curves may be close' together but stil have very different slopes, All the
other familar sources of error are also present, including input errors in the y¡ values, truncation

errors such as y' - p', yC2) - p(2), etc" and internal roundoffs,
The dominant error source is the input errors themselves, These are critical, even when smalI,

because the algorithms magnify them enormously. A crucial factor in this magnification is the
reciprocal power of h which occurs in the formulas, multiplying both the true values and the errors
which are blended together to make the y¡ data, An optimum choice of the interval h may sometimes
be made, Since truncation error depends directly on h, while input error magnification depends

inversely, the usual method of calculus may be used to minimize the combination,
Large errors should be anticipated in approximate derivatives based on collocation polynomials,

Error bounds should be obtained whenever possible, Alternative methods for approximate
differentiation may be based upon polynomials obtained by least squares or min-max procedures
rather than by collocation, (See Chapters 21 and 22,) Since these methods also smooth the given

108
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data, they are usually more satisfactory, Trigonometrie approximation (Chapter 24) provides stil
another alternative,

Solved Problems
13.1. Differentiate Newton's forward formula,

Pk = Yo + (~)ÓYo + (~)Ó2yO + (~)Ó3yO + (:)ó4yO +. . ,

The Stirling numbers may be used to express the factorials as powers, after which an easy
computation produces derivatives relative to k. With the operator D continuing to represent such

derivatives, Dpb D2Pb"" we use the familiar x = Xo + kh to obtain derivatives relative to the
argument x.

p'(x) = Dpkh
p(2)(X) = D2Pk

h2

The results are

, 1 ( (1) 2 3k2 - 6k + 2 3 2e - 9k2 + 11k - 3 4 J
p (x) = h LlYo + k - 2 Ll Yo + 6 Ll Yo + 12 Ll Yo + ' , ,

1 ( 6k2 - 18k + 11 )p(2)(X) = h2 Ll2yo + (k - 1)Ll3yo + 12 Ll4yo +, , ,

1( 2k-3 )p(3)(x) = h3 Ll3yo + i- Ll4yo +, , ,

1p(4)(X) = h4 (Ll4yo + ' , ,) and so on

13.2. Apply the formulas of Problem 13,1 to produce p'(1), p(2l(1), and p(3)(1) from the data of
Table 13,1. (This is the same as Table 12,2 with the differences beyond the third suppressed,
Recall that those differences were written off as error effects, The table is reproduced here for
convenience, )

Table 13.1

x y(x) = y'

1.00 1.00000
2470

1.05 1.02470 -59
2411 5

1.0 1.04881 -54
2357 4

1.5 1.07238 -50
2307 2

1.0 1.09544 -48
2259 3

1.25 1.1803 -45
2214

1.0 1.4017
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With h = ,05, and k = 0 at Xo = 1.00, our formulas produce

p'(l) = 20(.02470 + .000295 + .000017) = .50024

p(2)(1) = 400( -.00059 - ,00005) = - ,256

p(3)(l) = 8000(,00005) = .4

The correct results are, since y(x) = Ý;, y'(l) = t y(2)(1) = - t and y(3)(1) = i,

Though the input data are accurate to five decimal places, we find p'(l) correct to only three places,
p(2)(1) not quite correct to two places, and p(3)(l) correct to only one. Obviously, algorithm errors are

prominent,

13.3. Differentiate Stirling's formula,

(k) k (k). 2 (k + 1) 3 k (k +1) 4Pk = Ya + i O.uYa + 2 i o Ya + 3 o .uYa +"4 3 O Ya + ' , .

Proceeding as in Problem 13.1, we find

/() 1(" ,,2 3e-13 2k3-k"4 )
P x = Ii u¡iyo + ku Ya + ~ O ¡iYa + 12 u Ya + ' . ,

1 ( 6e - 1 )
p(2)(X) = h2 o2yo + kO3¡iYa + 12 o4yo + . , .

1p(3)(X) = h3 (O3¡io + ko4yo +, . .)

1p(4)(X) = h4 (O4yo + . , ,) and so on

13.4. Apply the formulas of Problem 13.3 to produce p'(1.iO), p(2(1.iO), and p(3)(1.iO) from the
data of Table 13,1.

With k = 0 at Xo = 1. 10, our formulas produce

'( 0) = 20f .02411 + ,02357 _ ~ (,00005 + .00004)) = 4 6p 1. L 2 + 0 6 2 . 76
p(2)(1.0) = 400( -.00054 + 0) = -.216

p(3)(1.0) = 8000(.000045) = .360

The correct results are y/(1.0) = .47674, y(2(1.0) = - .2167, and y(3)(1.0) = .2955.

The input data were correct to five places, but our approximations to these first three derivatives
are correct to roughly four, three, and one place, respectively,

13.5. The previous problems suggest that approximate differentiation is an inaccurate affair.
Ilustrate this further by comparing the function y(x) = e sin (x/e2) with the polynomial

approximation p(x) = O.

The two functions collocate at the equally spaced arguments x= ie2¡r for integers i. For a very small
number e, the approximation is extremely accurate, y(x) - p(x) never exceeding e. However, since
y/(x) = (li e) cos (xle2) and p '(x) = 0, the difference in derivatives is enormous. This example shows that

accurate approximation of a function should not be expected to mean accurateapproximation of its
derivative. See Fig. 13-1.
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p(.") _~;:.r) -- . í\~ .í\~~ ./\J r".J_
Fig.13.1

13.6. Problems 13,1, 13.3, and 13,23 suggest three approximations to y'(xo) using only first
differences,

Yl - Yo

h
Yl - Y-l

2h
Yo - Y-l

h

Interpreted geometrically, these are the slopes of the three lines shown in Fig, 13-2. The
tangent li ne at Xo is also shown. It would appear that the middle approximation is closest to
the slope of the tangent line, Confirm this by computing the truncation errors of the three
formu!as.

X-I
h h

Xl) Xi

Fig.13.2

Newton's forward formula, truncated after the first difference term, leaves the truncation error

h2
y(x) - p(x) = '2 (k(k - 1)y'2)(;))

with x = Xo + kh as usuaL. It is helpful here to consider k as a continuous argument, no longer restricting
it to integer values, Assuming y'2)(;) continuous, we then find the error of our derivative formula (by
the chain rule) for k = 0,

h
y'(xo)-p'(xo)= -zy(2)(;O)

Note that for k = 0 the derivative of the troublesome y'2)(;) factor is not involved, Similarly for
Newton's backward formula,

h
y'(xo) - p , (xo) = - y(2(;o)2

With Stirling's formula we receive an unexpected bonus. Retaining even the second difference term
in our approximation we find that at k = 0 it disappears from p'(x). (See Problem 13.3,) Thus we may
consider the middle approximation under discussion as arising from a second-degree polynomial

approximation, The truncation error isthen

h2
y(x) - p(x) = '6 ((k + l)k(k - l)y(3)(;))

leading to
_hZ

y'(xo) - p'(xo) = - y(3)(;)
6
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It is true that the symbol ; probably represents three distinct unknown numbers in these three

computations. But since h is usually smalI, the appearance of h2 in the last result, compared with h in
the others, suggests that this truncation error is the smallest, by an "order of magnitude." This confirms
the geometricàl evidence.

13.7. Apply the middle formula of Problem 13.6 to approximate y/(L. 10) for the data of Table 13,1.
Find the actual error of this result and compare with the truncation error estimate of Problem
13,6,

This approximation is actually the first term computed in Problem 13.4: y' (1. 10) = .4768. The actual
error is, to five places,

y'(1.10) - .4768 = .47674 - ,47680 = - ,00006

The estimate obtained in Problem 13.6 was _h2y(3)(;)/6. Since yC3)(X) = ix-5/2 we exaggerage only

slightly by replacing the unknown ; by 1, obtaining -hV3)@)/6= -(,05)\i\) = - ,00016, This estimate
is generous, though not unrealistie. '

13.8. Convert the formula for p'(xo) obtained in Problem 13,3 to a form which exhibits the Yk
values used rather than the ,differences,

We have k = 0 for this case, making

1 (1 1 J 1
p'(xo) = h 2 (Yi - Y-I) - 12 (Y2 -2Yi + 2y_1 - Y-2 = 12h (Y-2 - 8y_1 + 8yi - Y2)

13.9~ Estimate the truncation error in the formula of Problem 13,8,

Since the formula was based on Stirling's fourth-degree polynomial,
h5(e - 4)(k2 - 1)ky(5)(;)

y(x) - p(x) = 120

Differentiating as in Problem 13,6 and putting k = 0, y'(xo) - p/(xo) = hV5)(;)/30,

13.10. Compare the estimate of Problem 13,9 with the actual error of the computed result in
Problem 13.4,

To five places the actù,al error i~
y/(1.0) - p'(1.0) = .47674 - .47660 = ,00014

while the formula of Problem 13,9, with yC5)(1) substituting for the unknown yC5)(;) and causing a slight
exaggeration, yields

hV5)(;) = (,05)4(2-) = .0000007

30 64
Surely this is disappointing! Though the truncation error has been essentially eliminated by using
differences of higher order, the actual error is greater. Clearly another source of error is dominant in
these algorithms, It prüves to be the input errors of the Yi values, and how the algorithm magnifies them.
Für brevity we shall include this in the term roundoff error.

13.11. Estimate the roundoff error behavior for the formula (yi - Y_i)/2h,

As before, let Y1 and Y-i be the exact (unknown) data values, Then Y; = Yi + ei and Y-i= Y-I + e_l
with ei and e-i representing data errors. The differènce

YI-Y-1
2h

YI-Y-1 e1-e-1-=-
2h 2h
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is then the error in our output due to input inaccuracies. If ei and e_i do not exceed E in magnitude,
then this output error is at worst 2E/2h, making the maximum roundoff error E/h.

13.U. Apply the estimate of Problem 13,11 to the computation of Problem 13,7,

Here h = .05 and E = .000005, making E/h = ,00010, Thus roundoff error in the algorithm may
infiuence the fourth place slightly,

13.13. Estimate roundoff error behavior for the formula of Problem 13,8,

Proceeding just as in Problem 13.10, we find (1/12h)(e_z - 8e_1 + 8ei - e2) for the error in the output
due to input inaccuracies, If the ek do not exceed E in magnitude, then this output error is at worst
18E/12h, i,e" maximum roundoff error= (3/2h)E, The factor (3/2h) is the magnification factor, as
(ljh) was in Problem 13,11. Note that for small h, which wegenerally assocIate with high accuracy, this
factor is large and roundoff errors in the input information become strongly magnified.

13.14. Apply the estimate of Problem 13,13 to the computation of Problem 13.4, Then compare the
various errors associated with our effqrts to compute y' (1.10),

With h = .05 and E = ,000005, (3/2h)E = .00015. The various errors are grouped in Table 13.2,

Table 13.2

Formula Aetual error Est. trune. error Max. R.O. error

(Y1 - Y_1)/2h -.00006 -,00016 ::,00010
(y-2 - 8Y-1 + 8Y1 - Y2)/12h . ,00014 ,0000007 ::.00015

In the first case roundoff error has helped, but in the second case it has hurt, Plainly, the high
magnification of such errors makes 10w truncation errors pointless, except for extremely accurate data,

13.15. Estimate the truncation error of the formula

(2)( ) _ J: 2 _ J: _y Xo - h2 O Yo - h2 (yi 2yo + Y-i)

obtainable from Problem 13,3 by stopping after the second difference term,

Here it may be convenient to follow a different route to the truncation error, using Taylor series, In
particular 1 1 1

Y =y +hy' +_h2y(2)+_h3y(3)+_h4y(4)(J:)1 0 0 2 0 6 0 24 ':1
1 1 1

Y =" -hy' +-h2y(2)__h3y(3)+_h4y(4)(J:)-1 JO 0 2 0 6 0 24 ':2
sò that adding these up and then subtracting 2yo we find

1
62yo = h2y~2) + 24 h4(y(4)(ti) + y(4)(t2))

Unfortunately ti is probably not the same as t2' but for an estimate of truncation error suppose we

replace both fourth derivatives by a number y(4) which remains open for our choice, For complete safety .
we could choose y(4) = max ly(4)(x)1 over the interval involved, leading to an upper bound for the

magnitude of truncation error, but conceivably other choiees might be possible, We now have

1 h2Truncation error = y(2) _ _ 62" = _ _y(4)o h2 JO 12
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13.16. Apply the estimate in Problem 13,15 to the computation of Problem 13.4,

The computation of p(2(1. 10) in Problem 13.4 was actually made by the formula
62

p(2)(l.0) = /20 = - .21600

since higher difference terms contributed nothing, The result has already been compared with the
correct y"(1.10) = - ,21670, The truncation error estimate of Problem 13,15, with

y(4)(X) = _ 15 X-7/2 = _ 1516 16

suggests a slight exaggeration T' 1runcation error = 5120 = ,00020

The actual error is _ .00070, again indicating that truncation is not the major error source.

13.17. Estimate the roundoff errorof the formula l?Yo/h2,

Proceeding as before, we find the output error due to input inaccuracies to be (1/h2)(ei - 2eo + t-i)
where the ek are the inpuLerrors, If these do not exceed E in magnitude, then this can be at worst
(4Ih2)E; thus the maximum roundoff errot = (4Ih2)E,

13.18. Apply the formula of Problem 13,17 to the computation.of Problem 13.4 and compare the
actual error of our approximation to /2)(1.10) with truncation and roundoff estimates,

As before h = ,05 and E = ,000005, making (4Ih2)E = ,00800,

The magnification factor (4Ih2) has a powerful effect. Our results confirm that roundoff has been
the principal error source in our approximation of yf2)(1. 10), and it has contributed only about 90 of a
potential 800 units,

Actual error Est. truncation error Max. R.O. error

-,00070 ,00020 :1,00800

13.19. Apply the splines of Problems 9,7 and 9,8 to find approximate derivatives of the sine function,

In Problem 9,7 we found the natural spline, having zero second derivatives at the endpoints, Since
the sine itself has these end derivatives, the natural spline is appropriate in this case.. Taking the center
point first, we find the derivative of the center spline segment S2 to be

i 270 ( 2S2(X) = - 10ir3 2irx - ir )

which is precisely zero at x = ir12. Clearly the symmetry has been helpfuL. A fairer test may be made at
x = irl3 which was one of the knots, where we find S~ to be .496, The error of .4 percent may be judged
keeping in mind that only three spline segments were used over the interval (0, ir).

In Problem 9,8 we found the spline that matched the endpoint first derivatives of the sine function.
For the center section we found

S'( ) - 2ir - 90 (2 2)2 x - 2ir3 irx - ir

which is again zero at x = irl2, At x = ir13, it manages (90 - 2ir)/6ir or .494.
For the second derivative the anticipated deterioration again appears. The natural spline predicts

S~ = -.948 for the entire center interval, where the true second derivative ranges from - .866 to - 1,
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13.20. How can the Richardson extrapolation method be applied to numerical differentiation?

As usual, information about the error in an approximation formula is used to make a correction, As
an illustration take the central formula

y'(x) =y(x + h) - y(x - h)2h + T
where T is the truncation error. An easy calculation using Taylor series finds

T = a1h2 + a2h4 + a3h6 + ' . ,

Making two applications, using hand h/2, we have

y'(x) = F(h) + a1h2 + a2h4 +, , ,

i (h) aih2 a2h4y (x)=F - +-+-+'"2. 4 16
with F(h) and F(h/2) denoting the approximate derivatives, and where we assurne that the a¡ do not
change much for small h. Eliminating the ai terms leads to

4F(h/2) - F(h) + b h4 + O(h6)
y'(x) = ~ i

so that in

F,(~) = 4F(h/2) - F(h)1 2 3
we have an approximate differentiation formula of fonrth-order accuracy, obtained by combining two
results from a fòrmula of second-order accuracy.

The argument can now be repeated, beginning with

y'(x) = F;G) + bih4 + O(h6)

(h) b h4
y'(x)=F; ¡ +-¿+O(h6)

and eliminating the bi term to produce an approximation

F (~) = 16F;(h/4) -F;(h/2)2 2 15
with sixth-order accuracy, Clearly further repetitions are possible, the overall process being known as
extrapolation to the limit.

The set of approximations calculated during an extrapolation to the limit is usually displayed as
folIows:

F Fi F2 F;

h F(h)
h/2 F(h/2) F;(h/2)
h/4 F(h/4) F;(h/4) F;(h/4)
h/8 F(h/8) F;(h/8) F;(h/8) F;(h/8)

more entries being added as needed. The general formula is this:

F. (A) = F. (A) Fm_l(h/2k) - Fm_l(h/2k-l)m 2k m -: i 2k + 22m _ 1

It is not hard to modify the process just sketched so that the step size is reduced in some other way,
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perhaps h¡ = r¡-Ihi with hi the initial h. An arbitrary sequence of h¡ could even be handled at little cost.
Examples exist to show that sometimes these variations can be profitable.

13.21. Apply Riehardson extrapolation to the function y(x) = -l/x to find y'(.05), The exact value

is 400,

The computations are summarized in Table 13,3 and were carried out on an eight-digit computer.
The original formula of Problem 13.20 produced the column headed F (all table entries being reduced
by 400) so its best effort, for h = ,0001, was off in the third decimal place. After that roundoff error took
over. Looking elsewhere in the table one sees that values almost correct to five pI 

aces appear.

h F Ft Fz F3

,0128 28.05289

.0064 6.66273 -.46732

.0032 1.64515 -.02737 ,00196

,0016 .41031 -,00130 .00043 .00041

.0008 .10250 -,00010 -.00002 -,00002

.0004 ,02625 .00084 ,00090 ,00091

,0002 .00750 ,00125 .00127 .00127

.0001 ,00500 .00417 ,00436 ,00441

,00005 .01000 ,01166 .01215 .01227
~

Table 13.3t

t Entries reduced by 400

Supplementary Problems

13.22. Differentiate Bessel's formula, ~btaining derivatives up to p(S\x) in terms of differences through the

fifth,

13.23. Apply the results of the previous problem to produce p', p(zi, and p(3) at x = 1. 125 from the data of
Table 13,1.

13.24. Find the truncation error of the formula for p'(x) obtained in Problem 13,22 using k =!' Estimate it by
using S = 1. Compare with the actual error.

13.25. Find the maximum possible roundoff error of the formula of the previous problem. Compare the actual
error with the truncation and roundoff error estimates,

13.26. Show that Stirling's formula of degree six produces

p'(xo) = ~ (o¡iyo - ~ o3¡iyo + 3~ oS¡iyo)

Show that the truncation error of this formulais _h6y(7)(s)/140,

13.27. Convert the formula of the previous problem to the form

p'(xo) = 6~h ( - y-3 + 9Y-2 - 45Y-1 + 45yi - 9Y2 + Y3)

and prove that the maximum roundoff error is llE/6h,
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13.28. Find the argument corresponding to y' = 0 in Table 13.4 by inverse cubic interpolation, using either the
Lagrange or Everett formula, (See again Problems 12,11 and 12.12,) Then find the corresponding y
value by direct interpolation,

Table 13.4

x y y'

1.4 ,98545 .16997
1.5 ,99749 .07074
1.6 ,99957 -,02920
1. 7 ,99166 -,12884

13.29. Ignoring the top and bottom lines of Table 13.4, apply Hermite's formula to find a cubic polynomial
fitting the remaining data, Where does the derivative of this cubie equal zero? Compare with the
previous problem, (Here the data correspond to y(x) = sinx and so the correct argument is n12,)

13.30. The normal distribution function y(x) = (1/Vi)e-x2/2 has an inflection point exactly at x = 1. How
closely could this be determinedfrom each of the following four~place data tables independently?

x y x Y

,50 .3521 ,98 .2468
,75 ,3011 ,99 ,2444

1.00 ,2420 1.00 ,2420
1.25 .1827 1.01 ,2396
1.50 ,1295 1.02 ,2371

13.31. From Problems 13,9 and 13.13 we find the combined truncation and roundoff errors of the
approximation

y'(xo) = l~h (y-2 - 8)'-1 + 8Y1 - Y2)

to have the form Ah4 + 3EI2h where A = ly(5)(g)/301. For what interval h wil this be aminimum?
Compute yout result for the square root function and five-place accuracy,

13.32. Show that the truncation erroT of the formula i4)(xo) = o4Yo/h4 is h2i6)(g)/6.

13.33. Show that the maximum roundoff error of the formula in Problem 13,38 is 16E/h4,



Chapter 14

Numericaiintegration

The importance of numerical integration may be appreciated by noting how frequently the
formulation of problems in applied analysis involves derivatives, It is then natural to anticipate that
the solutions of such problems wil involve integrals, For most integrals no representation in terms of
elementary functions is possib1e, and approximation becomes necessary,

POLYNOMIAL APPROXIMATION
Polynomial approximation serves as the basis for a broad variety of integration formulas, the

main idea being that if p(x) is an approximation to y(x), then

r p(x) dx = r y(x) dx

and on the whole this approach is very successfuL. In numerical analysis integration is the "easy"
operation and differentiation the "hard" one, while the reverse is more or less true in elementary
analysis, The best-known examples are the following: .

1. Integrating Newton's forward formula of degree n between Xo and Xn (the full range of
collocation) leads to several useful formulas, including

Ix! hp(x) dx ="2 (Yo + Yi)
xo

IX2 h. p(x) dx = '3 (Yo + 4Yi + Y2)
Xo

IX3 3hp(x) dx = - (Yo + 3Yi + 3Y2 + Y3)Xo 8
for n = 1, 2, and 3, The truncation error of any such formula is

rn y(x) dx - rn p(x) diXo XQ
and may be estimated in various ways, A Taylor se 

ries argument, for example, shows this

error to be approximately _h3yC2\;)/12 when n = 1, and approximately _h5yC4)(;)/90

when n =2,
2. Composite formulas are obtained by applying the simple formulas just exhibited repeatedly

to cover longer intervals, This amounts to using several connected line segments or
parabolic segments, etc" and has advantages in simplicity over the use of a single
high-degree polynomiaL.

3, The trapezoidal rule,

Ixn 1Y (x) dx = 2 h (Yo + 2Yi + ' , , + 2Yn -i + Yn)
Xo

is an elementary, but typical, composite formula, It, of course, uses connected

line segments as the approximation to y (x), Its truncation error is approximately
-(xn - xo)h2yC2)(;)/12,

Ixn h4, Simpson's rule, y(x) dx = ~ (Yo + 4Yi + 2Y2 + 4Y3 + ' , , + 2Yn-2 + 4Yn-i + Yn)
Xo

118
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is also a composite formùla, and comes, from using connected parabolic segments as the
approximation to y(x), It is one of the most heavily used formulas for approximate

integration, The truncation erroris about -(xn -xa)h4yC4)(;)/180,

5, Romberg's method is based upon the fact that the truncation error of the trapezoid al rule is
nearly proportional to h2, Halving hand reapplying the rule thus reduces the error by a
factor of !' Comparing the two results leads to an estimate of the error remaining, This
estimate may then be used as a correction, Romberg's method is a systematie refinement of
this simple idea,

6, More complex formulas may be obtained by integrating collocation polynomials over less
than the full range of collocation. For example, Simpson's rule with correction terms may
be derived by integrating Stirling's formula of degree six, whieh provides collocation at
X-3, , , , , X3, over just the center two intervals X-I to Xi, and then using the result to
develop a composite formula, The result is

Ixn h .) h.( 4 ~4 4Xo Y(X) dx = 3" (Ya + 4yi + 2Y2 + . .. + Yn- 90 0 Yi + u Y3 + . .. + Ô Yn-l)

h 6 6 6
+ 756 (ô Yi + Ô Y3 + ' , , + Ô Yn-l)

the first part of which is Simpson's rule,

7. Gregory's formula takes the form of the trapezoidal rule with correction terms, It may be
derived from the Euler-Maclaurin formula by expressing all derivatives as suitable
combinations of differences to obtain

Ixn hy(x) dx ="2 (Ya + 2yi + ' . ,+ 2Yn-1 + Yn)
Xo

h h 2 ~ 19h 3 3
- 12 (Vy~ - LlYa) - 24 (V Yn + Ll-Ya) - 720 (V Yn - Ll Ya) - , , ,

and again the first part is the trapezoid al rule, The Euler-Maclaurin formula itself may be
used as an approximate integration formula,

8, Taylor's theorem may be applied to develop the integrand as apower series, after whieh
term-by-term integration Sometimes leads to a feasible computation of the integral. More
sophisticated ways of using this theorem have also been developed,

9, The method of undetermined coeffcients may be used to generate integration formulas of a
wide variety of types for special purposes,

10, Adaptive integration covers the many methods that have been devised to deal with the fact
that most functions are harder to integrate accurately over certain intervals than over
others, A particularly diffcult section might, for example, force the use of a very small h
value in Simpson's rule and lead to a great deal of unnecessary computation, Adaptive

methods use finer subdivisions only where they are actually needed, One systematic way of
doing this wil be ilustrated.

ERROR SOURCES
,

The usual error sources are present, However, input errors in the data values Ya, , , , , Yn are not
magnified by most integration formulas, so this source of error is not nearly so troublesome as it is in
numerical differentiation, The truncation error, which is

f (y(x) - p(x)) dx
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for our simplest formulas, and a composite of similar pieces formost of theothers, is now the major
contributor, A wide variety of efforts to estimate this error have been made, A related question is that
of convergence, This asks whether, as continually higher degree polynomials are used, or as

continually smaller intervals hn between data points are used with lim hn = 0, a sequence of
approximations is produced for which the limit of truncation error is zero, In many cases, the
trapezoidal and Simpson rules being excellent examples, convergence can be proved, Roundoff
errors also have a strong effect. A small interval h means substantial computation and much
rounding off.

TheseaJgorithm errors ultimately obscure the convergence which should theoretically occur, and
it is found in practiee that decreasing h below a certain level leads to larger errors rather than
sm aller. As truncation error' becomes negligible, roundoff errors accumulate, limiting the accuracy
obtainable by a given method,

Solved Problems

14.1. Integrate Newton's formula for a collocation polynomial of degree n, Use the limits Xo and Xn

which are the outside limits of collocation, Assurne equally spaced arguments,

This involves integrating a linear function from Xo to Xl' or a quadratic from Xo to X2. and so on. See

Fig, 14-1.

:ro :r i ~.~ :r;¡

:ro "'i '''0 :r ¡ X2

Fig.14-1

The linear function certainly leads to ~h(yo + Y1)' For the quadratie1 2
Pk = Yo + k!'yo + 2 k(k - l)A Yo

and easy computation produces, since x = Xo + kh,

IX2 12 ( 1) hp(x)dx=h Pkdk=h 2Yo+2!'YO+3!'2yo =3(Yo+4YI+Y2)Xo 0
For the cubic polynomial a similar calculation pro 

duces

( p(x) dx = h f Pk dk = h f rYO + k!'yo + (~)!'2yO + (~)!'3YOJ dk

( 9 9 2 3 3) 3h= h 3yo + 2 !'Yo + 4 !' Yo + "8 !' Yo = 8 (Yo + 3y¡ + 3Y2 + Y3)

Results for higher-degree polynomials can also be obtained in the same form

Ixn p(x) dx = Ch(coYo + . , , + CnYn)Xo
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and values of C and Ci for the first few values of n are given in Table 14,1. Such formulas are called the
Cotes formulas,

Table 14.1

n C Co Ci C2 C3 C4 Cs C6 C7 Cs

1 1/2 1 1

2 1/3 1 4 1

3 3/8 1 3 3 1

4 2/45 7 32 12 32 7

6 1/140 41 216 27 272 27 216 41
8 4/14,175 989 5888 -928 10,496 -4540 10,496 -928 5888 989

Higher-degree formulas are seldom used, partly because simpler and equally accurate formulas are
available, and partly because of the somewhat surprising fact that higher-degree polynomials do not
always mean improved accuracy.

14.2. Estimate the truncation error of the n = 1 formula,

For this simple case we can integrate the formula

1
y(x) - p(x) = 2 (x - xo)(x - X1)yC2~(~)

directly and apply the mean value theorem as folIows, obtaining theexact error:

rXl 1 rXiI
1 y(x) dx - 2 h(yo + Y1) = 1 2 (x - Xo)(X - Xi)y(2l(~) dxXo Xo ¡Xi 1 1

= y(2l(~) - (x - Xo)(X - xi) dx = - - hV2)(~)Xo 2 12
where h = Xi - xo. The application of the mean value theorem is possible because (x - xo)(x - Xl) does
not change sign in (xo, Xi)' The continuity of yC2)(~) is also involved, For n:; 1 a sign change prevents a
similar application of the mean value theorem and many methods have been devised to estimate
truncation error, most having some disadvantages. We now illustrate one of the oldest methods, using
the Taylor series, for the present simple case n = 1. First we have

~h(Yo + Yi) = ~h(Yo + (Yo + hyó+ ~h2A2) +., ,) J

Using an indefinite integral F(x), where F'(x) = y(x), we can also find¡Xi 1 1 1 1
y(x) dx = F(xi) - F(xo) = hF'(xo) + - h2F(2)(XO) + - h3F(3)(XO) + ' . . = hyo + - h2yó + - h3YÒ2) + ' . ,Xo 2 6 2 6

¡Xi 1 h3
y(x) dx - -h(yo + Y1) = --YÒ2) +. , ,Xo 2 12

presenting the truncation error in series form. The first term may be used as an error estimate. It should
be compared with the actual error as given by - (h3/12)y(2)(~) where Xo ~ ~ ~Xi'

and subtracting,

14.3. Estimate the truncation error of the n = 2 formula,
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Proceeding as in the previous problem, we find first1 1( ( 1 1 1 )
-h(y +4y +y)=-h y +4 Y +hy'+_h2y(2)+_h3y(3)+-h2y(4)+",3 0 1 2 3 0 0 0 2 0 6 0 24 0

+ (YO + 2hyh + 2h2yit) + ~ h3YÒ3) + ~ h4YÒ4) + ' , ,) J

= ~h( 6yo + 6hyh + 4h2YÒ2) + 2h3YÒ3) + ~ h4YÒ4) +, , ,)

The integral itself is

f.x2
y(x) dx = F(X2) - F(xo)

xo

= 2hF'(xo) + ~ (2h)2F(2\XO) + ~ (2h)3F(3)(XO) + ;4 (2htF(4)(XO) + 1~0 (2h)5F(5)(XO) + ' , ,

4 2 4
=2hy +2h2y +_h3y(2)+_h4y(3)+-h5y(4)+."o 0 3 0 3 0 15 0

and subtracting, f.~ 1 1xo y(x) dx - '3 h(yo + 4Y1 + Y2) = - 90 h5YÒ4) + ' , ,

we again have the truncation error in series form, The first term wil beused as an approximation. It cán
also be shown that the error is given by -(h5/90)l4)(;) where xo..; ":X2' (See Problem 14,65.)

A similar procedure applies to the other formulas, Results are presented in Table 14,2, the first
term only being shown,

Table 14.2

n Truncation error n Truncation error

1 _ (h3/12)y(2)
4 _ (8h 7 /945)l6)

2 _(h5/90)y(4) 6 _(9h9/1400)y(8)

, 3 -(3h5/80)l4) 8 -(2368h ii /467, 775)y(lO)

Notice that formulas for odd n are comparable with those for the next smaller integer, (Of course,
such formulas do cover one more interval of length h, but this does not prove to be significant. The even
formulas are superior.)

14.4. Derive the trapezoidal rule,

This ancient formula stills finds application and ilustrates very simply how the formulas of Problem
14,1 may be stretched to cover many intervals, The trapezoidal rule applies oUf n = 1 formula to
successive intervals up to xn'1 1 1 1

2 h(yo + Y1) + 2 h(Y1 + Y2) + 2 h(Y2 + Y3) + ' . , + 2 h(Yn-1 + Yn)

This leads to the formula

f.xn 1y(x) dx =2h(yo+ 2Y1 +" ,+2Yn-1 + Yn)
Xo

which is the trapezoidal rule,



CHAP, 14) NUMERICAL INTEGRATION 123

14.5. Apply the trapezoidal rule to the integration of \I between the arguments 1.00 and 1.30, Use
the data of Table 13,1. Compare with the correct value of the integral.

We easily find

fL30 05ýX dx =:-2 (1 + 2(1.02470 + ' , . + 1.11803) + 1. 14017) = ,32147
1.00

The correct value is H(1.3)3/2 - 1) = .32149 to five places, making the actual error ,00002.

14.6. Derive an estimate of the truncation error of the trapezoid al rule,

The result of Problem 14.2 may be applied to each interval, producing a total truncation error of
about

h3
_ _ (y(2) + (2) + (2)12 0 Y1 ' , , + Yn-i)

Assuming the second derivative bounded, m": /2) .. M, the sum in brackets will be between nm and
nM. Also assuming this derivative continuous allows the sum to be written as ny (2)( l;) where Xo .. l; .. xn'
This is because /2)( l;) then assurnes all values intermediate to m and M. It is also convenient to call the
ends of the interval of integration Xo = a and Xn = b, making b - a = nh. Putting all this together, we

have

(b - a)h2Truncation error = _ y(2)( l;)
12

14.7. Apply the estimate of Problem 14,6 to our square rootintegral.

With h = .05, b - a = .30, and /2)(X) = - X-3/2/4, truncation error = .000016 whieh is slightly less

than theactual error of ,00002. However, rounding to five pI aces and adding this error estimate to our
computed result does produce ,32149, the correct result.

14.8. Estimate the effect of inaccuracies in the Yk values on results obtained by the trapezoidal rule,

With Yk denoting the true values, as before, we find lh(eo + 2é1 + ' , , + 2en-i + en) as the error due
to inaccuracies ek = Yk - Yk' If the ek do not exceed E in magnitude, this output error is bounded by
lh(E + 2(n - l)E + E) = (b - a)E,

14.9. Apply the above to the square root integral of Problem 14,5,

We have (b - a)E = (,30)(.000005) = .0000015, so that this source of error is negligible,

14.10. Derive Simpson's rufe,

This may be the most popular of all integration formulas, It involves applying our n = 2 formula to
successive pairs of intervals up to Xn, obtaining the sumh h h

3" (Yo + 4Y1 + Y2) + 3" (Y2 + 4Y3 + Y4) + ' , , + 3" (Yn-2 + 4Yn-i + Yn)

which simplifies to h .
3" (Yo + 4yi + 2Y2 + 4Y3 + ' , , + 2Yn-2 + 4Yn-1 + Yn)

This is Simpson's rule, It requires n to be an even integer.
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14.11. Apply Simpson's rule to the integral of Problem 14,5.

fl.° 05ýÎ dx =:- (1.0000 + 4(1.02470 + 1.07238 + 1.1803) + 2(1.04881 + 1.09544) + 1.4017) = .321491.00 3
which is correct to five places.

14.U. Estimate the truncation error of Simpson's rule.

The result of Problem 14,3 may be applied to each pair of intervals, producing a total truncation
error of about

h5_ _ ( (4) + (4) (4)90 Yo Y2 +',. + Yri-z)

1';.~.~

Assuming the fourth derivative continuous allows the sum in brackets to be written as (n/2)y(4)(t) where
xo': t ':xn- (The details are almost the same as in Problem 14.6.) Since b - a = nh,

(b - a)h4
Truncation error = _ y(4)(t)180

14.13. Apply the estimate of Problem 14,12 to our square root integral.

Since yC4)(X) = - lix-71, truncatÍon error= ,00000001 which is minute.

14.14. Estimate the effect of data inaccuracies on results computed by Simpson's rule,

As in Problem 14.8, this error is found to be

1

3" h(eo + 4ei + 2e2 + 4e3 + . , , -f 2en-2 + 4en-i + en)

and if the data inaccuracies ek do not exceed E in magnitude, this output error is bounded by

~h41 +4Gn) +2Gn - 1) + 1J =(b -a)E

exactly as for the trapezoidal rule. Applying this to the square root integral of Problem 

14,11 we obtain

the same ,0000015 as in Problem 14.9, so that once again this source of error is negligible.

14.15. Compare the results of applying Simpson's rule with intelvals 2h and hand obtain a new
estimate of truncation error.

Assuming data errors negligible, we compare the two truncation errors, Let Ei and E2 denote these
errors for the intervals 2h and h, respectively. Then

(b - a )(2h t yC4)(ti)Ei = - 180
(b - a)h4yC4)(t2)

E2 = - 180

so that E2 = Ei/16. The error is reduced by a factor of 16 by halving the interval h, This may now be
used to get another estimate of the truncation error of Simpson's rule, Call the correct value of the
integral I, and the two Simpson approximations Ai and A2, Then

I = Ai + Ei = A2 + E2 = Ai + 16E2

Solving for E2, the truncation error associated with interval h is E2 = (A2 - Ai)/15,

14.16. Use the estimate of Problem 14.15 to correct the Simpson's rule approximation,

This is an elementary but very useful idea, We find

I -A E -A A2 -Ai '- 16A2 -Ai- 2+ 2- 2+--15 15
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14.17. Apply the trapezoidal, Simpson, and n = 6 formulas to compute the integral of sinx between
o and nl2 from the seven values provided in Table 14,3. Compare withthe correct value of 1.

Table 14.3

x 0 :r/12 2:r/12 3:r/12 4:r/12 5:r/12 :r/2

sinx .00000 .25882 .50000 ,70711 .86603 ,96593 1.00000

The trapezoidal rule produces ,99429. Simpson manages 1.00003, The n = 6 formula leads to

140712) (41(0) + 216(,25882) + 27(,5) + 272(.70711) + 27(.86603) + 216(,96593) + 41(1)) = 1.000003

Clearly the n = 6 rule performs best for this fixed data supply,

14.18. Show that to obtain the integral of the previous problem correct to five pi aces by using the

trapezoid al rule would require an interval h of approximately .006 radian. By contrast, Table
14,3 has h = n/12 = ,26,

The truncation error of Problem 14,6 suggests that we want

(b - a)h2 y(2)(g) ~ (:r~~)h2 ~ ,000005

which. will occur provided h ~ .006,

14.19. What interval h would be required to obtain the integral of Problem 14,17 correct to five
pi aces using Simpson's rule?

The truncation error of Problem 14.12 suggests

(b - a)h4 (4)(!:):5 (:r/2)h4 ~ .000005

180 Y ,,- 180

or h ~ .15 approximately.

14.20. Prove that the trapezoid al and Simpson's rules are convergent,

Íf we assurne truncation to be the only source of error, then in the case of the trapezoid al rule

I -A = _ (b - a)h2 i2)(g)
12

where I is the exact integral and A the approximation, (Here we depend upon the exact representation
of truncation error mentioned at the end of Problem 14.2.) If lim h = 0 then assuming i2) bounded,
lim (I - A) = 0, (This is the definition of convergence.)

For Simpson's mle we have the similar result

I-A= _(b-a)h4 (4)(!:)180 y "
If lim h = 0 then assuming )(4) bounded, lim (I - A) = O. Multiple use of higher-degree formulas also
leads to convergence.

14.21. Apply Simpson's rule to the integral fô/z sin x dx, continually halving the interval h in the
search for greater accuracy,
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Machine computations, carrying eight digits, produce the results in Table 14.4,

h Approx. integral h Approx. integral

n/8 1.0001344 n/128 ,99999970

n/16 1.0000081 n/256 .99999955

n/32 1.0000003 n/512 .99999912

n/64 .99999983 (best) n/1024 ,99999870

Table 14.4

14.22. The computations of Problem 14,21 indicate a durable error source which does not disappeai:
as h diminishes, actually increases as work continues. What is this error source?

For very small intervals h the truncation error issmall and, as seen earlier, data inaccuracies have

litde impact on Simpson's rule for any interval h, But smàll h means much computing, with the prospect
of numerous computational roundoffs, This error source has not been a major factor in the much briefer
algorithms encountered in interpolation and approximate differentiation, Here it has become dominant
and limits the accuracy obtainable, even though our algorithm is convergent (Problem 14,20) and the
effect of data inaccuracies small (we are saving eight decimal places), This problem emphasizes the
importance of continuing search for briefer algorithms,

14.23. Develop the idea of Problems 14,15 and 14,16 into Romberg's method of approximate
integration,

Suppose that the error of an approximate formula is proportional to hn. Then two applications of
the formula, with intervalsh and 2h, involve errors

Ei =C(2ht E2= Chn

making E2 = E1/2n, With I = Ai + Ei = A2 + E2 as before, we soon find the new approximation

1= A + A2 - Ai = 2n A2 - Ai2 2n _ 1 2n - 1

For n = 4 this duplicates Problem 14,16. For n = 2 it applies to the trapezoid 

al rule in which the

truncation error is proportional to h2, It is not hard to verify that for n = 2 our last formula duplicates
Simpson's rule, and that for n = 4 it duplicates the Cotes n = 4 formula, It can be shown that the error in
this formula is proportional to hn+2 and this suggests a recursive computation, Apply the trapezoidal
rule several times, èontinually halving h. Call the results Ai, A2, A3, ., . , Apply our formula above with
n = 2 to each pair of consecutive Ai' Call the results Bi, B2, B3, . . , , Since the error is now proportional
to h4 we may reapply the formula, with n = 4, to the Bi' The results may be called Cl' C2, C3, , . . ,
Continuing in this fashion an array of results is obtained,

Ai A2
Bi

A3
B2

Cl

A4
B3

C2

Di

The computation is continued until entries at the lower right of the array agree within the required
tolerance,

14.24. Apply Romberg's method to the integral of Problem 14,21.
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The various results are as folIows:

Points used 4 8 16 32

Trapezoidal result .987116 .996785 .999196 ,999799
1.000008 1.000000 1.000000

1.000000 1.000000

1.000000

Convergence to the correct value of 1 is apparent.

1'~;,'fß

14.25. More accurate integration formulas may be obtained by integrating a polynomial over less
than the full range of collocation. Integrate Stirling's formula over the two center intervals,

Up through sixth differences Stirling's form.ula is

1 2 2 k(e - 1) 3 k2(e - 1) 4
PÆ = Ya + kf1oYa + 2 k 0 Ya + 6 f10 Ya + 24 0 Ya

k(e -1)(e - 4) 5 e(e - 1)(k2 - 4) 6

+ 120 f10 Ya + 720 0 Ya
Integration brings, since x - Xa = kh and dx = h dk,

LXO+h f1 (1 1 1)xo-h p(x) dx = h -I Pk dk = h 2Ya + 3" 02Ya - 90 04Ya + 756 06Ya

More terms are clearly available by increasing the degree of the polynomial. Stopping with the
second difference termleaves us once again with the starting combination of Simpson's rule, in the form
(h/3)(Y_i + 4Ya + Yi), In this case the integration has extended over the full range of collocation, as in
Problem 14,1. With the fourth difference term we integrate over only half the range of collocation (Fig,
14-2),

Xa- h Xa Xo + h

Fig.14.2

As more differences are used Y (x) and P (x) collocate at additional arguments, but the integration is
extended over the center two intervals only. Since these are the intervals where Stirling's formula has
thesmallest truncation error (Problem 12.64), it can be anticipated that an integration formula obtained
in this way wil be more accurate. This extra accuracy is, however, purchased at a ptice; in application
suchformulas require Yk values outside the interval of integration.

The truncation error of this formulamay be estimated by the Taylor series method used in Problem
23h9

14,6, and proves to be approximately - 113,400Yb8) + . , .

14.26. Use the result of Problem 14,25 to develop Simpson's rule with correctionterms,
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We make n/2 applications centered at Xi, X3' . . . , Xn-i, where n is even, The result is

Ixn fÍp(x) dx = 3 (Ya + 4Yi + 2Y2 + ' , ,+ 4Yn-i + Yn)
XQ h 4;;4 4. h 6 6 6)

_ 90 (6 Yi + U Y3 +, . ,+ 6 Yn-i) + 756 (6 Yi + 6 Y3 +, . ,+ 6 Yn-l

This can be extended to higher differences if desired,
The truncation error of the result wil be approximately n/2 times that of the previous problem and

, 23(xn - xa)h8 (8)
can be written as - Ya +',.226,800 .

14.27. Develop the idea of adaptive integration,

The essential idea is to subdivide each part of the interval of integration just finely enough for it to
contribute only its proportion of the overall error. There are many ways of doing this, Suppose the
overall permissible error is E, Select an integration formula and apply it to the intervaL. Apply an error
estimator. If the error is less than E, we are finished, If not, apply the formula to the left half of the
intervaL. If the new error estimate is less than E/2, we are finished with that half interval. If not, this
interval is halved and the process goes on, Eventually an interval of length (b - a)/2k is reached, (a, b)
being the original interval, where the formula in use produces an acceptable result, the error being less
than E/2k, The process then resumes, beginning at the right edge of the accepted interval.

As the basic integration formula, Simpson's ruleh .
A2 = 3 (Ya + 4yi + 2Y2 + 4Y3 + Y4)

might be chosen. As error measure, the doubled interval rule
2h

Ai = 3" (Ya + 4Yi + Y4)

is then convenient, since Problem 14,15 then estimates the error as (A2 - Ai)/15, The approximation A2
is then accepted whenever A2 - Ai ~ 15E/2k and is accumulated into the sum of other accepted results
to its left, Clearly, the process ends when the accepted fragments cover (a, b).

14.28. Apply the adaptive integration method of the preceding problem to this integral:

r x5dx

A few runs were made with different tolerances and slight changes in the upper limit, The following
abbreviated output is typieaL Note especially the values of k, which started at 1 (not printed) and rose
to 7. An effort to increase the upper limit further found k skyrocketing,

X x6/6 Computed k

2 10,667 10,667 4

4 682,667 682.667 5

6 7,776,000 7,775,99 6

8 43,690,67 43,690.58 7

14.29. Apply adaptive integration to thè arcsine integral

l1 dxo Vl-x2
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Tension is generated by the infinite discontinuity at the upper limit, which suggests a diminishing
step size near this end much as in the preceding problem. Values of k climbed steadily as the
computation progressed and reached 15 with this result:

Upper limit = ,9999

Intégral = 1.5573

At this point the correct arcsine value is 1.5575,

14.30. Derive Gregory's formula,

This is a form of the trapezoidal rule with correction terms and can be derived in many ways, One
way begins with the Euler-Maclaurin formula (Problem 11.19) in the form

IX" h.. h2 h4 h6y(x) dx =-(y + 2y +.. '+2y +y ) __ (y' _y') +_(y(3) _y(3)) __(y(5) _y(5))2 a i n - I n 12 n a 720 n a 30 240 n a~ ,
more terms being available if needed, Now express the derivatives at Xn in terms of backward differences
and the derivatives at Xa in terms of forward differences (Problem 13,1).

,( 12131415 )hYa = ~ - 2 ~ + 3" ~ - 4: ~ +"5 ~ -'" Ya

,( 12131415 )hy = V+-V +-V +-V +-V +.., Yn 2 3 4 5 n
3 (3) (3 3 4 7 5 )h Ya = ß - 2 ~ + 4: ~ -,,' Ya

h3y~3) = (v3 + ~ v4 +¡ v5 +, , ')Yn

h5YÒ5) = (~5 - , , ')Ya

h5y~5) = (V5 + ' , ')Yn

The result of substituting these expressions is

I~ h hp(x) dx =:2 (Ya + 2Y1 + ' , , + 2Yn-i + Yn) - 12 (VYn - ~Ya)
Xo

h ( 2 2) 19h 3 3) 3h ( 4 4) 863h 5 5
- 24 V Yn + ~ Ya - 720 (V Yn - ~ Ya - 160 V Yn + ~ Ya - 60",480 (V Yn - ~ Ya)

and again more terms can be computed if needed. This is Gregory's formula, It does not require Yk
values outside the interval of integration.

14.31. Apply Taylor's theorem to evaluate the error function integral

2 r
H(x) = YJ Jo e-t2 dt

for x = ,5 and x = 1, correct to four deciIIal places,

(4 (6 (8 (lO
The series e-12 = 1 - (2 + - - - +~ -- +, , , leads to

2 6 24 120

2 ( x3 x5 x7 x9 XII )
H(x) 

= Vi x -3"+ 10 - 42 + 216 -1320 +'"

For x = ,5 this produces .5205, and for x = 1 we find ,8427. The character of this series assures that the
error made in truncating it does not exceed the last term used, so we can be confident in our results, The
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series method has performed very weIl here, but it becomes clearthat if more decimal places are wanted
or if larger upper limits x are to be used, then many more terms of this series will become involved, In
such cases it is usually more convenient to proceed as in the next problem,

14.32. Tabulate the error function integral for x = 0(,1)4 to six decimal places,

2 r _12 dt
H(x) =yÇ 

Jo e

We adopt the method which was used to prepare the fifteen-place table of this function, NBS-AMS
41. The derivatives needed are

2 _x2
H'(x) 

= ýi/
H(2)(X) = - 2xH'(x) H(3)(x) = - 2xH(2)(X) - 2H'(x)

and in general H(n)(x) = - 2xH(n-1l(x) - 2(n - 2)H(n-2)(x)

The Taylor series may be written as
hn

H(x + h) = H(x) + hH'(x) +, , ,+ I H(n)(x) + Rn,

where the remainder is the usual R = hn+1H(n+1)(ç)/(n + I)!. Notice that if M denotes the sum of even
power terms and N the sum of odd power terms, then

H(x +h) =M +N H(x -h) =M-N

For six-place accuracy we use terms of the Taylor series which affect the eighth place, because the length
of the task ahead makes substantial roundoff error growth a possibility. With H(O) = 0, the computationbegins with .2 2 1

H(,l) = ýi (.1) - 3ýi (. I? + 5ýi (.1)5 =,11246291

only the odd powers contributing. Next we put x = .1 and find

H'(.l) = Jre-01 = 1.1171516

H(2)(. 1) = - .2H'(. 1) = - .22343032

H(3(.) = - .2H(2(.) - 2H'(, 1) = - 2,1896171

H(4)(. 1) = - ,2H(3)(. 1) - 4H(2)(. 1) = 1.316447

H(5)(. 1) = - .2H(4)(. 1) - 6H(3)(. 1) = 12.871374

H(6)(.1) = - .2H(5)(.1) - 8H(4)(,l) = -13227432

leading to

M = .11246291 - .00111715 + .00000555 - .00000002 = .11135129

N = .11171516 - ,00036494 + .00000107 = .11135129

Since H(x _ h) = M - N, we rediscover H(O) = 0 which serves as a check on the correctness of the
computation. We also obtain

H(.2) =H(x + h) = M + N = .22270258

The process is now repeated to obtain a check on H(.l) and aprediction of H(,3). Continuing in

this way one eventually reaches H(4). The last two deciinal pI 
aces can then be rounded off, Correct

values to six places are given in Table 14.15 for x = 0(,5)4, In NBS-AMS 41 computations were carried
to 25 places, then rounded to 15. Extensive subtabulations were then made for small x arguments,
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Table 14,5

x .5 1.0 1. 2.0 2,5 3.0 3.5 4,0

H(x) ,520500 .842701 .966105 .995322 .999593 .999978 .999999 1,000000

14.33. Ilustrate the method of undetermined coeffcients for deriving approximate integration

formulas, by applying it to the derivation of Simpson's rule,

In this method we aim directly for a formula of a preselected type. For Simpson's rule the choice

Ih_/(x) dx = h(ciy_i + CaYa + CiYi)

is convenient. The selection of the coeffcients Ck can proceed in many ways, but for Simpson's rule the
choiee is made on the basis that the resulting formula be exact when y(x) is any of the first three powers
of x. Taking y(x) = 1, x, and x2 in turn, we.are led to the conditions

2=c_i+co+ci 0= -c-i+ci 2

3=c-i +ci

which yield Cl = Ci = t Co = 1 making

Ih h-h y(x) dx = 3 (Y-i + 4yo + Yi)

Applying this result to successive pairs of intervàls between Xa and Xn again generates Simpson's rule,
As a bonus, this result also proves to be exact for y(x) =x3, as is easily seen from the symmetries,

This means by addition that it is also exact for any polynomial of degree three or less. For higher-degree
polynomials there is an error term,

14.34. Apply the method of undetermined coeffcients to derive a formula of the type

f y(x) dx = h(aoyo + a¡ y¡) + h2(boyb + biyD

With four coeffcients available, ':e try to make the formula exact when y(x) = 1, X, x2, and x3, This
leads to the four conditions

1 = ao+ai

1-=
2

1

3

1

4

ai + bo + bi

ai +2bi

ai +3bl

which yield aü = ai = t bo = - bi = li. The resulting formula is

Lh h h2o y(x) dx = 2" (Yo + Yi) + 12 (Yó - yD

which reproduces the first terms of the Euler-Maclaurin formula, Agreat variety of formulas may be
generated by this method of undetermined coeffcients, As in tl1e examples just offered, a little
preliminary planning and use of symmetry can often simplify the system of equations which ultimately
determines the coeffcients.
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Supplementary Problems

14.35 Integrate Newton's formula for a collocation polynomial of degree four and so verify the n = 4 row of
Table 14.1.

14.36. Verify the n = 6 row of Table 14,1.

14.37. Use the Taylor series method to obtain the truncation error estimate for the n = 3 formula as listed in
Table 14.2.

14.38. Use the Taylor series method to verify the truncation error estimate for the n = 4 formula.

14.39. Apply various formulas to the following limited data supply to approximate the integral of y(x):

x 1.0 1.. 1.4 1.6 1.8 2.0

y(x) 1.0000 ,8333 ,7143 .6250 .5556 .5000

Use the trapezoidal rule, applying correction terms. How much confidence do you place in your result?
Does it appear correct to four places? (See the next problem.)

14.40. The data of Problem 14,39 actually belong to the function y(x) = I/x. The correct integral is, therefore,
to four places, In 2 = .6931. Has any approximate method produced this?

14.41. Use the truncation error estIlnate for the trapezoidal rule to predict how tightly values of y(x) must be
packed (what interval h) for the trapezoidal rule itself to achieve a correct result to four pI 

aces for

jidx/x.

14.42. Suppose the data of Problem 14,39 augmented by the inc1usion of these new number pairs:

x 1. 1. 1. 1. 1.9

y(x) ,9091 .7692 .6667 ,5882 ,5263

Reapply the trapezoidal rule to the full data supply, Use this result as A2, the corresponding result in
Problem 14,39 as AIr and the formula of Problem 14.23 to obtain stil another approximation to ¡, Is it
correct to four places?

14.43. Apply the trapezoidal rule with correction terms to the full data supply now available for y(x) = I/x,

14.44. Apply Simpson's rule to the data of Problem 14.39, Wil correction terms as in Problem 14.26 be

needed? If so, apply them,

14.45. Use the truncation error estimate for Simpson's rule to predict how many values of y(x), or how small
an interval h, will be needed for this rule to produce In 2 correct to four places.

14.46. How small an interval h would be required to obtain In 2 correct to eight pi 

aces using the trapezoidal

rule? Using Simpson's rule?

14;47. Apply the Euler-Mac1auri.n formula (Problem 14,30) up through the fifth-derivative terms to evaluate
In 2 to eight decimal places, The correct value is .69314718. (Try h = ,1.)
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14.48. From the following data estimate gy(x) dx as well as you can.

x 0 .25 .50 .75 1.00 1.25 1.0 1. 75 2

y(x) 1.000 1.284 1.649 2.117 2,718 3.490 4.482 5.755 7.389

How much confidence do you place in your results? Do you believe them correct to three places?

14.49. The data of Problem 14.48 were taken from the exponential function y(x) = eX. The correct integral is,
therefore, to three places, fg eX dx = e2 - 1 = 6,389. Were any of our formulas able to produce this
result?

14.50. From the following data, estimate Si y(x) dx as well as you can.

x 1 1.5 2 2.5 3 3.5 4 4,5 5

y(x) 0 .41 ,69 .92 1.0 1.5 1.9 1.0 1.61

How much confidence do you place in your results?

14.51. The data of Problem 14,50 corresponds to y(x) = logx. The correct integral is, therefore, to two places,
Si log x dx = 5 log 5 - 4 = 4,05. Were any of our formulas able to produce this result?

14.52. Calculate ri dx 2 correct to seven places by adaptive integration. The correct value is ¡r/4, or to seven
Jo 1 +x

places .7853982,

14.53. Calculate f~/2 VI - ~ sin2 t dt to four decimal places, This is called an elliptic integral. Hs correct value is
1.4675. Use adaptive integration.

14.54. Show that to four pI aces ft2 VI - ! sin2 t dt = 1.3506.

14.55. Use adaptive integration to verify

("/2
Jo sin2 x ~ cos2x = 3.1415927

the exact valuebeing ¡r,

14.56. Apply the Taylor series method as in Problem 14,31, to compute the sine integral

. LX sin t
Si (x) = -dt

o t
for x = 0(,1)1, to five decimal places. The refined procedure used in Problem 14.32 is not necessary
here. (The last result should be Si (1) = ,94608.)

14.57. Apply the Taylor series method as in Problem 14.32 to compute the sine integral for x = 0(.5)15, to five
decimal places. The final result should be Si (15) = 1.61819.

14.58. Apply the Taylor series method to compute n ýX sin x dx to eight decimal places.

14.59. Apply the Taylor series method to compute n (I/VI + x4) dx to four decimal places,

14.60. Compute the total arc length of the ellipse x2 + y2/4 ~ 1 to six decimal places.
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14.61. By adding (h/140)ö6Y3 to the n = 6 formula of Table 14,1, derive Weddle's rule,

iX6 3hy(x) dx = 10 (Yo + 5Y1 + Y2 + 6Y3 + Y4 + 5ys + Y6)
Xo

14.62. Use the method of undetermined coeffcients to derive a formula of the form

fh y(x) dx = h(a_1Y_i + aoYo + aIY1) + h2(b_IY'-1 + boY~ + b1y;)

which is exact for polynomials of as high a degree as possible,

14.63. Use the method of undetermined coeffcients tO derive the formula

fh h h3
Jo y(x) dx= 2 (Yo + Y1) - 24 (y~2) + y~2))

proving it exact for polynomials of degree up' through three,

14.64. Use the method of undetermined coeffcients to derive

fh ( h, h2 ") h3 (2) (2))
Joyx)dx=2(Yo+Y1)+io(Y0-Y1 +120(Yo +Y1

proving it exact for polynomials of degree up through five,

14.65. Derive an exact expression for the truncation error of oUf n = 2 formula by the following method, Let

fh hP(h) = -h y(x) dx - 3' (y( - h) + 4y(0) + y(h))

Differentiate three times relative to h, using the theorem on "differentiating under the integral sign"

to obtain

d fb(h) fb a
dh y(x, h) dx = a~dx + y(b, h)b'(h) - y(a, h)a'(h)_0) _

P(3)(h) = - ~ (y(3)(h) - /3)( - h))
3

Notice that F'(O) = p(2)(O) = p(3)(O) = 0, Assuming y(4)(X) continuous, the mean value theorem now
produces

P(3)(h) = - ~ h2y(4)( eh), 3
where e depends on hand falls betyveen -land 1. We now reverse direction and recover P(h) by
integration. It is convenient to replace h by t (making e a function of t), Verify that

1 lh
P(h) = - - (h - t)2t2/4)( et) dt

3 0

by differentiating thre~ times relative to h to recover the above P(3)(h). Since this formula also makes
P(O) = F'(O) = p(2)(0), itis the original P(h). Next apply the mean value theorem

f f(t)g(t) dt = g(;) f f(t) dt

with a ~ ; ~ b, which is valid for continuous functions provided f(t) does not change sign between a and
b. These conditions do hold here with f(t) = - t2(h - t?/3, The result is

P(h) = y(4)(;) fh f(t) dt = _ hS y(4)(;)Jo 90
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This is the result mentioned in Problem 14.3, The early parts of this proof, in which we maneuver from
F(h) to its third derivative and back again, have as their goal a representation of F(h) to which the
mean value theorem can be applied, (Recall that J(t) did not change sign in the interval of integration.)
This is often the central diffculty in obtaining a truncation error formula of the sort just achieved.

14.66. Modify the argument of Problem 14,65 to obtain the formula given at the end of Problem 14,2,

h3
Truncation error = - 12 i2)( ç)

for the n = 1 formula.

14.67. Evaluate f6 e-x3 dx correct to six places,



Chapter 15

Gaussian 'Integration

CHARACTER OF A GAUSSIAN FORMULA
The main idea behind Gaussian integration is that in the selection of a formula

fb na y(x) dx = ~l A¡y(x¡)

it may be wise not to specify that the arguments X¡ be equally spaced, All the formulas of the

preceding chapter assurne equal spacing, and if the values y(x¡) 
are obtained experimentally this wil

probably be' true, Many integrals, however, involve familar analytic functions which may be
computed for any argument and to great accuracy, In such cases it is useful to ask what choiee of the
X¡ and A¡ together wil bring maximum accuracy. It proves to be convenient to discuss the slightly
more general formula

fb na w(x)y(x) dx = ~l A¡y(x¡)

in which w(x) is a weighting function to be specified later. When w(x) = 1 we have the original,
simpler formula,

One approach to such Gaussian formulas is to ask for perfect accuracy when y(x) is one of the
power functions 1, x, x2, , , . , X2n-l, This provides 2n conditions for determining the 2n numbers X¡
and A¡. In fact,

A¡ = f w(x)L¡(x) dx.

where L¡(x) is the Lagrange multiplier function introduced in Chapter 8, The arguments Xl' , . , , Xn
are the zeros of the nth-degree polynomial Pn(x) belonging to a family having the orthogonality
property

f W(X)Pn(x)Pm(x) dx = °

for m =1 n

These polynomials depend upon w(x), The weighting function therefore infiuences both the A¡ and
the Xi but does not appear explicitly in the Gaussian formula,

Hermite's formula for an osculating polynomial provides another approach to Gaussian

formulas, Integrating the osculating polynomial leads to

fb na w(x)y(x) dx = ~ (A¡y(x¡) + B¡y'(x¡))

but the choice of the arguments X¡ as the zeros of a member of an orthogonal family makes all B¡ = 0,
The formula then re duces to the prescribed type, This suggests, and we proceed to verify, that a
.simple collocation polynomial at these unequally spaced arguments would lead to the same result,

Orthogonal polynomials therefore playa central role in Gaussian integration. A study of their
main properties forms a substantial part of this chapter.

The truncation error of the Gaussian formula is

fb n (2n)(;) fba w(x)Y(X)dX-~iA¡Y(X¡)=Y(2n)! a w(x)(.n(x))2dx

where .n(x) = (x - Xl) , , , (X - xn), Since this is proportional to the (2n )th derivative of y(x), such
formulas are exact for all polynomials of degree 2n - 1 or less, In the formulas of the previous

chapter it is /n)(;) which appears in this place, In a sense our present formulas are twice as accurate

as those based on equally spaced arguments,

136
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PARTICULAR TYPES OF GAUSSIAN FORMULAS

Partieular types of Gaussian formulas may be obtained by choosing w(x) and the limits of
integration in various ways. Occasionally one mayaiso wish to impose constraints, such as specifying
certain Xi in advance. A number of particular types are presented.

1. Gaussian-Legendre formulas occur when w(x) = 1. This is the prototype of the Gaussian
method and we discuss it in more detail than the other types. It is customary to normalize
the interval (a, b) to (-1,1). The orthogonal polynomials are then the Legendre

polynomials
1 dn

Pn(x) = -2" 'd-- (x2 - 1)"
n, X

with Po(x) = 1. The Xi are the zeros of these polynomials and the coeffcients are

2(1 - xf)
Ai = 2(. 2

n Pn-i(Xi)) .

Tables of the Xi and Ai are available to be substituted directly into the Gauss-Legendre
formula

rb n
Ja y(x) dx = ~i Aiy(xi)

Various properties of Legendre polynomials are required in the development of these
results, including the following:

ri xkPn(x) dx = 0 for k = 0, , , , , n -1
Li

ri 2n+i(n!)2
Li xnpn(x) dx = (2n + I)!

Li 2(Pn(x)fdx=2--i n + 1

Li Pm 
(x)P,¡(x) dx = Ó for m *n

Pn(x) has n real zeros in (-1,1)

(n + I)Pn+i(x) = (2n + l)xPn(x) - nPn-i(x)
n

(t - x) ¿ (2i + 1)P¡(x)P¡(t) = (n + 1)(Pn+i(t)Pn(x) - Pn(t)Pn+i(x))
i=O

ri Pn(x) dx = -2
Lix -Xk (n + I)Pn+i(xk)

(l-x2)P~(x) + nxPn(x) = nPn-i(x)

Lanczos' estimate of truncation error for Gauss-Legendre formulas takes the form

£=-211(Y(I)+Y(-I)-i-iAiXiY'(Xi))n + 1=1
where I is the apprpximate integral obtained by the Gaussian n-point formula, Note that the
¿ term involves applying this same formula to the function xy' (x), This error estimate seems
to be fairly accurate for smooth functions,
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2, Gauss-Laguerre formulas take the form

Ix no e-Xy(x) dx = ~ A¡y(x¡)

the arguments X¡ being the zeros of the nth Laguerre polynomial
dn

Ln(x) = eX dxn (rXxn)

and .the coeffcients A¡ being

(n!)2
A¡ = x¡(L~(x¡)12

The numbers X¡ and A¡ are available in tables,
The derivation of Gauss-Laguerre formulas paralleis that of Gauss-Legendre very

closely, using properties of the Laguerre polynomials,

3, Gauss-Hermte formulas take the form

Ix n-x e-X2y(x) dx = ~ A¡y(x¡)

the arguments X¡ being the zeros of the nth Hermite polynomial
2 dn 2

Hn(x) = (-1teX dxn (e-X)

and the coeffcients A¡ being
2n+1n,.r=A= ,yni (H~(x¡)12

The numbers Xi. and A¡ are available in tables,

4, Gauss-Chebyshev formulas take the form

I1 y(x) n n, -1 \7 dx =;; ~l y(x¡)

the arguments X¡ being the zeros of the nth Chebyshev polynomial Tn(x) = cos(n arccosx),

Solved Problems

THE GAUSSIAN METHOD

15.1. Integrate Hermite's formula for an osculating polynomial approximation to y(x) at arguments

Xl to Xn-

Here it is convenient to delete the argument Xo in our osculating polynomiaL. This requires only

minor changes in our formulas of Chapter 10, The Hermite formula itself becomes
n

p(x) = ¿: (1- 2L;(x;)(x -x¡)JL¡(x)fy¡ + (x -x¡)(L¡(x)fy;
i=l

where L¡(x) = F;(x)/ F;(x¡) is the Lagrange multiplier function, F;(x) being the product F;(x) = TI (x - Xk)'k'4i
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Integrating, we find

where

Lb na w(x)p(x) dx = ~ (A;y; + B¡y;)

Lb ' LbA¡= a w(x)(1-2L;(x¡)(x-x;)lL¡(xWdx B¡= a w(x)(x-xJ(L;(xWdx

15.2. Find the truncation error of the formula in Problem 15,1.

Surprisingly enough, this comes more easily than for formulas obtained from simple collocation
polynomials, because the mean value theorem applies directly, The error of Hermite's formula (Problem
10.4), with n in place of n + 1 because we have deleted one argument, becomes

yi2n)(ç) 2y(X)-p(x)= (2n)! (ir(x))

Multiplying by W(X) and integrating,

Lb 'Lb (2n)( ç)a W(X)(Y(X)-p(x))dx= a w(x)y(2n)! (ir(x)ydx

Since W(X) is to be chosen a nonnegative function and (ir(xW is surely positive, the mean value theorem
at once yields

Lb (2n)((JYLbE= a w(x)(y(x)-P(X))dx=\2n)! a w(x)(ir(xWdx

for the truncation error. Here a -: (J -: b, but as usual (J is not otherwise known, Notice that if y(x) were
a polynomial of degree 2n - 1 or less, this error term would be exactly O. Our fOfmula wil be exact for
all such polynomials,

is.3. Show that all the coeffcients Bi wil be 0 if

f w(x ).n(x )xk dx = 0

By Problem 8.3 (x - x¡)L¡(x) = ir(x)/ ir'(xJ, Substituting this into the formula for B;,

1 Lb
B¡ = --( ,) w(x )ir(x )L;(x) dx

ir xi a

for k = 0, 1, ' , , , n - 1

But L¡(x) is a polynomial in x of degree n - 1 and so

1 Lb n-I. 1 n-! Lb
B¡ = --() w(x )ir(x) :¿ ilkXk dx = --( ):¿ ilk w(x )ir(x )xk dx = 0ir X¡ a k~O ir x; k~O a

15.4. Define orthogonal functions and restate the result of Problem 15.3 in terms of orthogonality,

Functionsf1(x) and.fx) are called orthogonal on the interval (a, b) with weight function w(x) if

f w(x).f(x).fx) dx = 0

The coeffcients B¡ of our formula wil be zero if ir(x) is orthogonal to xP for p = 0, 1, , . , , n - 1. By
addition ir(x) will then be orthogonal to any polynomial of degree n - 1 or less, including the Lagrange
multiplier functions L¡(x), Such orthogonality depends upon and determines OUf choice of the
collocation arguments Xk and is assumed for the remainder of this chapter.

15.5. Prove that with all the Bi = 0, the coeffcients Ai reduce to Ai = H w(x)(L¡(xW dx and are
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therefore positive numbers,

Ai = r w(x)(Li(x)f dx - 2L;(xi)Bi re 
duces to the required form when Bi = 0

15.6. Derive the simpler formula A¡ = f~ w(x)L¡(x) dx.

The result follows if we cim show that f~ w(x)L¡(x)(L¡(x) - 1) dx = O.

But L¡(x) - 1 must contain (x - x;) as a factor, because L¡(x¡) - 1 = 1 - 1 = O. Therefore
n(x)

L¡(x)(L¡(x) - 1) = ,," , (L;(x) - 1) = n(x)p(x)

with p(x) of degree n - 1 at most, Problem 15.3 then guarantees that the integral is zero.

15.7. The integration formula of this section can now be written asrb n
Ja w(x)y(x) dx = ~ A¡y(x¡)

where A¡ = f~ w(x )L¡(x) dx and the arguments X¡ are to be chosen by the orthogonality
requirements of Problem 15,3, This formula was obtained by integration of an osculating
polynomial of degree 2n - 1 determined by the y¡ and y; values at arguments Xi' Show that the
same formula is obtained by integration of the simpler collocation polynomial of degree n -, 1
determined by the y¡ values alone, (This iS,one way of looking at Gaussian formulas; they
extract high accuracy from polynomials of relatively low degree,)

n

The collocation polynolIial is p(x) = L L¡(x)y(x¡) so that integration pro 

duces
i=l

ib na w(x)p(x) dx = ~ Aiy(x¡)

as suggested. Here p (x) represents the collocation polynomial. In Problem 15.1 it stood for the more
complicated osculating polynomial. Both lead to thesame integration formula, (For a specific example
of this, see Problem 15,25.)

GAUSS-LEGENDRE FORMULAS

15.8. The special case w(x) = 1 leads to Gauss-Legendre formulas, It is the custom to use the
interval of integration (-1,1). As a preliminary exercise, determine the arguments Xk directly

from the conditions of Problem 15,3

fi n(x)xk dx = 0
k = 0, 1, . . . , n - 1

for the value n = 3,

The polynomial n(x) is then cubic, say n(x) = a + bx + cx2 + x3. Integrations produce

22a+-c=0
3

2 2-b+-=O3 5
2 2-a+-c=O3 5

which lead quickly to a = c = 0, b = -l. This makes

n(x) =x3 -~x = (x + ~)x(x - ~)

The collocation arguments are therefore Xk = - v1, 0, v1,
Theoretically this procedure would yield the Xk for any value of n but it is quicker to use a more

sophisticated approach.
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15.9. The Legendre polynomial of degree n is defined by

p. () 1dn (2 )nn X =2~d-- X -1
n. X

with Po (x ) = 1. Prove that for k = 0, 1, , , , , n - 1

Li xkPn(x) dx = 0

making Pn(x) also orthogonal to any polynomial of degree less than n,

Apply integration by parts k times,

fl dn (dn-i)i fl dn-Ixk - (x2 - 1Y dx = xk - (x2 - 1Y - kxk-I -- (x2 - 1)" dx-I dxn dxn-I -I -I dxn-I\. ./
='VO

fl dn-k
=" '=(-l)kk! d n_k(x2-1Ydx=0

-I X

15.10. Prove Li xnpn(x) dx
2n+1(n!)2

(2n + 1)! '

Taking k = n in the preceding problem,

fl dn . fixn -; (x2 - 1Y dx = (- 1Yn! (x2 - 1)" dx-I dx -I
Li L"/2=2n! (1-x2Ydx=2n! COS2n+1tdto 0

This la.st integral res ponds to the treatment

L"/2 (cos2n t sin t)"/2 2n L"/2còs2n + I t dt = + - COs2n-1 t dto 2n+1 0 2n+1o~
=0

2n(2n - 2) , , ,2 L"/2=. , ,= cos tdt
(2n+l)(2n-1)"'3o

fi dn 2n(2n-2)"'2_ixn dxn (x2 - 1Y dx = 2n! (2n + 1)(2n _ 1)' , '3
so that

Now multiply top and bottom by 2n(2n - 2)' , '2 = 2nn! and recall the definition of Pn(x) to obtain, as
required,

1 2nn!2nn!

L xnpn(x) dx = 2nn! 2n! (2n + I)!

2n+1(n!)2

(2n + I)!

r1 215.11. Prove (Pn(X))2 dx = -2 '-1 n + 1
Splitting off the highest power of x in one Pn (x) factor,

f1 (Pn(XWdx=fl (~(2~)!xn+".)Pn(X)dx-I -I 2 n, n,
Powers below xn make no contribution, by Problem 15.9. Using the preceding problem, we have

fi p 2 _ (2n)! 2n+I(n!?_~-I ( n(X)) dx - 2n(n!)2 (2n + I)! - 2n + 1
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15.U. Prove that for m =1 n, f:"i Pm.cX)Pn(x) dx = 0,

Writing out the lower-degree polynomial, we find each power in it orthogonal to the higher-degree
polynomial. In particular with m = 0 and n * 0 we have the special case S~I Pn(x) dx = 0,

15.13. Prove that Pn(x) has n real zeros between -1 and 1.

The polynomial (x2 - ir is of degree 2n and has multiple zeros at :11. Its derivative therefore has
one interior zero, by Rolle's theorem, Thìs first derivative is also zero at :11, making three zeros in all.
The second derivative is then guaranteed two interior zeros by Rolle's theorem, It also vanishes at :I 1,
making four zeros in all , Continuing in this way we find that the nth derivative is guaranteed n interior
zeros, by Rolle's theorem. Except for a constant factor, this derivative is the Legendre polynomial
Pn(x),

15.14. Show that for the weight function w(x) = 1, ir(x) = (2n(ni)2f(2n)!)Pn(x),

Let the n zeros of Pn(x) be called Xl' ' , , , Xn' Then

(2nnl2J(2n)! Pn(x)=(x-xi)'''(x-xn)

The only other requirement on .i(x) is that it be orthogonal to xk for k = 0, 1, . . , , n - 1. But this
follows from Problem 15,9, .

15.15. Calculate the first several Legendre polynomials directly from the definition, noticing that
only even or only odd powers can occur in any such polynomial.

Po(x) is defined to be 1. Then we find

1 d
P1(x) = -- (x2 - 1) =x2dx .

1 d2 1
P2(x) = g dx2 (x2 - 1)2 = 2 (3x2 - 1)

1 ¿p 1
P3(x) = 48 dx3 (x2 - i? = 2 (5x3 - 3x)

) 1 d4 ( 2 4 1 4 2)P4(x =16'24dx4 x-i) =g(35x -30x +3

Similarly,

1
Ps (x ) = g (63x5 - 70x3 + 15x)

1
P6(x) = 16 (23lx6 - 315x4 + 105x2 - 5)

1 .
P7(x) = 16 (429x7 - 693x5 + 315x3 - 35x)

Ps(x) = 1~8 (6435xs - 12,012x6 + 6930x4 - 1260x2 + 35)

and so on, Since (x2 - ir involves only even powers of x, the result of differentiating n times wil
contain only even or only odd powers,

15.16. Show that xn can be expressed as a combination of Legendre polynomials up through Pn(x),
The same is then true of any polynomial of degree n,

Solving in turn for successive powers, we find

1 = Po(x) x = Pi(x)
1

x2 = 3 (2Pz(x) + Po(x))

1 .
x4 =35 (8P4(x) + 20P2(x) + 7Po(x))1

x3 =:5 (2PJx) + 3Pi(x))

and so on, The fact that each Pk(x) begins with a nonzero term in xk allows this procedure to continue
indefinitely.
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15.17. Prove the recursion for Legendre polynomials,

(n + 1)Pn+i(x) = (2n + 1)xPn(x) - nPn-i(x)

The polynomial xPn(x) is of degree n + 1, and so can be expressed as the combination (see Problem15,16) n+I
xPn(x) = 2: c¡P;(x)

i=O

1'~

Multiply by Pk(x) and integrate to find

L xPk(x )Pn(x) dx = Ck L p¡(x) dx

all other terms on the right vanishing since Legendre polynoniials of different degrees are orthogonaL.

But for k -: n - 1 we know Pn(x )isalso orthogonal to xPk(x), since this product then has degree at most
n - 1. (See Problem 15,9.) This makes Ck = 0 for k -: n - 1 and

xPn(x) = cn+iPn+i(X) + cnPn(x) + cn-iPn-i(x)

Notieing that, from the definition, the coeffcient of xn in Pn(x) wil be (2n)!/2n(n!)2, we compare
coeffcients of xn+1 in the above to find .

(2n)! (2n+2)!
2n(n!)2 = Cn+12n+1((n + 1)W

from whieh Cn+1 = (n + 1)/(2n + 1) folIows, Comparing the coeffcients of xn, and remembering that only

alternate powers appear in any Legendre polynomial; brings Cn = 0, To determine Cn-1 we return to our
integrals, With k = n - 1 we imagine Pk(x) written out as a sum of powers. Only the term in xn-1 need
be considered, since lower terms, even when multiplied by x, wil be orthogonal to Pn(x). This leads to

(2n-2)! f1 I
2n l((n -1)W -1 xnpn(x)dx = Cn-1 L P~-l(X) dx

and using the results of Problems 15,10 and 15,11 one easily finds Cn-1 = n/(2n + 1). Substituting these
coeffcients into our expression for xPn(x) now brings the required recursion, As a bonus we also have
the integral

n 2 2n
L xPn-1(x)Pn(x) dx = 2n + 12n - 1 = 4n2 - 1

15.18. Ilustrate the use of the recursion formula.

Taking n = 5, we find

11 5 1
P6(x) = "6 xPs(x) - "6 P4(x) = 16 (231x6 - 315x4 + 105x2 - 5)

and with n = 6, 13 6 1 ..
P7(x) = 7 XP6(~) -'7 Ps(X) = 16 (429x7 - 693xs + 315x3 - 35x)

confirming the results obtained in Problem 15.15, The recursion process is weil suited to automatie
computation of these polynomials, while the differentiation process of Problem 15,15 is not.

15.19. Derive Christoffel's identity,
n

(t -x) ¿: (2i + 1)P¡(x)P¡(t) = (n + 1)(Pn+i(t)Pn(x) - Pn(t)Pn+i(x))
i=O

The recursion formula of Problem 15.17 can be multiplied by P;(t) to obtain

(2i + l)xP;(x)P;(t) = (i + l)Pi+i(x)P;(t) + iP¡-i(x)P;(t)
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Writing this also with arguments x and t reversed (since it is true for any x and t) and then subtracting,
We have

Summing from i = 1 to i = n, and noticing the "telescoping effect" on the right, we have

(2i + l)(t -x)P;(x)P;(t) = (i + l)(P¡+i(t)P;(x) - P;(t)P¡+i(X)) - i(p¡(t)P¡_l(X) - P¡-l(t)P;(X))

n

(t - x) ¿, (2i + l)P;(x )P;(t) = (n + 1)(Pn+1(t)Pn(x) - Pn(t)Pn+1(x)) - (t - x)
;=1

The last term may be transferred to the left side where it may be absorbed,into the sum as an i = 0 term.
This is the Christoffel identity.

15.20. Use the Christoffel identity to evaluate the integration coeffcients for the Gauss-Legei;dre. A 2case, proving k = P' ( )P ( )
n n Xk n-i Xk

Let Xk be a zero of Pn(x). Then the preceding problem, with t replaced by Xki makes

(n + 1)Pn+1(xk)Pn(x) -i (2i + l)P;(x )P¡(Xk)
x -Xk ¡=o

Now integrate from - 1 to 1. By a special case of Problem 15,12 only the i = 0 term survives on the right,
and we have

Cl Pn(x) dx -2
Li x - Xk (n + 1)Pn+1(Xk)

The recursion formula with x =Xk makes (n + l)Pn+i(Xk)= -nPn-1(Xk) which allows us the alternative

ri Pn(x) dx =~
Li x - Xk nPn-1(Xk)

By Problems 15,6 and 15,14 we now find

Ak = Cl Lk(x) dx = ri t ii(x) dx = ri I Pn(x) dxL L ii (Xk)(X - Xk) L P n(Xk)(X - Xk)
leading at once tothe result stated.

15.21. Prove that (1- X2)p~(X) + nxPn(x) = nPn-i(x), whieh is useful for simplifying the result of
Problem 15,20,

We first notice that the combination (1 - X2)P~ + nXPn is at most of degree n + 1. However, with A
representing the leading coeffcient of Pn(x), it is easy to see that xn+1 comes multiplied by -nA + nA
and so isnot involved, Since Pn contains no term in xn-i, our combination also has no term in xn, Hs

degree is at most n - 1 and by Problem 15.16 it can be expresed as
n-1

(1 - X2)P~(X) + nXPn(x) = ¿, c¡P;(x);=0

Proceeding as in our development of the recursion formula, we now multiply by Pk(x) and integrate, On
the right only the kth term survives, because of the orthogonality, and we obtain2 Ci Ci

2k + 1 Ck = Li (1 -X2)P~(X)Pk(X) dx + n L1XPn(X)Pk(x) dx

Integrating the first integral by parts, the integrated piece is zero because of the factor (1 - x2). This
leaves 2 (d 1

2k + 1 Ck = - Li Pn(x) dx ((1 -X2)Pk(X)) dx + n LxPn(X)Pk(X) dx
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For k.. n - 1 both integrands have Pn(x) multiplied by a polynomial of degree n - 1 or less. By Problem

15,9 all such Ck wil be zero. For k = n - 1 the last integral is covered by the Problem 15.17 bonus, In the
first integral only the leading term of Pn -I (x) contributes (again because of Problem 15.9) making this
term

fi )dr2 (2n-2)! n-il-I Pn(x dx lx 2n I((n _ l)!Yx r dx
Using Problem 15.10, this now reducesto

(2n - 2)! 2n+l(n !)2 2n(n + 1)
2n l((n - 1)!y (n + 1) (2n + I)! (2n + 1)(2n - 1)

Substituting these various results, we find

2n - 1 ( 2n(n + 1) 2n2 J
' Cn-1 =-Z (2n + 1)(2n - 1) + (2n + 1)(2n _ 1) = n

whieh completes the proof,

, . 2(1-x¡)
15.22. Apply Problem 15,21 to obtain Ak = 2(p. ( ))2'

n n-l Xk

PuttingX=Xb a zero of Pn(x), we find (l-xnP~(xk)=nPn_l(xk)' The derivative factor can now
be repl~ced in our result of Problem 15,20, producing the required result,

15.23. The Gauss-Legendre integration formula can now be expressed as

fl n_/(x) dx = ~ A¡y(x¡)

where the arguments Xk are the zeros of Pn(x) and the coeffcients Ak are given in Problem
15,22, Tabulate these numbers for n = 2,4,6, , , , , 16,

For n = 2 we solve P2(x) = !(3x2 - 1) = 0 to obtain Xk = :iv1= :1.57735027, The two coeffcients
prove to be the same, Problem 15,22 makes Ak = 2(1 - D/(4(l) = 1.

For n = 4 we solve P4(x) = l(35x4 - 30x2 + 3) = 0 to find x; = (15 :I 2v')/35, leading to the four argu-

ments Xk = :1((15:1 2v')/35)1I2,

Computing these and inserting them into the formula of Problem 15,22 produces the Xb Ak pairs
given in Table 15,1. The results for larger integers n are found in the same way, the zeros of the
high-degree polynomials being found by the familiar Newton method of successive approximations,
(This method appears in a later chapter.)

15.24. Apply the two-point formula to fô/2 sin t dt,

The change of argument t = ii(x + 1)/4 converts this to our standard interval as

f1 ii . ii(x + 1) dx
-sm-14 4

and the Gaussian .arguments Xk = :1,57735027 lead to Y(X1) = .32589, Y(X2) = .94541. The two-point
formula now generates (ii/4)(.32589 + .94541) = .99848 which is correct to almost three places. The
two-point Gaussian formula has produced a better result than the trapezoidal rule with seven points
(Problem 14,17), The error is two-tenths of 1 percent!

It is amusing to see what a one-point formula could have done, For n = 1 the Gauss-Legendre
result is, as one may easily verify, f~i y(x) dx = 2y(0). For the sine function this becomes

fi ii, ii(x + 1) ii , ¡;-sm dx =- v2= 1.11-14 4 4
which is correct to within about 10 percent,
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Table 15.1

n Xk Ak n Xk Ak 0

2 :l,57735027 1.00000000 14 :l.98628381 .03511946

:l.86113631
,34785485 :l.92843488 ,08015809

4 :l.82720132 ,12151857

:l.33998104
.65214515

:l.68729290 ,15720317

6 :l,93246951
.17132449 :l.51524864 .18553840

:l,66120939
.36076157 :l.31911237 .20519846

:l,23861919
.46791393 :l,10805495 ,21526385

8 :l.96028986
,10122854

16 :l.98940093 .02715246

:l.79666648
.22238103 :l.94457502 .06225352

:l.52553241
.31370665 :l.86563120 .09515851

:l.18343464
.36268378 :l.75540441 .12462897

10 :l.97390653
.06667134 :l,61787624 .14959599

:l.86506337
.14945135 :l.45801678 ,16915652

:l.67940957
.21908636 :l,28160355 ,18260342

:l.43339539
,26926672 :l.09501251 ,18945061

:l,14887434
,29552422

12 ' :l,98156063
,04717534

:l.90411725
.10693933

:l.76990267
.16007833

:l.58731795
.20316743

:l.36783150
,23349254

:l.12533341
.24914705

15.25. Explain the accuracy of the extremely simple formulas used in Problem 15,24 by exhibiting
the poynomials on which the formulas are based.

The n = 1 formula can be obtained by integrating the collocation polynomial of degree zero,
p(x) = y(x¡) = y(O). However, it can also be obtained, and this is the idea of the Gaussian method, from
the osculating polynomial of degree 2n - 1 = 1, which by Hermite's formula is y(O) + xy'(O). Integrating
this linear function between ~ 1 and 1 pro 

duces the same 2y(0), the derivative term contributing zero,

The zero-degree collocation polynomial produces the same integral as a first-degree polynomial, because
the point of collocation was the Gaussian point (Fig. 15-1).

osculating

cul1oeution

i
-1 Xl 0= 0

Fig,15.1

Similarly, the n = 2 formula can be obtained by integrating the collocation polynomial of degree
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one, the points of collocation being the Gaussian points

t (x-r x+r)
Li -2rYi+-iY2 dx=Y1+Y2

where r = VI. This same formula is obtained by integrating the osculating polynomial of degree three,
since

t (( x + r) 3 2 ( X - r) 3 2 3 2 2 i
L 1+~ ¡(x-r)yi+ 1-~ ¡(x+r)Y2+¡(X -r)(x-r)Yi

+ ¡ (x2 - r2)(x + r)y~J dx = Yi + Y2

The polynomial of degree one performs so weH because the points of coHocation were the Gaussian
points, (Fig. 15-2),

col!ocation

osculating

-11 Xi =-r o X2 = r

Fig.15.2

15.26. Apply the Gaussian four-point formula to the integral of Problem 15,24,

o 4
Using the same change of argument, the four-point formula pro duces E A¡y¡ = 1.000000, correct to

i=l
six places. Comparing with the Simpson 32-point result of 1.0000003 and the Simpson 64-point result of
,99999983, we find it superior to either.

15.27. Adapt the truncation error estimateof Problem 15,2 to the special case of Gauss-Legendre
approximation,

Combining Problems 15.2, 15.11, and 15.14, we find the error to be

i2n)(8) (2n(n!)2J2 2 22n+1(n!t (2n) 8E = (2n)! (2n)! 2n + 1 = (2n + 1)((2n)WY ()

This is not an easy formula to apply if the derivatives of Y (x) are hard to compute, Some further idea
of the accuracy of Gaussian formulas is, however, available by computing the coeffcient of i2n) for
small n.

n = 2 E = .0074y(4)

n = 4 E = ,0000003i8)

n = 6 E = 1.5(io-I2)y(12)

15.28. Apply the error estimates of Problem 15.27 to the integral of Problem 15.24'and compare
with the actual errors,

After the change of argument which brings thisintegral to our standard form, we find

li4)(x)l-: Gf li8)(x)l-: Gf
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For n = 2 this makes our error estimate E =(.0074)(,298) = ,00220, while for n = 4 we find E =

(.0000003)(,113) = .00000003, The actual errors were ,00152 and, to six places, zero. So our estimates

are consistent with our results,
This example offers a favorable situation. The sine function is easy to integrate, even by

approximate methods, because its derivatives are all bounded by the same constant, namely, 1. The
powers of rc/4 do enter with the change of argument, but they actually help in this case, The next
example deals with a familiar function whose derivatives do not behave so favorably.

15.29. Apply the Gauss-Legendre formula to fô/2 log (1 + t) dt,

The correct value of this integral is

(1 + ~)(IOg (1 +~) - 1 J + 1 = ,856590

to six places, The change of argument t = rc(x + 1)/4 converts the integral to

L ¡iog (1 + rc(x4+ l)J dx

The fourth derivative of the new integrand is (rc/4)5( -6/(1 +ttJ. In the interval of integration this
cannot exceed 6(rc/4)5, so the truncation error cannot exceed 6(.i/4r(.0074) if we use the two-point
Gaussian formula, This is six times the corresponding estimate for the integral of the sine function,
Similarly, the eighth derivative is (rc/4)9(-7!/(1 + t)8). This means a truncation error of at most
(rc/4t, 7! (.0000003) which is 7! times the corresponding estimate for the integral of the sine function,
While the successive derivatives of the sine function remain bounded by 1, those of the logarithm
function increase as factorials, The difference has an obvious impact on the truncation errors of any of
our formulas, perhaps especially on Gaussian formulas where especially high derivatives are involved,
Even so, these formulas perform weil, Using just two points we obtain ,858, while four points manage
.856592 which is off by just two units in the last place, The six-point Gaussian formula scores a bulls~eye
to six places, even though its truncation error term involves y(121(X), which is approximately of size 12!.

For contrast, Simpson's rule requires 64 points to produce this same six-place result,
The function log (1 + t) has a singularity at t = -'1. This is not on the interval of integration, but it is

dose, and even a cotnplex singularity nearby could produce the slow kind of convergence in evidence

here,

15.30. How does the length of the interval of integration affect the Gaussian formulas?

For an integral over the interval a ~ t ~ b, the change of argument t = a + b ~ a (x + 1) produces

the standard interval - l~x ~ 1. It also makes

fb f1 b a ( b a Ja y(t)dt= _lTY a +T(x +1) dx
The effect on truncation error is in the derivative factor, which is

(b - a)2n+!T y(2n1(t)
In the examples just given b - a was rc /2and this interval length actually helped to reduce error, but
with a longer interval the potential of the powers of b - a to magnify error is dear.

15.31. Apply the Gaussian method to (2/ýI) J~ e-t2 dt

The higher derivatives of this error function are not easy to estimate realistieally, Proceeding with
computations, one finds the n = 4,6,-8, 10 formulas giving these results:

n 4 6 8 10

Approximation .986 1.000258 1.000004 1,000000
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For larger n the results agree with that for n = 10, This suggests accuracy to six places. We have already
computed this integral by a patient application of Taylor's series (Problem 14.32) and found it to equal
1, correct to six places, For comparison, the Simpson formula requires 32 points to aèhieve six-place
accuracy,

15.32. Apply the Gaussian method to fó vi 1 + y¡ dt,

The n =4, 8, 12, 16 formulas give the results

n 4 8 12 16

Approximation 6,08045 6.07657 6,07610 6.07600

This suggests accuracy to four places, The exact integral can be found, by a change of argument, to be
H2\Í+ l), whieh is 6,07590 correct to five places, Observe that the accuracy obtained here is inferior to
that of the previous problem, The explanation is that our square root integrand is not as smooth as'the
exponential function, Hs higher derivatives grow very large, like factorials, Our other formulas also feel
the infiuence of these large derivatives, Simpson's rule for instance pro duces these values:

No, of points 16 64 256 1024

Simpson values 6,062 6,07411 6,07567 6.07586

Even with a thousand points it has not managed the accuracy achieved in the previous problem with just
32 points. .

15.33. Derive the Lanczos estimate for the truncation error of Gaussian formulas,

The relation f~l (xy(x)J' dx = y(l) + y( - 1) holds exactly, Let I be the approximate integral of y(x)
obtained by the Gaussian n-point formula, and I* be the corresponding result for (xy(x)J' Since
(xy(x)J' =; y(x) +xy'(x),

n

I* = I + ¿ A¡x¡y'(x¡)
i~l

so that the error in I* is
n

E* = y(l) + y( - 1) - I - ¿ A¡x¡y'(x¡)
;=1

leading directly to

Callng the error in I itself E, we know that

E = Cny(2n)(Oi) E* = Cn(xy)(2n+1)(02)

for suitable 01 and O2 between - 1 and 1. Suppose 01 = O2 = 0, On the one hand (xy)l2"+1)(0)/(2n)! is the
coeffcient of x2n in the Taylor series expansion of (xy)', while on the other hand

y(2n)(O)x2ny(x)="'+ +,..
(2n)!

(2n + 1)y(2n)(0)x2n
(xy(x)J' = .. , + + ' ..

(2n)!

(xy)(2n+i)(0) = (2n + l)yl2n)(O)from which we deduce

Thus E* = (2n + l)E approximately, making

E =2~ (Y(l) + y( - 1) - i-i A¡X¡y'(X¡))n + 1 ¡~1
This involves applying the Gaussian formula to xy'(x) as weil as to y(x) itself, but it avoids the often
troublesome calculation of y(2n)(x), Putting 01 = O2 = 0 is the key move in deducing this formula, This
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has been found to be more reasonable for smooth integrands such as that of Problem 15,31, than for
integrands with large derivatives, which seems reasonable since yC2n) 

( (1)/yC2n)( (2) should be nearly 1

when y(2n+I) is smalI.

15.34. Apply the error estimate of the previous problem to the integral of Problem 15,31.
For n = 8 the Lanczos estimate is .000004 and is identical with the actual error. For n = lOc and

above, the Lanczos estimate correctly predicts a six-place error of zero, If applied to the integral of
Problem 15.32, however, in which the integrand is very unsmooth, the Lanczos estimate proves to be
too conservative to be useful. The limits to the usefulness of this error formula are stil to be

determined,

OTHER GAUSSIAN FORMULAS c

15.35. What are the Gauss-Laguerre formulas?

These formulas for approximate integration are of the form

r e-Xy(x) dx = t AiY(Xi)

the arguments Xi being the zeros of the nth Laguerre polynomial
dn

Ln(x) = eX dxn (e-xxn)

and the coeffcients Ai being

The truncation error is

A = ~ r Ln(x)e-X dx = (n!)2
, L~(x¡) Jo X - x¡ xi(L~(x¡)f

E = (n !)2 y(2n)( 8)
(2n)!

These results are found very much as the similar results for the Gauss-Legendre case, Here the
weight function is w(x) = e-x. The n-point formula is exact for polynomials of degree up to 2n - 1.

Arguments and coeffcients are provided in Table 15,2,

15.36. Apply the Gauss-Laguerre one-point formula to the integration oie-x,
Since L1(x) = 1 _ x, we have a zero at Xl = 1. The coeffcient is Ai = 1/(L;(1))2 which is also 1. The

one-point formula is therefore

In this case y(x) = 1 and we obtain the exact integral, which is 1. This is no surprise, since with n = 1 we
are guaranteed exact results for any polynomial of degree one or less, In fact with y(x) = ax + b the
formula produces

r e-Xy(x) dx = y(l)

r e-X(ax + b) dx = y(l) = a + b

which is the correct value,

15.37. Apply the Gauss-Laguerre method to r~ e-x sin x dx,

The exact value of this integral is easily found to be !. The smoothness of sin x, by which is meánt
the boundedness of its derivatives, suggests that our formulas wil perform weIL. The error estimate of
(n!)2/(2n)!, which replaces yC2n) by its maximum of 1, re 

duces to 9~4 for n = 6 and suggests about
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Table 15.2

n Xk Ak n Xk Ak

2 ,5857864 ,85355339 12 ,11572212 .26473137
3.41421356 ,1464661 ,61175748 .37775928

,60315410 1.1261027 ,244082014 .32254769
2,83375134 ,09049221.74576110 ,35741869
4,59922764 .020102384,53662030 ,03888791
6,84452545 ,002663979,39507091 ,00053929
9,62131684 ,00020323

6 ,22284660 .45896467 13,00605499 ,00000837
1.8893210 .41700083 17,11685519 .00000017
2,99273633 ,11337338 22,15109038 ,00000000
5,77514357 .01039920 28.48796725 ,00000000
9,83746742 ,00026102 37,09912104 ,00000000

15,98287398 ,00000090
,09974751 ,2318155814

8 ,17027963 ,36918859 .52685765 ,35378469
,90370178 .41878678 1.0062912 .25873461

2,25108663 .17579499 2.43080108 ,11548289
4,26670017 ,03334349 3,93210282 ,03319209
7,04590540 ,00279454 5,82553622 ,00619287

10,75851601 ,00009077 8,14024014 .00073989
15,74067864 .00000085 10,91649951 ,00005491
22,86313174 ,00000000 14,21080501 ,00000241

10 ,13779347 .30844112 18,10489222 ,00000006

,72945455 .40111993 22,72338163 .00000000

1.80834290 .21806829 28,27298172 .00000000

3.40143370 .06208746 35.14944366 ,00000000

5,55249614 ,00950152 44,36608171 ,00000000

8,33015275 ,00075301
11.84378584 ' .00002826
16,27925783 ,00000042
21.99658581 ,0000000
29,92069701 .00000000

n
three-place accuracy, Actually substituting into I: Ai sin Xi brings the results

;=1

n 2 6 10 14

I: .43 ,50005 ,5000002 ,50000000

so that our error formula is somewhat pessimistic.

15.38. Apply the Gauss-Laguerre method to f~ (e-t It) dt,

The unsmoothness of y(t) = 1ft, meaning that its nth derivative

y(n)(t) = (-ltn! t-(n+i)
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increases rapidly with n, does not suggest overconfidence in approximation formulas. Making the change
of argument t =x + i, this integral is converted into our standard interval as

J% 1e-x-dx
o e(x+1)

E- f(n!)2Jf (2n)! J
-l(2n)! le(e + 1)2"+1

which reduces to (n!)2 / e ( e + 1 )2n + 1. If we replaced e by 0 to obtain the maximum derivative this would
surely be discouraging and yet no other choíce nominates itself. Actual computations with the formula

and the error formula be 
comes

~i~e¡~ix¡+l

bring these results:

n 2 6 10 14

Approximation ,21 .21918 ,21937 .21938

Since the correct value to five places is .21938 we see that complete pessimism was unnecessary. The
elusive argument e appears to increase with n. A comparison of the actual and theoretical errors allows
e to be determined:

1B 2 6 10

5.951.5 3,91

In this example the function y(x) has a singularity at x = - 1. Even a complex singularity near the
interval of integration can produce the slow convergence in evidence here, (Compare with Problem
15.29,) The convergence is more rapid if we move away from the singularity. For example, integration
of the same function by the same method over the interval from 5 to 00 brings these results:

-

n 2 6 10

Approximation ,001147 .0011482949 ,0011482954
.

The last value is correct to almost ten places.

15.39. What are the Gauss-Hermite formulas?

These are of the form

f% e-X2y(x) dx = ~ A;y(x¡)

the arguments X¡ being the zeros of the nth Hermite polynomial

2 dn 2
Hn(X) = (-ireX dxn (e-X)

and the coeffcients A¡ being

2n+1 "r=A-= n. yn
, (H~(x¡)f

E = n! ýi y(2n)( e)
2n(2n)!The truncation error is
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These results are found very much asin the Gauss-Legendre case. Here the weight function is
w(x) = e-x2. The n-point formula is exact for polynomials up to degree 2n -1. Arguments and
coeffcients are provided in Table 15.3.

Table 15.3

n Xk Ak n Xk Ak

2 :t .70710678 .88622693 12 :t .31424038 .57013524

:t .52464762 ,80491409
:t ,94778839 .260492314
:t 1. 59768264 .05160799:t 1. 65068012 .08131284
:t2.27950708 .00390539

6 :t .43607741 ,72462960 :t3,02063703 .00008574
:t 1 .33584907 .15706732 :t3.88972490 .00000027
:t2,35060497 ,00453001

:t .29174551 .5364059114
8 :t .38118699 .66114701 :t .87871379 .27310561

:t 1.5719371 ,20780233 H.4 7668273 ,06850553
:t 1,98165676 .01707798 :t2.09518326 .00785005
:t2.93063742 ,00019960 :t2.74847072 ,00035509

10 :t .34290133 ,61086263 :t 3 .46265693 .00000472

:t 1. 03661 083 .24013861 :t.30444857 ,00000001

:t 1.75668365 ,03387439

:t2,53273167 .00134365

:t.43615912 .00000764
,

15.40. Apply the Gauss-Hermite two-point formula to the integral r~x e-x\2 dx,

An exact result can be obtained, so we first compute

2 d2 2 2
H2(x) = eX dx2 (e-X ) = 4x - 2

The zeros of this polynomial are Xk = :tÝ2I2. The coeffcients Ai are easily found from the formula in

Problem 15,39 to be Vi/2. The two-point formúla is therefore

i~ 2 ýi ((0) (0)J_~e-Xy(x)dx=2 y 2 +y -2

With y(x) = Xl this becomes f:~ e-x2x2 dx = ýi/2 which is the exact value "of the integral.

"15.41. Evaluate correct to six pi aces r~x e-x2 sin2 x dx,

The Gauss-Hermite formula produces these results:

n 2 4 6 8 10

Approximation .748 ,5655 .560255 ,560202 .560202

This appears to suggest six-place accuracy and the result is actually correct to six places, the exact
integral being ýi (1 - e-1)/2 which is to eight places ,56020226,

15.42. Evaluate correct to three places r~x (e-x2tV1 + x2) dx,
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The square root factor is not so smooth as the sine function of the preceding problem so we should
not expect quite so rapid convergence, and do not get it,

n 2 4 6 8 10 12

Approximation .145 .151 ,15202 .15228 .15236 ,15239

The value .152 seems to be indicated.

15.43. What are the Gauss-Chebyshev formulas?

These are of Gaussian form with w(x) == 1/'11 - x2,

f1 r y (x )1. ¡¡ n-1 Lvi _ x2 dx =;; ~ Y(Xi)

the arguments Xi being the zeros of the nth Chebyshev polynomial
Tn(x) = cos (n arccosx)

Contrary to appearances this actually is a polynomial of degree n, and its zeros are

((2i - 1)¡¡1
x- = cosi 2n

All coeffcients Ai are simply ¡¡ / n, The truncation error is

2¡¡yC2nl(8)
E=

22n(2n )!

15.44. Apply the Gauss-Chebyshev formula for n = 1 to verify the familar result

f1 ( 1 )
dx = 1í

-1 V1-x2

For n = 1 we find Tn(x) = cos (arccosx) = x. Since there is just one zero, our formula collapses to
¡¡y(O). Since the Gaussian formula with n = 1 is exact for polynomials of degree one or less, the given

integral is exactly ¡¡ , y(O) = ¡¡,

15.45. Apply the n = 3 formula to f~1 (x4/~) dx,

Directly from the definition we find 7;(x) = 4x3 - 3x so that Xi = 0, X2 = 0/2, X3 = -0/2, The
Gauss-Chebyshev formula now yields (¡¡/3)(O + l¡ + l¡) = 3¡¡/8 which is also exact,

Supplementary Problems

15.46. Prove that P~(x)=XP~_l(X)+nPn-i(X), beginning as follows, From the definition of Legendre
polynomials, 1 dn

P~(x) = 2nn! dxn (n(x2 - 1r-1(2x))

Apply the theorem on the nth derivative of a product to find

i n d r dn-1 2 n-I dn-2 2 n-11
Pn(X) = 2nn! dx L 2x dxn-1 (x - 1) + 2(n - 1) dxn-2 (x - 1)

d

= dx (xPn-i(x)) + (n - l)Pn-i(x)
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15.47. Prove that (1-x2)P~2)(x)-2xP~(x)+n(n+1)Pn(x)=0, as folIows, Let z=(x~-lY, Then z'=
2nx(x2 -1Y-1, making (x2 - l)z' - 2nxz = 0, Repeatedly differentiate this equation, obtaining

(x2 - 1)z(2) - (2n - 2)xz' - 2nz = 0

(x2 - 1)z(3) - (2n - 4)XZ(2) - (2n + (2n - 2))z' = 0

(x2 -1)Z(4) - (2n - 6)XZ(3) - (2n + (2n - 2) + (2n - 4))Z(2) = 0

and ultimately

(x2 -1)z(n+2) - (2n - 2n - 2)xz(n+1) - (2n + (2n - 2) + (2n - 4) + ' , , + (2n - 2n ))z(n) = 0

which simplifies to (x2 - 1)z(n+2) + 2xz(n+1) - n(n + l)z(n) = 0

Since Pn(x) = z(n)/2nn!, the required result soon follows.

15.48. Differentiate the result of Problem 15,21 and compare with Problem 15,47 to prove

xP~(x) - P~-l(X) = nPn(x)

15.49. Use Problem 15,21 to prove that for al1 n, Pn(l) = 1, Pn( - 1) = (- 1Y,

15.58. Use Problem 15.46 to prove P~(l) = !n(n + 1), P~( - 1) = (- 1y+1 P~(1),

15.51. Use Problem 15.46 to show that

P~k)(X) =xP~kl1(X) -+ (n + k - 1)P~':11)(x)

Then apply the method of summing differences to verify

P(2)(1) = (n + 2)(4) P(3)(l) = (n + 3)(p)n (2 ' 4) n (2. 4 . 6)
, (k) _ (n + k)(2k) _ (n + k)!and in general Pn (1) - 2kk! - (n _ k)! 2kk!

Since Legendre polynomials are either even or odd functions, also verify that

P~k)( _ 1) = (- 1y+kp~k)(1)

15.52. Use Problems 15.46 and 15.48 to prove P~+l(X) - P~-l(X) = (2n + l)P,,(x).

15.53. The leading coeffcient in Pn(x) is, as we know, An = (2n)!/2n(n!)2. Show that it can also be written as
3 5 7 2n - 1 l' 3 . 5 . , , (2n - 1)An=l'-,-,-, "-= .2 3 4 n n!

15.54. Compute the Gauss-Legendre arguments and coeffcients for the case n = 3, showing the arguments to
be Xk = 0, :Iv1 and the coeffcients to be ~for Xk = 0 and ~ for the other arguments,

15.55. Verify these Gauss-Legendre arguments and coeffcients for the case n = 5:

Xk Ak

0 ,56888889
:1.53846931 .47862867
:f,90617985 .23692689

15.56. Apply the three-point Gaussian formula of Problem 15,54 to the integral of the sine function,
J~12 sin t dt, How does the result compare with that obtained by Simpson's rule using seven points
(Problem 14,17)? .
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15.57. Apply the Gauss-Legendre two-point formula (n = 2) to fi ~dt and compare with the exact valuen/2 = 1.708. -I 1 + t
15.58. Diagram the linear collocation and cubic osculating polynomials which lead to the n = 2 formula, using

the function y(t) = 1/(1 + t2) of Problem 15,57. (See Problem 15.25,)

15.59. How closely do our formulas verify Jbxx dx = .7834 to four places? Also apply some of our formulas for
equally spaced arguments to this integral. Which algorithms work best? Which are easiest to apply "by
hand"? Which are easiest to pro 

gram for automatic computation?

15.60. As in Problem 15,59 apply various methods to f~'2 esinx dx = 3.1044 and decide which algorithm is best
for automatic computation.

15.61. Compute Laguerre polynomials through n = 5 from the definition given in Problem 15.35.

15.62. Find the zeros of L2(x) and verify the arguments and coeffcients given in Table 15,2 for n = 2.

15.63. Use the method of Problem 15.9 to prove that Ln(x) is orthogonal to any polynomial of degree less than
n, in the sense that

r e-XLn(x)p(x) dx = 0

\vhere p(x) is any such polynomial.

15.64. Prove that f; e-XL~(x) dx = (n!)2 by the method of Problems 15,10 and 15,11.

15.65. Apply the Gauss-Laguerre two-point formula to obtain these exact results:

r e-xx2 dx = 2! re-:Xx3 dx = 3!

15.66. Find the exact arguments and coeffcients for three-point Gauss-Laguerre integration,

15.67. Use the formula of the previous problem to verify

r e-xx4 dx = 4! r e-xx5dx = 5!

15.68. Apply the n = 6 and n = 8 formulas to the "smooth" integral f; e -x cos x dx,

15.69. Apply the n = 6 and n = 8 formulas to the "unsmooth" integral f; e-:x log (1 + x) dx,

15.70. Show that correct to four places f; e-(x+I1x) dx = ,2797.

15.71. Compute Hermite polynomials through n = 5 from the definitioll given in Problem 15,39,

15.72. Shòw that the Gauss-Hermite one-point formula is f:'oo e-X2y(x) dx = ý; y(O), This is exact for
polynomials of degree one or less, Apply it to y(x) = 1.

15.73. Derive the exact formula for n = 3 Gauss-Hermite approximation. Apply it to the case y(x) = x4 to
obtain an exact result,

15.74. How closely do the four-point and eight-point formulas duplicate this result?

foo e-x2 cos x dx = ý; e-114 = 1.3804



CHAP, 16) SINGULAR INTEGRALS 159

16.2. What is the effect of ignoring the singularity in the derivative of Vi and applying Simpson's
rule with successively smaller intervals h?

Polya has proved (Math. Z., 1933) that for functions of this type (continuous with singularities in
derivatives) Simpson's rule and others of similar type should converge to the correct integral.
Computations show these results:

l/h 8 32 128 512

fV;dx ,663 ,6654 .66651 .666646

The convergence to ~ is slow but does appear to be occurring,

16.3. Determine the effect of ignoring the singularity and applying Simpson's rule to the following
integral: Jõ (1/Vi) dx = 2,

Here the integrand itself has a discontinuity, and an infinite one, but Davis and Rabinowitz have
proved (SIAM Journal, 1965) that convergence should occur, They also found Simpson's rule producing
these results, whieh show that ignoring the singularity is sometimes successful:

l/h 64 128 256 512 1024 2048

Approx, integral 1.84 1.89 1.92 1.94 1.96 1.97

The convergence is again slow but does appear to be occurring. At current computing speeds slow
convergence may not be enough to rule out a computing algorithm. There is, however, the usual
question of how much roundoff error wil affect a lengthy computation. For this same integral the
trapezoidal rule with h = 40~6 managed 1.98, while applieation of the Gauss 48-point formula to quarters
of the interval (192 points in all) produced 1.99,

16.4. Determine the result of ignoring the singularity and applying the Simpson and Gauss rules to

L11 1
the following integral: - sin - dx = .6347,

o x x
Here the integrand has an infinite discontinuityand is also highly oscillatory. The combination can

be expected to produce diffculty in numerical computation. Davis and Rabinowitz (see preceding

problem) found Simpson's rule failing.

l/h 64 128 256 512 1024 2048

Approx. integral 2.31 1.69 -.60 1.1 ,72 .32

and the Gauss 48-point formula doing no bett er. So the singularity cannot always be ignored.

16.5. Evaluate to three pi aces the singular integral Jõ (eX /Vi) dx.

Direct use of the Taylor series leads to

11 ( eX ) 11 ( 1 1 1 )- dx = _+XIl2+_X3/2+_XS/2+,., dxo Vi 0 Vi 2 6 .2111111 .=2+-+-+-+-+-+-+-+", =2 925
3 5 21 108 660 4680 37,800 .
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After the first few terms the series converges rapidly and higher accuracy is easily achieved if needed,
Note that the singularity l/VX has been handled as the first term of the series, (See also the next
problem,)

16.6. Apply the method of "subtracting the singularity" to the integral of Problem 16,5.

Callng the integral I, we have

11 1 11 eX - 1
1= -dx+ -dxoVX 0 VX

The first integral is elementary and the second has no singularity, However, since (eX - l)/VX behaves
like VX near zero, it does have a singularity in its first derivative, This is enough, as we saw in Problem
16.1, to make approximation integration inaccurate.

The subtraction idea can be extended to push the singularity into a higher derivative. For example,
our integral can also be written as""if"

Further terms of the series for the exponential function may be subtracted if needed, The first integral
here is t and the second could be handled by our formulas, though the series method stil seems

preferable in this case,

11 1 + x ileX - 1 - x
1= .1: dx+ .1: dxo yX 0 yX

16.7. Evaluate the integral of Problem 16,5 by a change of argument,

The change of argument, or substitution, may be the most powerful device in integration, Here we
let t = VX and find 1=2 H e,2 dt which has no singularity of any kind, even in its derivatives, This
integral maybe evaluated by any ot our formulas or by'a series development,

16.8. Evaluate correct to six decimal places fõ (cos x )(log x) dx,

Here a procedure like that of Problem 16.5 is adopted, l)sing the series for cos x, the integral
becomes

11 ( x2 x4 x6 )
1 _ - + - - - + ' " log x dxo 2! 4! 6!

Using the elementary integral

11 Xi+I ( 1 ) \1 1xilogxdx=- logx-- =--
o i + 1 i + 1 0 (i + 1)2

the integral is replaced by the series 1 1 1 1-1 +---+---+".
322! 524! 726! 928!

which reduces to - .946083,

16.9. Evaluate (oe ~ sin ~ dt by a change of variable which converts the infinite interval ofJ1 t t
integration into a finite intervaL.

Let x = l/t, Then the integral becomes H sin (x2) dx whieh can be computed by various approximate
methods, Choosing a Taylor series expansion leads to .

11, 2 1 1 1 . 1o sm (x) dx =3- 42 + 1320 -75,600 +'"

which is ,310268 to six places, only four terms contributing,
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16.10. Show that the change of variable used in Problem 16,9 converts fX sin t dt into a badly
i t

singular integral, so that reducing the interval of integration to finite length may not always be
a iiseful step,

With x = 11t we obtain the integral LI ~ sin ~ dx encountered in Problem 16.4, which oscillates badly
o x x

near zero, making numerical integration nearly impossible, The integral of this problem may best be
handled by asymptotie methods to be discussed in the next chapter.

16.11. Compute fX \ sin ¡rx dx by direct evaluation between the zeros of sin x, thus developing part
i x

of an alternating series,

Applying the Gauss 8-point formula to each of the successive intervals (1,2), (2,3), and so on,
these results are found:

.

Interval Integral Interval Integral

(1,2) -.117242 (2,3) ,007321

(3,4) -,001285 (4,5) .000357

(5,6) -,000130 (6,7) ,000056

(7,8) -,000027 (8,9) ,000014

(9,10) -,000008

The total is -,11094, which is correct to five places, ¡
This method of direct evaluation for an interval of finite length resembles in spirit the method of

ignoring a singularity, The upper limit is actually replaced by a finite substitute, in this case ten, beyond
which the contribution to the integral may be considered zero to the accuracy required,

16.U. Compute Jo e-x2-i/x2 dx by differentiation relative to a parameter.

This problem ilustrates stil another approach to the problem of integration, We begin by
imbedding the problem in a family of similar problems, For t positive, let

F(t) = L~ e-xL/2lx2 dx

Since the rapid convergence of this singular integral permits differentiation under the integral sign, we
next find

F'(t) = - 2t L~ J: e-xLl2lx2 dx

o x2

Now introduce the change of argument y = tlx, which allows the attractive simplification

F'(t) = - 2 r e-yL/2ly2 dy = - 2F(t)

Thus F(t) = Ce-21 and the constant C may be evaluated from the known result

F(O) = L~ e-x2 dx = ýJo 2
L~ -xL/21x2 dx 1 ,r= -21

=e =- yneo 2
For the special case t = 1, this produces ,119938 correct to six digits,

The result is
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Supplementary Problems

16.13. Compare the results of applying Simpson's rule with ìi =! to Jòx dx and Jòx logx dx,

16.14. Use successively sm 
aller hintervals for the second integral of Problem 16,13 and notice the convergence

toward the exact value of -~,

16.15. Evaluate to three places by series development: Jò (sin X)/X3/2 dx.

16.16. Apply the method of subtracting the singularity to the integral of Problem 16,15, obtaining an
elementary integral and an integral which involves no singularity until the second derivative,

16.17. Ignore the singularity in the integral of Problem 16,15 and apply the Simpson and Gauss formulas,
continually using more points, Do the results converge toward the value computed in Problem 16,15?
(Define the integrand at zeroas you wish,)

16.18. Evaluate Jò e -x log x dx correct to three pI 

aces by using the series for the exponential function,

16.19. Compute the integral of the preceding problem by ignoring the singularity and applying the Simpson and
Gauss formulas, Do the results converge toward the value computed in Problem 16.18? (Define the
integrand at zero as you wish,)

16.20. Use series to show that

_ fi log x dx = _ n;2

Jo 1 - X \ 6
f110gx dx= _ n;2
Jo 1 +x 12

( log x dx = _ n;2

Jo 1 _x2 8

16.21. Verify that to four places J~ (e-x2/(1 + x2)) dx = ,6716,

16.22. Verify that to four places J~ e-x logx dx = -,5772

16.23. Verify that to four places J~ e-x-lIX dx = ,2797,

16.24. Verify that to four places J~ e-x~ dx = ,886~,

16.25. Verify that to four places Jò (I/V -log x) dx = 1. 772

16.26. Verify that to four places J~12 (sin x )(log sin x) dx = - .3069.



Chapter 17

Sumsand Series
REPRESENTATION OF NUMBERS AND FUNCTIONS AS SUMS

The representation of numbers and functions as finite or infinite sums has proved to be very
useful in applied mathematics, Numerical analysis exploits such representations in many ways
including the following:

1. The telescoping method makes it possible to replace long sums by short ones, with obvious
advantage to the computer, The classie example is

~+~+~+.. ,+ 1 =(1-~)+ (~-~) +; ..+(~_~) =1-~
1 .2 2 ' 3 3' 4 n(n + 1) 2 2 3 . n n + 1 n + 1

in whieh the central idea of the method can be seen, Each term is replaced by a difference,

2, Rapidly convergent infinite series play one of the leading roles in numerical analysis, Typieal
examples are the series for t.he sine and cosine functions, Each such series amounts to a
superb algorithm for generating approximations to the functions represented,

3, Acceleration methods have been developed for more slowly converging series, if too many
terms must be used for the accuracy desired, then roundoffs and other troubles associated
with long computations may prevent the attainment of this accuracy, Acceleration methods
alter the course of the computation, or in other words, they change the algorithm, in order
to make the overall job shorter.

The Euler transformation is. a frequently used acceleration method, This transformation
was derived in an earlier chapter. It replaces a given series by another which often is more
rapidly convergent.

The comparison method is another acceleration deviee, Essentially the same as the
method of subtracting singularities, it splits aseries into a similar, but known, se ries and
another which converges more rapidly than the originaL.

Special methods may be devised to accelerate the series representations of certain
functions, The logarithm and arctan functions wil be used as ilustrations.

4, The Bemoull polynomials are given by

k (k) .
Bk(x) = L . Bk_iX'

i=O L

with coeffcients Bi determined by

Bo= 1
k-I (k) .
L . Bi=O
i=O L

tor k = 2, 3, etc, Properties of Bernoulli polynomials include the following:

B;(x) = iBi_l(x)

Bi(x + 1) - B¡(x) == iXi-1

f B¡(x) dx = 0 for i :; 0
Bi(1) = Bi(O) for i:; 1

163
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The Bernoull numbers bi are defined by
bi = (- iy+1B2i

for i = 1, 2, etc,
Sums of integer powers are related to the Bernoull polynomials and numbers, Two suchrelationships are .

~ p Bp+1(n + 1) - Bp+1(O) d ~ ~ = bi(21C)2iL. x 1 an L. k2i 2(2)'x=l p + k=l i '
5, The Euler:.Maciaurin formula may be derived carefully and an error estimate obtained

through the use of Bernoull polynomials, It may be used as an acceleration method, Euler's

constant
C = lim (1 + ! + ! + ' , , + ~ - log n)2 3 n

can be evaluated using the Euler-Maclaurin formula, Six terms are enough to produce

almost ten-decimal-place accuracy,

6, Walls' product for 1C is 1C 2.2.4.4.6.6",2k.2k-=lim
2 1 . 3 . 3 . 5 . 5 . 7 ' . . (2k - 1 )(2k + 1)

and is used to obtain Stirling's series for large factorials, which takes the form

I n! en. . b1 b2 b3 (_l)k+lbkogVi nn+l/2 2n- 3. 4n3 + 5, 6n5 -, , . + (2k)(2k ~ 1)n2k-1

the bi stil being Bernoull numbers, The simpler factorial approximation
n! = Vi nn+l/2e-n

is the result of using just one term of the Stirling series,

7, Asymptotic series may be viewed as stil another form of acceleration method, Though

usually divergent, their partial sums have a property which makes them usefuL. The classic
situation involves sums of the form n a.

Sn (x ) = :¿ --
i=OX

which diverge for all x as n tends to infinity, but such that
limxn(f(x) - snCx)l = 0

for x tending to infinity, The error in using Sn(x) as an approximation to fex) for large
arguments x can then be estimated very easily, simply by looking at the first omitted term of
the series, Stirling's series is a famous examplt of such an asymptotic series, This same
general idea can also be extended to other types of sum,

Integration by parts converts many comnion integrals into asymptotic series, For large x
this may be the best way for evaluating these integrals,

Solved Problems

THE TELESCOPING METHODn i-1
17.1. Evaluate L log-;,i=2 i
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15.75. How closely do the four- and eight-point formulas duplicate this result?

r e-xLlIx2 dx =:; == .11994

15.76. Show that correct to three places f:x (e-x2/(1 +x2)J dx == 1.343,

15.77. Evaluate correct to three places f:x e-x\/l + x2 dx,

15.78. Evaluate correct to three places f:x e-X210g (1 + x2) dx,

15.79. Apply the Gauss-Chebyshev n = 2 formula to the exact verification of

fi X2 ;¡-dx=--1 Vi -x2 2
15.80. Find the following integral correct to three places: f~i ((cosx)/V1 -x2) dx.

15.81. Find the following integral correct to two places: f~i (Vi + x2/V1 - x2) dx,



Chapter 16

Singular Integrals

It is unwise to apply the formulas of the preceding two chapters blindly, They are all based on
the assumption that the function y(x) can be conveniently approximated by a polynomial p(x), If

this is not true then the formulas may produce poor, if not completely deceptive, results, It would be
comforting to be sure that the following application of Simpson's rule wil never be made:

f2 dx 1 L 11 31
_=- -1+4(4)+- =-1 x2 - 2 6 2 12

but less obvious singular points have probably been temporarily missed, Not quite so serious are the
efforts to apply polynomial-based formulas to functions having singularities in their derivatives, Since
polynomials breed endless generations of smooth derivatives, they are not ideally suited to such
functions, and poor results are usually obtained,

PROCEDURES FOR SINGULAR INTEGRALS
A variety of procedures exist for dealing with singular integrals, whether for singular integrands

or for an infinite range of integration, The following wil be ilustrated:
1. Ignoring the singnlarity may even be successful. Under certain circumstances it is enough to

use more and more arguments Xi until a satisfactory result is obtained,

2, Series expansions of all or part of the integrand, followed by term-by-term integration, is a

popular procedure provided convergence is adequately fast.

3, Subtracting the singuiarity amounts to splitting the integral into a singular piece which
responds to the classic methods of analysis and a nonsingular piece to which our
approximate integration formulas may be applied without anxiety.

4, Change of argument is one of the most powerful weapons of analysis, Here it may exchange
a diffcult singularity for a, more cooperative one, or it may remove the singularity
completely.

5. Dilerentiation relative to a parameter involves embedding the given integral in a family of

integrals and then exposing so 
me basic property of the family by differentiation,

6, Gaussian methods also deal with certain types of singularity, as reference to the previous
chapter wil show,

7. Asymptotic series are also relevant, but this procedure is treatedin the following chapter.

Solved Problems

16.1. Compare the results of applying Simpson's rule to the integration of ýX near ° and away
from 0,

Take first the interval between 1 and 1.30 with h = .05, since we made this computation earlier
(Problem 14.11). Simpson's rule gave a correct result to five places. Even the trapezoidal rule gave an
error of only ,00002. Applying Simpson's rule now to the interval between 0 and ,30, which has the same
length but includes a singular point of the derivative of ýX, we obtain rg3 ýX dx = .10864. Since the

correct figure is ,10954, our result is not quite correct to three places. The error is more than a hundredtimes greater, '
158
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This iSianother telescoping sum, We easily find

n . 1 n
2: log:' = 2: (log (i - 1) - log ¡J = - log ni=2 I i=2

The telescoping method is of course the summation of differences as discussed in Chapter 5. The sum
b b

L Yi can be easily evaluated if Yi can be expressed as a difference, for then L Y¡ = L ôy; = Yb+i - r;,.
i=a i=a

n
17.2. Evaluate the power sum ¿ i4,

i=l

Since powers can be expressed in terms of factorial polynomials, which in turn can be exprèssed as
differences (see Chapter 4), any such power sum can be telescoped. In the present example

i ¡4 = i (¡(I) + 7¡(2) + 6¡(3) + ¡(4)J = i ô (! ¡(2) + 2 ¡(3) + ~ ¡(4) + ! ¡(S))i=l i=I i=1 2 3 4 51 7 6 i 1 ?
= - (n + 1)(2) + - (n + 1)(3) + - (n + 1)C4) + - (n + 1)(5) = - n(n + 1)(2n + 1)(3n- + 3n - 1)2 3 4 5 30

Other power sums are treated in similar fashion.

17.3. Evaluate f (i2 + 3i + 2),
i=l

Since power sums may beevaluated by summing differences, sums of polynomial values are easybonuses, For example, .

i ¡2 + 3 i ¡ + i 2 = n(n + 1)(2n + 1) 3n(n + 1);=1 ;=1 ;=1 6 + 2 + 2n

n 1
17.4. Evaluate i~ii(i +J)(i + 2)'

This can also be written as a stirn of differences, Recalling the factorial polynomials with negative

exponent, of Chapter 4, we find ./ ) - C tC 2) = .C ~C ) and it follows that the given
2ii+1 2i+11+ ii+11+21 1

sum telescopes to 4 - 2(n + l)(n + 2)'

In this example the infinite series is convergent andf . (' 1 ~(' 2) = -41.

,=ii 1 + i +

n 3
17.5. Evaluate i~l i(i + 3)'

Simple rational functions such as this (and in Problem 17.4) are easily summed. Here

n 3 n (1 i) 1 1 1 1 12:-=2: --- =1+-+-------i=l ¡(i + 3) ;=1 ¡ ¡ + 3 2 3 n + 1 n + 2 n + 3

Th'fi" t: 3 11e In nite sen es converges to ¿, :-(' 3) = -6 '
;=ii 1 +
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RAPIDL Y CONVERGENT SERIES

17.6. How many terms of the Taylor se 

ries for sin x in powers of x are needed to provide

eight-place accuracy for all arguments between 0 and n12?
~

Since the series sinx = L (- 1YX2i+1/(2i + I)! is alternating with steadily decreasing terms, thei=O

truncation error made by using only n terms wil not exceed the (n + l)th term. This important property
of such series makes truncation error estimation relatively easy, Here we find (n/2)15/15! = 8, 10-10 so

that seven terms of the sine series are adequate for eight-place accuracy over the entire interval.
This is an example of a rapidly convergent series, Since other arguments may be handled by the

periodicity feature of this function, all arguments are covered, Notice, however, that a serious loss of
significant digits can occur in argument reduction. For instance, with x = 31.4 we find

sin x = sin 31.4 = sin (31.4 - IOn) = sin (31.4 - 31.416) = sin (- .016) = - ,016

In the same way sin 31.3 = -.116 while sin 31.5 = .084, This means that although the input data 31.4 is
known to three' significant figures the output is not certàin even to one significant figure, Essentially it is
the number of digits to the right of the decimal point in the argument x which determines the accuracy
obtainable in sin x.

17.7. How many terms of the Taylor se 

ries for eX in powers of x are needed toprovide eight-place

accuracy for all arguments between 0 and 1?
~

The series is the familiar eX = L Xi /i!. Since this is not an alternating series, the truncation errori=O

may not be less than the first omiÙed term, Here we resort to a simple comparison test. 'Suppose we

truncate the series after the xn term. Then the error is~ Xi xri+1 (X X2 J2: -=- 1+-+ +..,
i=ri+ii! (n+1)! n+2 (n 

+2)(n +3)

and since x .: 1 this error wil not exceed

xn+I r 1 1 J xri+1 1 xn+1 n+2
(n + I)! i1 + n + 2 + (n + 2)2 + ' ,. = (n + I)! 1 - l/(n + 2) = (n + I)! n + 1

so that it barely exceeds the first omitted term. For n = 11 this error bound becomes about 2. 10-9 so
that a polynomial of degree eleven is indicated, For example, at x = 1 the successive terms are asfollows: "

1.00000000

1,00000000

,50000000

.16666667

.04166667

.00833333

.00138889

.00019841

.00002480

.00000276

,00000028

.00000003

and their total is 2.71828184, This is wrong by one unit in the last place because of roundoff errors,
The error could also have been estimated using Lagrange's form (Problem 11.4), which gives

1 " 1E=-e"xn+
(n + I)!

with 0.: š':x

17.8. Compute e-10 to six significant digits,

This problem ilustrates an important difference, For six places we could proceed as in Problem
17.7, with x = _ 10. The series would however converge very slowly and there is trouble of another sort,
In obtaining this small number as a difference of larger numbers we lose digits, Working to eight places
we would obtain e-IO = .00004540 which has only four significant digits, Such loss is frequent with
alternating series. Occasionally double-precision arithrretic (working to twice as many places)
overcomes the trouble. Here, however, we simply compute elO and then take the reciprocal. The result
is e - 10 = ,0000453999 which is correct to the last digit.
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17.9. In Problem 14,34 the integral (2/ý1) fô e-t2 dt was calculated by the Taylor series method for
x = 1. Suppose the series is used for larger x, but to avoid roundoff error growth no more than
twenty terms are to be summed, How large can x be made, consistent with four-place
accuracy?

The nth term of the integrated series is 2x2n-I/ýI(2n - l)(n - I)! apart from the sign, Since this
series alternates, with steadily decreasing terms, the truncation error will not exceed the first omitted
term,

Using 20 terms we require that (2/ýI)x41/41 ' 20! 0: 5' 10-5, This leads to x 0: 2.5 approximately,
For such arguments the series converges rapidly enough to meet our stipulations. For larger arguments it
does not,

.,,.

ACCELERATION METHODS

17.10. Not aU series converge as rapidly as those of the previous problems, From the binomial series

1 1 2 4 ,6-= -x+x-x+'"
1 +x2

one finds ,by integrating between 0 and x that

1 3 1 5 1 7
arctan x = x - - x + - x - - x +'"3 5 7

At x = 1 this gives the Leibnitz series.

Jr 1 1 1-= 1--+---+",4 3 5 7
How many terms of this series would be needed to yield four-place accuracy?

Since the series is alternating with steadily decreasing terms, the truncation error cannot exceed the
first term omitted. If this term is to be .00005 or less, we must use terms out to about 1/20,000, This
comes to 10,000 terms. In summing so large a number of terms we can expect roundoff errors to
accumulate to 100 times the maximum individual roundoff. But the accumulation could grow to 10,000
times that maximum if we were unbelievably unlucky. At any rate this series does not lead to a pIe asant
algorithm for computing :n 1 4.

17.11. Apply the Euler transformation of Chapter 11 to the series of the preceding problem to
obtain four-place accuracy.

The best procedure is to sum the early terms and apply the transformation to the rest. For example,
to five places,

1 1 1
1 --+--'" --= .760463 5 19

The next few reciprocals and their differences are as folIows:

,04762
-414

,04348 66
-348 -14

.04000 52 3
-296 -11

,03704 41
-255

.03448



168
SUMSAND SERIES.

(CHAP. 17

The Euler transformation is

n (_ 1Y ßiyo 1 1 I?

YO-Y1+Y2-Y3+"'=to 2i+1 =2Yo-:.ßYo+"8ß-Yo-'"

and applied to our table pro 
duces

,02381 + .00104 + .00008 + ,00001 = ,02494

Finally we have

;¡ 1 1 1
4= 1 - 3+ 5-7+' , ,= ,76046 + .02494 = .78540

which is correct to five places, In all, 15 terms of the original series have seen action.r¡ither than 10,000,

The Euler transformation often produces superb acceleration like this, but it can also fail,

17.12. Compute n/4 from t.he formulan 1 1 1
¡ = 2 arctan '5 + arctan 7 + 2 arctan 8

working to eight digits,

This ilustrates how special properties of the function involved may be used to bring accelerated
convergence, The series

1 3 15 1 7
arctanx =x --x +-x --x +'"3 5 7

converges quickly for the arguments now involved, We find using no more than five terms of the series:

1
2 arctan 5 = .39479112

1
arctan 7 = ,14189705

1
2 arctan "8 = .24870998

with a total of ,78539815, The last digit should be a 6,

'" 1
17.13. How many terms of E :i would be needed to evaluate the series correct to three places?i=l i + 1 .

Terms beginning with i = 45 are all smaller than ,0005, so that none of these individually affects the
third decimal place, Since all terms are positive, however, it is clear that collectively the terms from
i = 45 onward wil affect the third place, perhaps even the second, Stegun and Abramowitz (Journal of
SIAM, 1956) showed that 5745 terms are actually required for three-place accuracy, This is a good
example of a slowly convergent series of positive terms,

17.14. Evaluate the series of Problem 17,13 by the "comparison method," correct to three places,
(This method is analogous to the evaluation of singular integrals by subtracting out the
singularity, )

The comparison method involves introducing a known series of the same rate of convergence, For
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example,
x 1 xl x 1
¿:i1 = ¿ ~- ¿ '2('2
i~II + i=11 i=11 I +

We wil prove later that the first series on the right is Ji2 / 6. The se co nd converges more rapidly than the
others, and we find0011111111

~ ¡2UZ + 1) 2 + 20 + 90 + 272 + 650 + 1332 + 2450 + . . . = .56798

with just ten terms being used. Subtracting from Ji2/6 = 1.64493 makes a final result of 1.07695, which
can be rounded to 1.077,

17.15. Verify that the result obtained in Problem 17,14 is correct to at least three places,

The truncation error of our series computation is

= 1 x 1 x 1 10 1E=¿ -:¿-=¿--¿-
i=lI ¡2(¡2 + 1) ixlI ¡4 i~1 ¡4 i~1 ¡4

The first series on the right will later be proved to be Ji4/90, and the second comes to at least 1.08200.
This makes E -: 1.08234 - 1.08200 = ,00034, Roundoff errors cannot exceed 11,5, 10-6 since 11
numbers of five-place accuracy have been summed, The combined error therefore does not exceed
.0004, making our result correct to three places.

x 1
17.16. Apply the comparison method to I: '2( ,2 1)'

i=ll I +

This series was summed directly in the preceding problem. To illustrate how the comparison
method may be reapplied, however, notiee that

= 1 =1 = 1
¿ '2CZ 1) = ¿ ~- ¿ '4('2
i~II I + i=11 i~II I +

D. i' f h I . b' 1 1 1 1 1 .irect eva uation 0 t e ast senes nngs - + - + - + - + - + ' , . WhlCh comes to .51403.

Subtracting from Ji4/90 we find 2 80 810 4352 16,250

= 1
¿Y2 ' 1.08234'- .51403 = .56831i~II I + 1

which agrees nicely with the results of the previous two problems, in which this same sum was computed
to be .56798 with an estimated error of .00034, The error estimate was almost perfect.

x 1
17.17. EvaluateI: :) to four places,

i=ll

The series converges a little too slowly for comfort. Applying the comparison method,

=1 = 1 = 1"'-=1+'" -"'-L. .3 L. (' 1)'(' 1) L. '2('3 .
i~I I i=2 I - I I + i~21 I -I

The first series on the right is telescoping and was found in Problem 17.4 to be exactly ~. The last may be
summed directly,

1 1 1 1 1 1
24 + 216 + 960 + 3000 + 7560 + 16,464 + ' , ,

=
and comes to ,04787. Subtracting from 1.25, we have finally ¿ 1/¡3 = 1.20213 which is correct to four
places, See Problem 17.39 for a more accurate result, i~1
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THE BERNOULLI POLYNOMIALS

17.18. The Bernoull polynomials B¡(x) are defined by
t oe ti

ext i- = 2: -; Bi (x )

e -1 i=O i!

Let Bi(O) = Bi and develop a recursion for these Bi numbers.

Replacing x by 0, we have
ø tiB. (Ø ti)( ø tiB.) ø

t = (e' - 1) 2: -: = 2::- 2: -: = 2: Cktk
i~O i. i=ll' i=O I, k=l

k-1 B.. k-I (k)
with Ck =b '! (k ~ ')" This makes k! Ck =.b . Bi' Comparing the coeffcients of t in the series1=0 i. I , 1=0 I
equation above, we find that

Bo= 1

k-1 (k)

2: . Bi =0
i~O I

for k = 2,3" , .

Written out, this set of equations shows how the Bi may be determined one by one without diffculty:
Bo= 1

Bo+2B1 =0

Bo + 3B1 + 3B2 = 0

Bo + 4B1 + 6B2 + 4B3 = 0

etc, The first several Bi are therefore

Bo=l
1

B1= -2
1

B2=6 B3=0
1

B4= - 30 B5=0
1

B6= 42

and so on, The set of equations used can also be described in the form

where it is understood that after applying the binomial theorem each "power" Bi is replaced by Bi'

(B + l)k - Bk = 0
for k =2,3" , '

17.19. Find an explicit formula for the Bernoull polynomials,

From the defining equation and the special case x = 0 treated above,

(Ø Xit)(Ø Bi) ø tk~ii ~ot = ~ok! Bk(x)

Comparing the coeffcients of tk on both sides makes k\ Bk(x) = i Bk-i, 1. Xi or
, i=O i!(k-i)!

k (k). .
Bk (x ) = ~ i Bk_iX'

The first several Bernoull polynomials are

1
B¡(x)=x--2

1

B2(x) = x2 - X + 6

3 1
B3(x) = x3 - 2 x2 + 2 x

1

B (x) = x4 - 2x3 + x2 - -4 30
5 5 4 5 3 1

B5(x) = X - - x + - x - - x2 3 6

Bo(x) = 1
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etc, The formula can be summarized as Bk(x) = (x + Bl where once again it is to be understood that the
binomial theorem is applied and then each "power" Bi is replaced by Bi'

17.20. Prove that B;(x) = iB¡_i(x),

The defining equation can be written as

text ~ ti H(x)-= 1 + L--e' - 1 i~l i!
Differentiating relative to x and dividing through by t,

:ext = i (B:~X)Jti-I(i _ I)!

e - 1 i=l I
But the defining equations can also be written as

text ~ ( ti-I J
et - 1 = ~ (Bi-i(X)) (i - I)!

and comparing coeffcients on the right, B!(x) = iBi_1(X) for i = 1, 2, . .. Notice also that the same
result can be obtained instantly by formal differentiation of Bi(x) = (x + BY.

17.21. Prove B¡(x + 1) - B¡(x) = ix¡-i,

Proceeding formally (even though a rigorous proof would not be too diffcult from (B + II = Bk,

we find t (i)(B + llxi-k = t (i)Bkxi-k ork=2 k k~2 k
(B + 1 +xY - i(B + 1)xi-1 = (B +xY - iBxi-I

From the abbreviated formula'for Bernoulli polynomials (Problem 17,19), this converts immediately to
Bi(x + 1) - Bi(x) = ixi-1,

17.22. Prove B¡(!) = B¡(O) for i? 1.

This follows at once from the preceding problem with x replaced by zero.

17.23. Prove that fõ B¡(x) dx = 0 for i = 1,2, ' , . ,

By the previous problems

f Bi(x)dx

Bi+i(1) - Bi+1(0) 0
i + 1

17.24. The conditions of Problems 17,20 and 17,23 also determine the Bernoull polynomials, given
Bo(x) = 1. Determine Bi (x) and B2(x) in this way,

From B;(x) = Bo(x) it follows that B1(x) = x + Ci where Ci is a constant, For the integral of Bi(x) to
be zero, Cl must be -!. Then from B~(x) = 2Bi(x) = 2x - 1 it follows that Bz(x) =x2 -x + C2, For the
integral of B2(x) to be zero, the constant C2 must be g. In this wayeach Bi(x) may be determined in its
turn,

17.25. Prove B2¡-i = 0 for i = 2,3, ' , .

Notice that
t t t e' + 1 ~ Blf(t)=-+-=-'-=Bo+ L-e' - 1 2 2 et - 1 i~2 i!
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is an even function, that is, J(t) = J( -t). All odd powersof t must have zero coeffcients, making Bi zero
for odd i except i = 1.

17.26. Define the Bernoull numbers bio

These,are defined as b¡ = (- 1Y+I B2i for i = 1, 2, . . . . Thus

1 1 7

bi =- b4= 30 b7=-
6

6

1 5
b _ 3617b2 =30 bs= 66 8- 510

1 691
b _ 43,867b3=- b6= 2730

42
9- 798

as is easily verified after computing the corresponding numbers Bi by the recursion formula of Problem
17,18,

17.27. Evaluate the sum of pth powers in terms of Bernoull polynomials,

Since, by Problem 17.21, ilBi(x) = Bi(x +1) - B¡(x) = ixi-i, the Bernoull polynomials provide
"finite integrals" of the power functions, This makes it possible to telescope the power sum,

n n 1
2: xp = 2: _ ilBp+I(X) = Bp+1(n + 1) - Bp+1(0)X~O X~O P + 1 P + 1

oe

17.28. Evaluate the sums of the form L 1/ ei in terms of Bernoull numbers,k=l

It wil be proved later (see chapter on trigonometric approximation) that the function

Fn(x) = Bn(x) 0~x.:1
Fn(x :im) = Fn(x) for m an integer

known as a Bernoull function, having period 1, can be represented as

Fn(X)=(-lrl2+1'n!.~' i cos2nkx
(2n) k~l k

F. ( ) = (_1)(n+I)/2. I, ~, .. sin 2nkxn x n. (2n)" f:1 knfor even n, and as

when n is odd. For even n, say n = 2i, we put x = 0 and have

i \¡=(_ly+IFi¡(0)(2n?ik~I k 2(2i)!
But Fii(O) = B2i(0) = B2¡ = (-lY+1b¡ and so L i/ei = b;2n)2i/2(2i)!.k~1~ ~

In particular, L 1/k2 = n2/6, L l/e = n4/90, etc,k~1 k~1

17.29. Show that all the Bernoull numbers are positive and ihat they become arbitrarily large as i
increases,
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~
Noting that 1 ~ L 1/k2i ~ L l/e = :r2/6 ~ 2, we see that

k=I k~1

2(2i)! ~ b ~ 4(2i)!

(2:r fi i (2:r )21

In particular all the bi are positive and they grow limitlessly with increasing i.

.. . (2.7Y17.30. Show that as i increases, lim 2(2i)! b¡ = 1.

This also follows quickly from the series of Problem 17,28. All terms except the
approach zero for increasing i, and because l/xP is a decreasing function of x,

1 lk 1-~ -dx
kP k-IXP

k = 1 term

so that, if p ? 1,

x 1 JX 1 1
~ -dx=-22 kP I xP P - 1

As p increases (in our case p = 2i) this entire se ries has limit zero, which establishes the required result,
Since all terms o'f this series are positive, it also follows that bi? 2(2i)!/(2:r)2i,

THE EULER-MACLAURIN FORMULA
17.31. Use the Bernoull polynomials to derive the Euler-Maclaurin formula with an error estimate,

(This formula was obtained in Chapter 11 by an operator computation, but without an error
estimate,)

We begin with an integration by parts, using the facts that B;(t) = Bo(t) = 1 and Bi(l) = - Bi(O) = 4.

Li LI 1 LIo y(t)dt= 0 y(t)B;(t)dt=z(yo+YI)- 0 y'(t)Bi(t)dt
Again integrate by parts using B;(t) = 2Bi(t) from Problem 17.20 and B2(1) = B2(0) = bi to find

Li 1 1 1 LI. 0 y(t)dt=Z(YO+YI)-'zbl(Y; -yb)+Z 0 y(2)(t)B2(t)dt
The next integration by parts brings

1LI 1 11 1LI
Z i2)(t)B2(t) dt = 6 i2)(t)B3(t) - 6 i3)(t)B3(t) dto 0, 0

But since B3(1) = B3(0) = 0, the integrated term vanishes and we proceed to1 LI 1 1I 1 LI
Z 0 i2)(t)B2(t) dt = - 24 y(3)(t)B4(t) 0 + 24 0 y(4)(t)Bit) dt

1 1 LI
= 24 b2(y\3) - Yb3)) + 24 0 i4)(t)Bit) dt

since B4(1) = B4(0) = B4 = - b2. Continuing in this way, we develop the result

Li 1 . k (- l)ib,y(t) dt = -2 (Yo + Yi) + ¿ -(2')' i (y\2i-l) - Yb2i-I)) + Rko 1=1 I.
Rk = (2~)! f y(2k)(t)B2k(t) dtwhere

Integrating Rk by parts the integrated part again vanishes, leaving

-1 LIRk = (2k+l)
(2k + I)! 0 Y (t)B2k+i(t) dt
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Corresponding results hold for the intervals between other consecutive integers, Summing, we find
substantial telescoping and obtain

n in 1 . k (- 1Yb.
2: Yi = y(t) dt + - (Yo + Yn) - 2: -: (y~-l) - YÒ2i-1))i=O 0 2 i=l (21),

with an error' of
- 1 rn (2k+1)()F ( ) d

(2k + I)! Jo Y t 2k+1 t t

where FiAt) is the Bemoul1 function of Problem 17,28, the periodic extension of the Bemoull
polynomial B2k(t), The same argument may be used between integer arguments a and brather than 0
and n. We may also allow b to become infinite, provided that the series and the integral we encounter
are convergent. In this case we assurne that y(t) and its derivatives all become zero at infinity, so that
the formula becomes

Ek

00 00 k ( )i
'" _ r ( ) d ~ '" -1 b; (2i-1)
~y; - Ja y t t + 2Ya + ~ (2i)! Ya

n

17.32. Evaluate the power sum L í4 by use of the Euler-Maclaurin formula,i=O

In this case the function y(t) = t4, so that with k = 2 the series of the preceding problem terminates,
Moreover, the error Ek becomes zero since yt5l(t) is zero, The result is

.s'4 1 5 1 4 1 3 1 1 .L.I =-5n +-n +-(4n )__(24n)=-n(n+1)(2n+l)(3n2+3n-1)i=O 2 12 720 30
as in Problem 17,2, This is an example in which increasing k in the Euler-Maclaurin formula leads to a
finite sum, (The method of Problem 17,27 could also have been applied to this sum,)

17.33. Compute Euler's constant C = lim (1 + ~ + ~ + ' , . + ~ - log n) assuming convergence, (See
also Problem 17,77,) 00 (1 i-I)

U sing Problem 17.1, this can be rewritten as C = 1 + 2: -: + log -- .;=2 I i

The Euler-Maclaurin formula may now be applied with y(t) = l/t -log t + log (t - 1), Actually it is
more convenient to sum the first few terms directlyand. then apply the Euler-Maclaurin formula to the
rest of the series. To eight places,

9 (1 . 1)
1+ ~ i+lOgl~ =,63174368

Using 10 and 00 as limits, we first compute

foo r ~ -log t + log (t - l)J dt= (1 - t) log ~ \0010 L t t - 1 10
= _ 1 + 9 log 10 - 910g 9 = - .05175536

the first term coming from the upper limit by evaluation of the "indeterminate form," Next

all values at infinity being zero, Summing the five terms just computed, we have C = .57721567,
Carrying ten places and computing only one more term would lead to the better approximation
C = .5772156650 which is itself one unit too large in the tenth place.

In this example the accuracy obtainable by the Euler-Maclaurin formula is limited. After a point,

1

Z Y 10 = -.00268026

1

- 12 y;o = - .00009259

1_y(3) 0
720 10 =. 0000020
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using more terms (increasing k) leads to poorer approximations to Euler's '"constant rat her than better.
In other words, we have used a few terms of a divergent series to obtain our results. To see this we need

(-1/+1b (2i+ 9 1)only note that the ith term of the series is (2i)(2i _ ;) 1021 - 92i-1 and that by Problem 17.29 the bi

exceed 2(2i)!/(2n)2i which guarantees the unlimited growth of this term, Divergence is more typical than
convergence for the Euler-MaclauriIl series,

17.34. A truck can travel a distance of one "leg" on the maximum load of fuel it is capable of
carrying, Show that if an unlimited supply of fuel is available at the edge of a desert, then the
truck can cross the desert no matter what its width, Estimate how much fuel would be needed
to cross a desert 10 "legs" wide,

On just one load of fuel the truck could cross a desert one leg wide. With two loads available this
strategy could be followed: Loading up, the truck is driven out into the desert to a distance of one-third
leg, One-third load of fuel is left in a cache and the truck returns to the fuel depot just as its fuel
vanishes, On the second load it drives out to the cache, which is then used to fill up. With a full load the
truck can then be driven one more leg, thereby cross a desert of width (1 + l) legs, as shown in Fig, 17-1.
With three loads of fuel available at the depot two trips can be made to establish a cache of ~ loads at a
distance of l leg out into the desert. The third load then brings the truck to the cache with (~ + ~) loads

available. Repeating the previous strategy then allows a journey of 1 + l + l legs, as shown in Fig. 17-2,

Second trip o
Depot

I First

I (wo (riPs)

L ° Cache1.'5-1

Third tripo
Depot

First trip

,

~- 1/;1

°Cache
i
,

1 -' 1;¡

Fig,17.1 Fig.17.2

A similar strategy allows a desert of width (1 + ~ + ~ + . , , +~) to be crossed using n loads af35 2n-1
fue!. Since this sum grows arbitrarily large with increasing n, a desert of any width can be crossed if
suffcient fuel is available at the depot.

To estimate how much fuel is needed to cross a desert ten legs wide, we write

1 +~+'" +~= (1 +~+~+'" +~) -~ (1 +~+~+... +~)3 2n-1 23 2n 2 23 n
and apply the approximation of Problem 17.33:1 1 1

1 + - + . , . + - = log (2n) + C- - (log n + C)3 2n-1 21 1 1
= - log n + log 2 + - C = - log n + 982 2 2 .

This reaches ten for n equal to alm ost 100 million loads of fue!.

WALLIS' INFINITE PRODUCT
17.35. Obtain Walls' product for jí,

Repeated 'applications of the recursion formula

L"/2 n - 1 l"/2sinn X dx = - sinn-2 X dxo n 0 for n? 1
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available in integral tables, easily brings the results

1,,12 2k - 1 2k - 3 1 1"12
sin2kxdx=-'-'. .-' dxo 2k 2k -2 2 0

1,,12 . 2k+1 2k 2k - 2 2 1"12,sm xdx=-'-" ,-. smxdxo 2k+12k-1 30
Evaluating the remaining integrals and dividing one result by the other,

11

2

1"12
. sin2k x dx

2 ' 2 ' 4 ' 4, 6 ' 6 . , , 2k .2k 0
1 ' 3 ' 3 ' 5 ,5 ,7 .. , (2k - 1)(2k + 1) '1"12 ,sm2k+1 x dx

o

The quotient of the two integrals converges to 1 as k increases, This can be proved as follows, Since
0.: sinx': 1,

r12 r12 r12
0.: Jo sin2k+1 x dx ~ Jo sin2k x dx ~ Jo sin2k-1 x dx

Dividing by the first integral and using the original recursion formula,

1,,12
sin2k x dx 2k + 1o .._1 ~ ,,12 - 2k

I . 2k+1Xdx
sm

o

so that the quotient does have limit 1. Thus
11. 2'2'4.4'6'6'..2k'2k-=lim
2 1, 3 ,3.5,5.7" ' (2k - 1)(2k + 1)

which is Walls' infinite product,

17.36. Obtain Walls' infinite product for ýi,

Since lim 2k/(2k + 1) = 1, the result of the previous problem can be written as
11 , 22 . 42 , , , (2k - 2?
2 = lim 32.52, , , (2k _ 1)22k

Taking the square root and then fillng in missing integers, we find

fJ . 2,4," (2k - 2). r; . 22k(k!)2
'\2 = lim 3,5, , ' (2k _ 1) y2k = lim (2k)! yi

trom which Walls' product follows at once in the form
, 22k(k!)2

ýñ=lim -

This wil be needed in the next problem,

STIRLING'S SERIES FOR LARGE FACTORIALS
17.37. Derive Stirling's series for large factorials,

In the Euler-Maclaurin formula let y(t) = log t and use the limits 1 and n. Then
1 ,ç (- 1Yb; ( 1) r,n . F2k+1(t)

log 1 + log 2 + ' , , + log n = n log n - n +- 2 log n + £. (2 ')(2' _ 1) 1 - 2i - ( ) 2k+ 1 dt;=1 i i n 1 2k + 1 t
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This can be tearranged into

I-(~) _ _~ (-lYbi LX F2k+i(t)log n, - n + 2 log n n + c ~ (2i)(2i _ 1)n2¡ i + n (2k + 1)t2k+i dt

~ (-lYb¡ r F2k+i(t)
C = ~ (2i)(2i _ 1) - J1 (2k + 1)t2k+I dt

To evaluate c let n ~ 00 in the previous equation. The finite sum has limit zero. The integral, since F2k+1

is periodic and hence bounded, behaves as 1/n2k and so also has limit zero, Thus

where

. n! en .
c = 1im log nn+1I2 = 1im log an

" . '.. 2 (n !)2e2n (2n)! e2nA simple artifice now evaluates this 1imit, Since an = n2n+1 ' a2n = (2n?n+i/2 we find

a2 ((n 1)222n Jlim an = lim a2: = lim Vi y''(2n)! = V2

by Walls' product for ýi, Thus c = log V2. Gur result can now be written as the Stirling series

i n!en bi b2 b3 (-l)k+lbkog y2 nn+1I2 - 2n - 3, 4n3 + 5. 6n5 - . , , + (2k)(2k _ 1)n2k-1

the error being En = LX (?::~~~2+1 dt, For large n this me ans that the logarithm is ne ar zero, making

n! = V2 nn+1I2e-n,

17.38. Approximate 20! by Stirling's series,

For n = 20 the series Itself becomes 410 - 1 () + ' , ,= .00417 to five places, only oneterm
being used, We now have 2 2,880,00

log 20! = ,00417 - 20 + log V2 + 20,5 log 20 = 42.33558

20! = 2.43281 . 1018

This is correct to almost five digits, More terms of the Stirling series could be used for even greater
accuracy, but it is important to realize that this series is not convergent. As k is increased beyond a
certain point, for fied n, the terms increase and the error E grows larger. This follows from the fact

(see Problem 17,29) that bk? 2(2k)!/(2:r)2k. As wil be proved shortly, the Stirling se ries is an example
of an asymptotic series,

oe

17.39. Compute L 1/i3 to seven places,
i=l

9
Sum the first nine terms directly to find E 1/i3 = 1. 19653199. With f(t) = 1/t3 the Euler-Maclaurin

formula now involves ¡=1

r.~ = .005
J10 x ~ f(lO) = .0005 -~ 1'(10) = .00002512. ~ riclO) = .00000008720

and the total is 1.2020569, This improves the result of Problem 17,17.

ASYMPTOTIC SERIES

17.40. Define an asymptotic series,

Let Sn (x) = t a¡xi, If for x~O, lim(f(x)-Sn(x))/xn=O for any fixed positive integer n, then
i=O
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f(x) is said to be asymptotic to L aixi at zero, This is represented by the symboli=O ~

fex) = 2: aixi
I=O

With x replaced by x _ Xo the same definition applies, the series being asymptotic to f(x) at xo,
Perhaps the most useful case of all is the asymptotic expansion at infinity. If for x -- 00,

limxnrf(x) - Sn(x)) =0

where now Sn (x) = t ai / Xi, then f (X) has an asymptotic series at infinity, and we writei=O .
f(x)=i~

i=OX

The idea can be further generalized. If, for example,
fex) - g(x) = i ~

hex) i=OX

then we also say that f(x) has the following asymptotic representation:

fex) =g(x) + hex) i ~i=OX

Note that none of these series is assumed to converge,

17.41. Obtain an asymptotic series for f; (e-t /t) dt.

Successive integrations by parts bring

f~ e-I e-x f~ e-I e-x e-x f~e-'f(x)= -dt=-:-. -dt=---+2! -dtx t x x t2 X x2 x t3

and so on. Ultimately one finds

f~ e-I x(l 1 2! 3! +1 (n - I)!)f(x)= -dt=e- ___+---+..,+(-lY ~ +Rnx t x x2 x3 x4 xn
where Rn = ( - 1Yn! f~ ~:Ii dt. Since IR"I -: n! e-x /xn+i, we havex t

so that as x __ 00 this does have limit O. This makes eXf(x) asymptotic to the series and by our generalized
definition

\x"(eXf(x)- i (-lr+l~i - 1)!)\ -:n!1=1 x X

(1 1 2! 3! )f(x)=e-x ---+---+'"X x2 x3 x4

Notice that the series diverges for every value of x.

17.42. Show that the truncation error involved in using the series of the preceding problem does not
exceed the first omitted term,

The truncation error is precisely Rn' The first omitted term is (_lY+2e-xn!/xn+i which is identical
with the estimate of Rn occurring in Problem 17.41.

17.43. Use the asymptotic series of Problem 17.41 to compute f(S),
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We find

éf(5) = ,2 - .04 + ,016 - ,0096+ .00746.. .00746 + ' , ,

after which terms increase. Since the error does not exceed the first term we omit, only four terms need
be used, with the result

f(5) = e-S(.166) = ,00112

with.'the last digit doubtful. The point is, the series cannot produce f(5) more accurately than this, For
larger x arguments the accuracy attainable improves substantially but is stil limited,

17.44. Use the series of Problem 17.41 to compute f(lO),

We find, carrying six places,

elOf(10) =,1 - .01 + .002 - .0006 + ,00024 - .000120 + ,000072

- ,000050 + .000040 - ,000036 + .000036 - , , ,

after which the terms increase, Summing the first nine terms, we have

f(10) = e-10(, 091582) = ,0000041579

with the Jast digit doubtful. In the previous problem two-place accuracy was attainable, Here we have
managed four places. The essential idea of asyinptotic se ries is that for increasing x arguments the error
tends to zero.

17.45. Prove that the Stirling series is asymptotic,

With n playing the role of x and the logarithm the role off(x) (see Problem 17.37), we must showthat ' ~
l 2k-1E = I' 2k-l r F2k+i(t) dt = 01m n n 1m n Jn (2k + 1)t2k+1

Since F2k+1(t) repeats, with period 1, the behavior of B2k+1(t) in the interval (0,1) it is bounded, say

IFI-:M. Then

n2k-1M
I 2k-1E 1-:n n 2k(2k + 1)n2k

and with increasing n this be comes arbitrarily sm alL.

17.46. Find an asymptotic series for r: e-t2/2 dt,

The method of successive integrations by parts is again successful. First

r e-r2/2 dt = r _ ~ ( _ te-t2/2) dt = ~ e-x2/2 _ r ~ e-r2/2 dtJx Jx t x Jx t
and continuing in this way we find

L~ -r2l2d - _x2/2(1 1 1.3 ( 1)n-i1'3"'(2n-3)J R
e t-e ---+--..,+ - +x X x3 XS x2n-i n

r 1where Rn = 1 ,3, 5' . , (2n - 1) L e-r2/2 t2n dt. The remainder can be rewritten as

Rn
1 3' 5 .. , (2n - 1) -x2/2 R. 'e - n+1

X2n+1

Since both remainders are positive, it folIows, that

1, 3 ,5, . , (2n - 1) -x2/2Rn -: ,_~, e
x
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This achieves a double purpose. It shows that the truncation error does not exceed the first omitted
term, And sirice it also makes lim ex2/2x2n-IRn = 0, it proves the series asymptotie.

Lx -12/2d _x2/2(1 1 1,3 1,3,5 )
e t=e ---+---+.,'x x x3 x5 x7

17.47. Compute Y2/:¡ r; e -12/2 dt by the series of Problem 17.46.

With x = 4 we find

~ e-8(,25 - .015625 + .002930 - ,000916 + ,000401 - .000226

+ .000155 - ,000126.+ ,000118 - ,000125 + ' . 'J

to the point where terms begin to increase. The result of stopping before the smallest term is

~ f e-12/2 dt = ,0000633266

with the 2 digit in doubt. This agrees nicely with our results of Problem 14.32. Independent

computations which confirm one another are very reassuring, Note the difference in methods in these
two problems, and the simplicity of the present computation,

17.48. Find an asymptotic se ries for the sine integral.

Once again integration by parts proves usefuL. First

S' ( .) -lX sin td _ cosx lX cos tdi x - - t--- -- t. x t x x t
after which similar steps generate the series

LXsint dt= cosx + sinx _ 2! cosx _ 3! sinx +'"x t X x2 x3 x4
which can be proved asymptotic as in previous problems.

17.49. Compute Si (10),

Putting x = 10 in the previous problem,

Si (10) = - .083908 - ,005440 + ,001678 + ,000326 - ,000201

- ,000065 + ,000060 + ,000027 - ,000034 - ,000019

after which both the cosine and sine terms start to grow larger. The total of these ten terms rounds to
- ,0876, which is correct to four places,

Supplementary Problems

17.50. Express as a sum of differences and so evaluate t (z2 - 3i + 2),
;=1

17.51. Express as a sum of differences and so evaluate t i5
i=1

n 1
17.52. Express as a sum of differences and so evaluate E -=(' )"

i~ii 1+2
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17.53. Evaluate the sum in Problem 17,51 by the Euler-Mac1aurin formula.

17.54. Evaluate the sum in Problem 17,50 by the Euler-Mac1aurin formula.

17,55. How many terms of the cosine series are needed to pravide eight-place accuracy for arguments fram 0 to
n/2?

17.56.. Show that

1 l(D 2D)
Ya - Yi + Y2 - , . , = 1 + EYa = I5 eD _ 1 - e2D _ 1 Yo

(1 4 - 1 16 - 1 64 - 1 )= --B -D+B -D3--D5+.., Y2 2 2! 4 4! 6! 0
where the Bi are.Bernoulli numbers. Apply this to the Leibnitz series for n/4 to obtain the six-place
result ,785398,

. 1 1 117.57. Apply the Euler transformation to evaluate 1 - V2 + V3 - y4 + ' , , to four places.

17.58. Use the Euler transformation to evaluate 1 - ~ + 2~ - 4~ + . , , to eightplaces, confirming the result
,91596559.

1 1 1
17.59. Use the Euler transformation to show that 1 -1-2 + -3 -1-4 + ' . , to four pI aces equals .0757.og log og .
17.60. Apply the Euler transformation to log 2 = 1 - 4 + l - ~ + l - , , . ,

17.61. For how large an argument x will twenty terms of the series

1 2 1 3 1 4
10g(1+x)=x--x +-x --x +..,2 3 4

produce four-place accuracy?

17.62. How many terms of the cosine series cos x = 1 _! x2 + ~ x4 - , , . are needed to guarantee eight-place
accuracy for the interval from 0 to n /2? 2 4,

17.63. For how large an argument x will twenty terms of the series

1 3 1 5 1 7
arctanx =x --x +-x --x -t,..3 5 7

17.64.

praduce six-place accuracy?
3 5. 7

For the series sinh x = x + ::31 + 5x 1 + ; + . ., estimate the truncation error in ternis of the first term
. . 7,

omitted, (See Problem 17,7 for a possible method,) For how large an argument x will twenty terms be
enough for eight-place accuracy?

17.65.
00

Apply the comparison method of Problem 17,14 to compute ¿ 1/(i2 + i + 1) to three places. (Use00 i=l
¿ 1/(i + l)i = 1 as the comparison series,)
i=l

17.66. Compute ¿ l/W + 1) to three places by the comparison method using the result of Problem 17.17.
i=1

17.67. Compute ¿ 1/(i2 + 2i + 2) to three pI aces by the comparison method,
i=l
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00

17.68. Compute L i2/(i4 + 1) to three places by the comparison method,
;=1

17.69. Determine the first ten bi numbers from the recursion of Problem 17,18.

17.70. Write out B6(x) through BiO(x) from the formula of Problem 17,19.

17.71. Prove f~+i Bi(x) dx = Xl.

17.72. Determine B3(x) and B4(x) as in Problem 17,24,

17.73. What polynomials are determined by the conditions

Q;(x) = iQI_1(X) Q¡(O) =0

starting with Qo(x) = I?

17.74. Use Problem 17,28 to evaluate L l/kP for p = 6, 8, and 10, verifying the results ;r6/945, ;r8/9450, and;rlO /93,555. k=l

17.75. Use the Euler-Maclaurin formula to prove £ i3 = n2(n + 1)2/4,
;=0

17.76. Use the Euler-Maclaurin formula to evaluate f: (i2 + 3i +2), Compare with Problem 17.3,
;=1

17.77. Use the Euler-Maclaurin formula to show that

~ 1 1 LX R(t)
Sn = .L -: - log n = C + - + .. dt

1=1 I 2n n t2
where Cis Euler's constant and F¡(t) is the periodic extension of B1(t), This proves the convergence of
Sn and also allows estimation of the difference between Sn and C for large n.

17.78. By applying the Euler-Maclaurin formula, show that

1 1 k (-lY+Ib¡ (2i+1 )
C = zlog 2 +:4 + B (2i)(2i _ 1) 22 - 1 . + error term

and use this to evaluate Euler's constant C. Show that as k increases, the sum on the right becomes a
divergent series, At what point do the terms of this series begin to grow larger?

17.79. Referring to Problem 17,34, show that a desert of width five legs requires more than 3000 loads of fue!.

17.80. Compute L 1/e/2 to six places.
k=I

00

17.81. Compute L 1/(2k - 1Y to three places.
k=I

17.82. Evaluate t -! + l - l6 + fs - , , , exactly.

17.83. Evaluate the sum of Problem 17,81 exactly.

x
17.84. Show tha,t the Euler transformation converts L (_!)k into a more rapidly convergent series,

k=O

x
17.85. Show that the Euler transformation converts L (_l)k into a more slowly convergent series;

k=O
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17.86. How accurately does the Stirling series produce 2! and at what point do the terms of the series start to
increase?

17.87. Derive the asymptotic series

Loo (1 3 3.5,7 ) (1 3,5 3,5,7,9 )sint2dt=cosx2 ---+--'" +sinx2 ---+ -'"x 2x 23x5 25x9 22x3 24x7 26xii
and use it when x = 10, obtaining as much accuracy as you can,



Chapter 18

Difference Equations

DEFINITIONS

The term difference equation might be expected to refer to an equation involving differences,
However, an example such as

¡~.iYk + 2ßYk + Yk = 0

which quickly collapses to Yk+2 = 0, shows that combinations of differences are not always

convenient, may even obscure information, As a result, difference equations are usually written
directly in terms of the Yk values. As an example take

Yk+i = akYk + bk

where ak and bk are given functions of the integer argument k, This could be rewritten as
ßYk = (ak -1)Yk + bk but this is not normally found to be usefuL. In summary, a difference equation
is a relation between the values Yk of a function defined on a discrete set of arguments Xk' Assuming
the arguments equally spaced, the usual change of argument Xk = Xo + kh leaves us with an integer
argument k,

A solution of a difference equation wil be a sequence of Yk values for which the equation is true,
for so me set of consecutive integers k, The nature of a difference equation allows solution sequences
to be computed recursively, In the above example, for instance, Yk+1 may be computed very simply if
Yk is known, One known value thus triggers the computation of the entire sequence,

The order of a difference equation is the difference between the largest and smallest arguments k
appearing in it, The last example above has order one,

ANALOGY TO DIFFERENTIAL EQUATIONS

Astrang analogy exists between the theory of difference equations and the theory of differential
equations, For example, a first-order equation normally has exactly one solution satisfying the initial
condition Yo = A. And a second-order equation normally has exactly one solution satisfying two
initial conditions Yo = A, Y1 = B, Several further aspects of this analogy wil be emphasized, such as
the following:

1. Procedures for finding solutions are similar in the two subjects, First-order linear equations
are solved in terms of sums, as the corresponding differential equations are solved in terms
of integrals, For example, the equation Yk+1 = XYk + Ck+1 with Yo = Co has the polynomial

solution

Yn = coxn + CiXn-1 + ' , , + Cn

Computation of this polynomial recursively, from the difference equation itself, is known as
Horner's method for evaluating the polynomiaL. It is more economieal than the standard
evaluation by powers,

2, The digamma function is defined as
x X -c

'l(x) = 2: i( +x'
1=1

where C is Euler's constant. It is one summation form of the solution of the first-order
difference equation

1
ß'l(X) = x+1

184
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This also gives it the character of a finite integral of l/(x + 1), For integer arguments n, it
follows that

n 1

'!(n) = L - - C
k=l k

This function plays a role in difference calculus somewhat analogous to that of the logarithm
function in differential calculus, Compare, for instance, these two formulas:
x 1
L
k=i (k +a )(k + b)

'!(b) -'!(a)
b -a

r d
)i (x + a );X + b)

log (b + 1) - log (a + 1)

b -a
Various sums may be expressed in terms of the digamma function and its derivatives,

The above is one example, Another isx 2k+1 i
~i k(k + l)Z = '!(1) - '!(O) - '! (1)

whieh also proves to be ¡rz/6,
The gamma function is related to the digamma function by

r'(x + 1) .

r(x +1) = '!(x)
3, The linear homogeùeous second.order equatiori

Yk+Z + aiYk+i + aZYk = 0

has the solution family Yk = CiUk + CZVk

where ukand Vk are themselves solutions and Ci, Cz are arbitrary constants, As in the theory
of differential equations, this is càlled the principle ofsuperposition, Any solution of the
equation can be expressed as such a superposition of Uk and Vb by proper choiee of Cl and
Cz, provided the Wronskian determinant

I Uk
Wk = Uk-i

Vk I

Vk-i

is not zero,
4, The case of constant coeffcients, where ai and az are constants, allows easy determination

of the solutions Uk and Vk' With ri and rz the roots of the characteristic equation

rZ + air + az = 0

these solutions are

Uk = rt

Uk = rk

Uk = Rk sin k()

Vk = r~

Vk = krk

Vk = Rk cos k()

when ai:;4az

when ai = 4az, ri = rz = r

when ai ~ 4az, rii rz = R( cos () :l i sin ())

The analogy with differential equations is apparent. The Wronskian determinants of these
Ub Vk pairs are not zero, and so by superposition we may obtain all possible solutions of the
difference equation,

The Fibonacci numbers are solution values of

Yk+z =Yk+i + Yk

and by case 1 above may be represented by real power functions, They have so me
applications in information theory,
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5, The nonhomogeneous equation

has the solution family

Yk+2 + alYk+l + a2Yk = bk

Yk = CiUk + C2Vk + Yk

where Uk, Vk are as above and 1'k is one solution of the given equation, This is also
analogous to a result of differential equations, For certain elementary functions bk it is
possible to deduce the corresponding solution Yk very simply.

IMPORTANCE OF DIFFERENCE EQUATIONS

Our interest in difference equations is twofold, First, they do occur in applications, And second,
numerous methods for the approximate solution of differential equations involve replacing them by
difference equations as substitutes,

Solved Problems

FIRST-ORDER EQUATIONS

18.1. Solve the first-order equation Yk+l = kYk + k2 recursively, given the initial condition Yo = 1.

This problem ilustrates the appeal of difference equations in computation, Successive Yk values are

found simply by doing the indieate? additions and multiplications,

Y1 =0 Y2 = 1 Y3=6 Y4=27 Ys = 124

and so on, Initial-value problems of difference equations may always be solved in this simple recursive
fashion, Often, however, one wishes to know the character of the solution function, making an analytic
representation of the solution desirable, Only in certain cases have such representations been found,

18.2. Given the functions ak and bb what is the character of the solution of the linear first-order
equation Yk+l = akYk + bk with initial condition Yo = A?

Proceeding as in the previous problem, we find

Y1 =aoA+bo

Y2.= a1Y1 + b1 = aoa1A + aibo + b1

Y3 = a2Y2 + b2 = aOaia2A + a1a2bo + 'a2bi + b2

etc, With Pn denoting the product Pn = aOa! ' , , an-b the indicated result appears to be

( bo b1 bn-1)Yn =Pn A +-+-+'" +-Pi P2 Pn
This could be verified formally by substitution, As in the case of linear first-order differential equations,
this result is only partially satisfactory, With differential equations the solution can be expressed in terms
of an integral. Here we have a sum, In certain cases, however, further progress is possible, It is
important to notice that there is exactly one solution which satisfies the difference equation and assurnes
the prescribed initial value Yo = A.

18.3. What is the character of the solution function in the special case ak = r, bk = O?

Here the result of Problem 18,2 simplifies to the power function Yn = Arn. Such power functions

play an important role in the solution of other equations also,

18.4. What is the character of the solution function when ak = rand bk = 1, with Yo = A = 1?
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Now the result of Problem 18,2 simplifies to

Y _ n + n-1 rn+I 1n-r r +'''+1=--
r - 1

18.5. What is the character of the solution function of Yk+l = XYk + Ck+l with Yo = A = co?

This problem serves as a good ilustration of how simple functions are sometimes best evaluated by
difference equation procedures, Here the result of Problem 18,2 becomes

Yn = coxn + C1Xn-1 + ' , , + Cn

The solution takes the form of a polynomial. Horner's method for evaluating this polynomial at
argument x involves computing Yl1 Y2' ' , , ,Yn successively. This amounts to n mUltiplications and n
additions, and is equivalent to rearranging the polynomial into

Yn = Cn + x(cn-1 + ' , , + x(c3 + X(C2 + x(c1 + xCo)))

It is more effcient than building up the powers of x one by one and then evaluating by the standard
polynomial form.

18.6. What is the character of the solution of Yk+l = k + 1 Yk + 1 with initial value Yo = 1?
x

Here the Pn of Problem 18.2 becomes Pn = n!/xn, while all bk = 1. The solution is therefore
expressible as

Yn xnYn 1 2 1 n-=-= 1 +x +-x +'" +-xPn n! 2 n!
so that for increasing n, limxnYn/n! = eX,

18.7. What is the character of the solution of Yk+l = (1 - x2/(k + l?lYk with Yo = 1?

Here all the bk of Problem 18,2 are zero and A = 1, making

. (X2)( X2) ( X2)Yn = Pn ~ (1 - x2) 1 - ii 1 - 3ï "'. 1 - n2

This product vanishes for x = :t1, .:t2, ' . , , :tn. For increasing n we encounter the infinite product

limYn = il (1 - (k :21)2 J

whieh can be shown to represent (sin Jrx)/ JrX,

TUE DIGAMMA FUNCTION

18.8. The method of summing by "telescoping" depends upon being able to express a sum as a sum
of differences, n n

¿: bk = ¿: !!Yk = Yn+1 - Yo
k=O k=O

That is, it requires solving the first-order difference equation

!!Yk = Yk+l - Yk = bk

Apply this method when bk = l/(k + 1), solving the difference equation and evaluating the
sum,

~ xStart by defining the digamma function as 1l(x) = 2: :-(' ) - C where C is Euler's constant,
i~II I +x
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Directly we find for any x =I -i,

% (X+1 x Jß'l(x) = 'l(x + 1) - 'l(x) = ~ i(i +x + 1) i(i+x)

% ( 1 1) 1-2: -- =-i~I i + x i + x-+ 1 x + 1
When x takes integer values, say x = k, this provides a new form for the sum of integer reciprocals, sincen-j 1 n-j

2: - = 2: ß'l(k) = 'l(n) - 'l(0) = 'l(n) + C
k~ok + 1 k~O

We mayaIso rewrite this as
n 1

'l(n) = 2: --C
k~j k

so that the digamma function for integer arguments is a familiar quantity. Hs behavior is shown in Fig.
18- 1, and the logarithmic character for large positive x is no surprise when one recalls the definition of
Euler's constant. In a sense 'l(x) generalizes from 'l(n) much as the gamma function generalizes

factorials.

x

Fig.18.1

n ,
18.9. Evaluate the sum ¿ 1/(k + t) for arbitrary t,

k=l

From Problem 18,8, for any x, 'l(x + 1) - 'l(x) = l/(x + 1). Replace x by k + t - 1 toobtain

1

'l(k + t) - 'l(k + t - 1) =-k + t

Now we have the ingredients of a telescoping sum and find
n . 1 n

f;j k + t = f;i ('l(k + t) - 'l(k + t - 1)) = 'l(n + t) - 'l(t)

oe

18.10. Evaluate the series ¿ l/(k + a)(k + b) in terms of the digamma function,
k=l

Using partial fractions, we findnii "( 1 1)S =2: -2: ,---n k~j(k+a)(k+b) b-ak~l k+a k+b

Now applying the previous problem, this becomes

1
Sn = b _ a ('l(n + a) - 'l(a)- 'l(n + b) + 'l(b))
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From the series definition in Problem 18,8 it follows after abrief calculation thatx 1
1j(n + a) -1j(n + b) = (a - b) ~ (i + n + a)(i + n +

so that for n ~ x this difference has limit zero. Finally,

x¿ 1 .
k~1 (k + a)(k + b) = hmsn

1j(b) - 1j(a)

b -a

18.11. Find formulas for 1l'(x), 1l(2l(X), etc"in series form.
x

Differentiating the series of Problem 18.8 produces 1j'(x) = ¿ l/(k +X)2. Since this converges. k=l
uniformly in x on any interval not including a negative integer, the computation is valid. Repeating,

x -2!
1j(2)(X) = ~1 (k +X)3

x 3!
1j(3)(X) = ~1 (k + x t etc.

x
In particular, for integer arguments, Problem 17.28 makes 1j'(O) = ¿ 1/k2 = ¡r2/6 after which we lose

k~Ione term at a timè to obtain

¡r2
1j'(l) =-- 1

6

¡r2 1
1j'(2) = 6 - 1 - 4 and in general , 1 1¡r-

1j'(n) = 6 - 1 - 4 - . , ,- n2

. x 2k+1
18.12. Evaluate the senes 2: ( . ~,

k=l k k + 1

This further ilustrates how sums and series involving rational terms in k may be evaluated in terms
of the digamma function. Again introducing partial fractions,

x 2k + 1 x (1 1 1 J
¿ . =¿ ---+-
k=I k(k + 1)2 k=I k k + 1 (k + I?

The first two terms cannot be handled separately since the se ries would diverge. They can, however, be
handled together as in Problem 18,10. The result isi( 1 1 J 2k~1 k(k + 1) + (k + 1)2 = 1j(1) -1j(0) + 1j'(l) = ~6

Other sums of rational terms may be treated in similar fashion.

x 1
18.13. Evaluate thé se ries ¿ 2 22 k2'k=11 + + ' , ,+

Summing the squares as in Problem 5,2 we may replace this by
x 6 x (6 6 24)¿ =¿ -+---
k~I k(k + 1)(2k + 1) k~l k k + 1 2k + 1

Since no one of these three series is individually convergent, we do not treat each separately. Extending
the device used in the problem just solved we may, however, rewrite the combination as

00 ((6 6) (6 6) (24 24)J 00 (-6 6 J

~1 k - k + k + 1 - k - 2k + 1 - 2k = ~i k(k + 1) + k(k + n

= -6( 1j(1) - 1j(0)) + 12( 1j G)- 1j(0) J
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where Problem 18,10 has been used twice in the last step, Finally,~ 1 (1)
¿2 22 k2 12'l -2 - 6 + 12C
k~l 1 + +.,. +

-rr~c

18.14. Show that 9'(x) = r'(x + l)/r(x + 1) also has the property ó9'(x) = 1/(x + 1), where rex) is

the gamma function,

The gamma function is defined for positive x by

rex) = r e-1r-1 dt

Integration by parts exposes the familiar feature

r(x + 1) =xr(x)

and then differentiation brings r'(x + 1) = xr'(x) +T(x), or

r'(x+1) r'(x) 1

r(x+1) r(x)=~

from whieh the required result follows upon replacing x by x + 1.
Since 'l(x + 1) - 'l(x) = l/(x + 1), we find that

ri(x + 1) ()
r(x+1)-'lx =A

where A is a constant, and where x is restricted to a discrete set with unit spaçing, The same result can
be proved for all x except negative integers, the constant A being zero,

LINEAR SECOND.ORDER EQUATION, HOMOGENEOUS CASE
18.15. The difference equation Yk+2 + aiYk+i + a2Yk = 0 in which ai and a2 may depend upon k is

called linear and homogeneous, Prove that if Uk and v kare solutions, then so are C i Uk + C2 v k
for arbitrary constants Ci and C2' (H is this feature that identifies a linear homogeneous
equation, The equation is homogeneous because Yk == 0 is a solution,)

Since Uk+2 + a1Uk+1 + a2Uk = 0 and Vk+2 + a1Vk+1 + a2vk:: 0, it follows at once by multiplying the

first equation by CI, the second equation by C2, and adding that

CiUk+2 + C2Vk+2 + al(c1Uk+l + C2Vk+I) + a2(ciuk + C2Vk) = 0

whieh was to be proved,

18.16. Show that for ai and a2 constant, two real solutions can be föund in terms of elementary
functions.

First suppose ai :; 4a2. Then we may take

llk = r~ Vk = r~

where r1 and r2 are the distinct real roots of the quadratic equation r2 + air + a2 = O. To prove this we
verify directly that

Uk+2 + aiuk+1 + a2Uk = rk(r2 + air + a2) = 0

where r is either root. The quadratic equation involved here is known as the characteristic equation,
Next suppose ai = 4a2' Then ,the characteristic equation has only one root, say r, and can be

rewritten as

r2 + air + a2 = (r + ~air = 0
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Two real solutions are now available in

Uk = rk Vk = krk

The solution Uk may be verified exactly as above. As for Vb

(k + 2)rk+2 + a1(k + l)rk+I + a2krk = rk(k(rZ + air + a2) + (2r + ai)r) = 0

since both parentheses are zero.
Finally suppose aî.ç 4a2' Then the characteristic equation has complex conjugate roots ReriH,

Substituting, we find

R2eri2e + a1Rerie + a2 = R2(cos 28:1 i sin 28) + aiR(cos 8:1 i sin 8) + a2

= (R2 cos 28 + aiR cos 8 + a2) :I i(RZ sin 28 + aiR sin 8) = 0

This requires that both parentheses vanish:

R2 cos 28 + aiR cos 8 + a2 = 0 R2 sin 28 + aiR sin 8 = 0

We now verify that two real solutions of the difference equation are

Uk = Rk sin k8 Vk = Rk cos k8

For example,

Uk+2 + a1Uk+1 + a2uk = Rk+2 sin (k +2)8 + a1Rk+¡ sin (k + 1)8 + a2Rk sin k8

= Rk(sin k8)(R2 cos 28 + aiR cos 8 + a2) + Rk(cos k8)(R2 sin 28 + aiR sin 8) = 0

since both parentheses vanish, The proof for Vk is almost identical.
It now follows that for a1 and a2 constant, the equation Yk+2 + a1Yk+l + a2Yk = 0 always has a family

of elementary solutions Yk = C¡Uk + C2Vk'

18.17. Solve the difference equation Yk+2 - 2AYk+l + Yk = 0 in terms of power functions, assuming
A:;1.

Let Yk = rk and substitute to find that r2 - 2Ar + 1 = 0 is necessary,

This leads to r = A :I VA2 - 1 = r1, r2 and Yk = c¡r~ + c2r~ = C¡Uk + C2Vk'

One of these power functions grows arbitrarily largewith k, and the other tends to zero, since ri? 1
but 0.çr2.ç1. (The fact that r2=A-VA2-1.ç1 follows from (A-1f=A2+1-2A.çA2-1 after
taking square roots and transposing terms,)

18.18. Solve the equation Yk+2 - 2Yk+l + Yk = 0,

Here we have aî = 4a2 = 4, The only root of r2 - 2r + 1 = 0 is r = L This means that Uk = 1, Vk = k
are solutions and that Yk = Ci + c2k is a family of solutions, This is hardly surprising in view of the fact

that this difference equation may be written as tl2Yk = 0,

18.19. Solve Yk+2 - 2AYk+l + Yk = 0 where A .. 1.

Now aî.ç 4a2, The roots of the characteristic equation become

ReHe = A :I iV1 :- A 2 = cos 8 :I i sin 8

where A = cos 8 and R = 1. Thus Uk = sin k8, Vk = cos k8 and the familyof solutions

Yk = Cl sin k8 + C2 cos k8

is available,
The Vk functions, when expressed as polynomials in A, are known as Chebyshev polynomials. For

example,
Vo= 1 v¡=A V2 = 2A2- 1

The difference equation of this problem is the recursion for the Chebyshev polynomials.
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18.20. Show that if two solutions of Yk+2 + aiYk+i + a2Yk = ° agree in value at two consecutive

integers k, then they must agree for all integers k, (Assurne a2 * 0,)

Let Uk and Vk be solutions which agree--in value at k equal to m and m + 1. Then their difference

dk = Uk - Vk is a solution (by Problem 18.15) for which dm = dm+i = O. But then

dm+2 + a¡dm+i + a2dm = 0 dm+¡ + a1dm + a2dm-1 = 0

from which it follows that dm+2 = 0 and dm-¡ = O. In the same way we may prove dk to be zero for
k? m + 2 and for k -c m - 1, taking each integer in its turn. Thus dk is identically zero and Uk == Vk' (The

assumption a2 * 0 merely guarantees that we do have a se co nd-order difference equation.)

18.21. Show that any solution of Yk+2+ aiYk+i + a2Yk = ° may be expressed as a combination of two
particular solutions Uk and Vb

Yk = CiUk + C2Vk

provided that the Wronskian determinant

I Uk
Wk = Uk-i

Vk 1*0
Vk-l

We know that CiUk + C2Vk isa solution. By the previous problem it wil be identieal with the
solution Yk if it agrees with Yk for two consecutive integer values of k, In order to obtain such agreement
we choose k = 0 and k = 1 (any other consecutive integers would do) and determine the coeffcients CI
and C2 by the equations

C¡Uo + C2Vo = Yo C1U1 + C2V1 = Y1

The unique solution is C¡ = (Yi Vo - Yov¡)/wi, C2(YOU¡ - YiUO)/W1 since WI * O.

18.22. Show that if the Wronskian determinant is zero for one value of k, it must be identically zero,
assuming Ub Vk to be solutions of the equation of Problem 18,20, Apply this to the particular
case of Problem 18,16 to prove Wk * 0,

We compute the difference

àWk = (Uk+¡Vk - Vk+1Uk) - (UkVk-i - VkUk-1)

= Vk( -alUk - a2uk-1) - Uk( -a1vk - a2vk-1) - UkVk-1 + VkUk-1

= (a2 - l)wk = Wk+1 - Wk

from which it soon follows that Wk = a~wo. Since a2 * 0, the only way for Wk to be zero is to have Wo = 0,

But then Wk is identically zero,
When Wk is identically zero, it follows that Uk/Vk is the same as Uk-1/Vk-1 for all k, that is,

UdVk = constant. Since this is definitely not true for the Uk, Vk of Problem 18,16, Wk cannot be zero
there.

18.23. Solve by direct computation the second-order initial-value problem

Yk+2 = Yk+l + Yk Yo=o Yl = 1

Taking k = 0, 1,2, . , . we easily find the successive Yk values 1, 2, 3, 5, 8, 13,21,34,55,89, 144, , . .
which are known as Fibonacci numbers. The computation clearly shows a growing solution but does not
bring out its. exact character.

18.24. Determine the character of the solution of the previous problem.

Following the historical path mapped in Problems 18,15, 18,16, etc" we consider the characteristic
equation r2 - r - 1 = 0,
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Since ai ~ 4a2, there are two real roots, namely Ti, T2 = (1 :l V5)/2, All solutions can therefore be
expressed in the form

(1 + V5)k (1 _ V5)k
Yk=CiUk+C2Vk=Ci i- +C2 i-

T 'f h . "1 d" . d 0 (1+V5) (1-V5)o satis y t e initia con itions, we nee Cl + C2 = and Ci i- + C2 i- = 1.
1 1 ((l+V5)k (l-V5)kJ

Ci = -C2 = 0 and Yk = 0 i- - i- '

This makes

18.25. Show that for the Fibonacci numbers, lim (Yk+i/Yk) = (1 + ý5)/2,

For such results it is convenient to know the character of the solution function. Using the previous
problem we find, after abrief calculation,

Yk+1 1 + V5 1 - ((1 - V5)/(1 + V5)Y+l
y; = i-' 1 - ((1 - 0)/(1 + 0)Y

and (1 - V5)/(1 + V5) has absolute value less than 1, so that the required result follows,

18.26. The Fibonacci numbers occur in certain problems involving the transfer of information along
a communications channel. The capacity C of a channel is defined as C = lim (logYk)/k, the
logarithm being to base 2, Evaluate this limit.

Again the analytie character of the solution Yk is needed, But it is available, and we find

1 ((1 + V5)k (1 - V5)kJlogYk=log0+10g i- - i-

1 (1 + 0)k ((1 - 0)kJ
= log 0 + log i- + log 1 - 1 + 0,

C = lim flog (1/0) + log 1 + 0 + ~ log (1 _ (1 - 0)kJJ = log 1 + 0L k 2 k 1+0 2making

TUE NONHOMOGENEOUS CASE
18.27. The equation Yk+2 + aiYk+i + a2Yk = bk is linear and nonhomogeneous, Show that if Uk and Vk

are solutions of the associated homogeneous equation (with bk replaced by 0) with
nonvanishing Wronskian and if Yk is one particular solution of the equation as it stands, then
every solution can be expressed as Yk = CiUk + C2Vk + Yk where Ci and C2 are suitable

constants.

With Yk denoting any solution of the nonhomogeneous equation, and Yk the particular solution,

Yk+2 + aIYk+l + a2Yk = bk

Yk+2 + a1 Yk+1 + a2 Yk = bk

and subtracting, dk+2 + a1dk+1 + a2dk = 0

where dk = Yk - Yk, But this makes dk a solution of the homogeneous equation, so that dk = CIUk + C2Vk'

Finally, Yk = C1Uk + C2Vk + Yk which is the required result.

18.28. By the previous problem, to find all solutions of a nonhomogeneous equation we may find
just one such partieular solution and attach it to the solution of the associated homogeneous
problem, Follow this procedure for Yk+2 -' Yk+i - Yk = Axk,
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When the term bk is apower function, a solution can usually be found which is itself apower
function, Here we try to determine the constant C so that Yk = Cxk.

,Substitution leads to CXk(X2 - x-I) = Axk, making C = A/(x2 - x-I). All solutions are therefore

expressible as

'_ (1 + V5)k (1 - V5)k AxkYk - Cl 2 + C2 2 + 2 1x -x-
Should x2 - x-I = 0, this effort fails.

18.29. For the preceding problem, how tan a particular solution Yk be found in the case where'
x2 -x -1 = O?

Try to determine C so that Yk = Ckxk,

Substitution leads to Cxk((k + 2)x2 - (k + l)x - k) = Axk from which C = A/(2x2 - x). This makes
Yk = Akxk /(2x2 - x).

18.30. For wh at sort of bk term may an elementary solution Yk be found?

Whenever bk is apower function or a si ne or cosine function, the solution Yk has similar character.

Table 18.1 makes this somewhat more precise. If the Yk suggested in Table 18,1 includes a solution of
the associated homogeneous equation, then this Yk should be multiplied by k until no such solutions are
included, Further examples of the effectiveÌiess of this procedure will be given.

Table 18.1

bk Yk

Axk Cxk

kn Ca+ Cik + C2e+,., + Cnkn

sinAk or cosAk Ci sin Ak + C2 cos Ak

knxk xk(CO + Cik + C2e +, . ,+ Cnkn)

xk sinAk or xk cosAk Xk(Ci sinAk + C2cosAk)

Supplementary Problems

18.31. Given Yk+1 = rYk + k and Ya = A, compute Yi, . . . . ,Y4 directly. Then discover the character of the
solution function.

18.32. Given Yk+I = -Yk + 4 and Ya = 1, compute Yi, . . , ,Y4 directly. What is the character of the solution
function? Can you discover the solution character for arbitrary Ya?

18.33. If a debt is amortized by regular payments of size .R, and is subject to interest rate i, the unpaid balance

is Pk where Pk+1 = (1 + i)Pk - R. The initial debt being Po = A, show that Pk = A(l + i)k _ R (1 + i~k - 1,
i

Also show that to reduce Pk to zero in exactly n payments (Pn = 0) we must take R = Ai/(l - (1 + i)-n),

18.34. Show that the difference equation Yk+1 = (k + l)Yk + (k + I)! with initial condition Yo = 2 has the solution
Yk=k!(k+2).

18.35. Solve Yk+I = kYk + 2kk! with Yo = 0,
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18.36. Apply Horner's method of Problem 18,5 to evaluate p(x) = 1 + x + x2 + . , , + x6 at x = l,

18.37. Adapt Horner's method to p(x) =x -x3/3! +x5/5! -x7/7! +x9/9!.

18.38. Show that for k ? 0, (k + 1 )Yk+1 +.kYk = 2k - 3 has the solution Yk = 1 - 2/ k.

18.39. Show that the nonlinear equation Yk+1 = Yk/(l + Yk) has the soluions Yk = C/(l + Ck),

18.40. Solve the equation AYk = (l/k - l)Yk with initial condition Yi = 1.

18.41. Compute 'l(3)(0), 'l(3)(1), and 'l(3)(2) from the results in Problem 18.11. What general result is indicated
for integer arguments?

~
18.42. Evaluate L l/k(k + 2) in terms of the 'l function.

k=l

.~,.f._.
~

18.43. Evaluate L 1/k2(k + 2)2, using Problem 18.41.
k=I

18.44. Compute 'lG) to three places from the series definition, using an acceleration device. Then compute
''lm and 'l(-l) from A'l(x) = l/(x + 1).

18.45. What is the behayior of 'l(x) as x approaches - 1 from above?
~

18.46. Evaluate L 1/ P3(x) where P3(x) is the Legendre polynomial of degree three.
x=l

~
18.47. Evaluate L l/13(x) where 13(x) = 4x3 - 3x and is the Chebyshev polynomial of degree three,

x=l

~
18.48. Evaluate L 1/ Pix) where P4(x) is the Legendre polynomial of degree four.

x=l

18.49. Given Yk+2 + 3Yk+1 + 2Yk = 0 with initial conditions Ya = 2, Y1 = 1, compute Y2' ' . . , YlO directly.

18.50. Solve the preceding problem by the method of Problem 18.16.

18.51. Show that the solutions of Yk+2 - 4Yk+1 + 4Yk = 0 are Yk = 2k(cl + C2k), where CI, C2 are arbitrary

constants.

18.52. Find the solution family of Yk+2 - Yk = 0, Also find the solution satisfying the initial conditions Ya = 0,
Y1 = 1.

18.53. Solve Yk+2 - 7Yk+1 + 12Yk = cos k with Ya = 0, Yi = O.

18.54. Solve 4Yk+2 + 4Yk+1 + Yk = e with Ya = 0, Y1 = 0,

18.55. Show that the solutions of Yk+2 - 2Yk+1 + 2Yk = 0 are

, r; . nk , r; nk
Yk = cI( V2)k sm 4 + C2( V2)k cos 4

18.56. Solve 2Yk+2 - 5Yk+I + 2Yk = 0 with initial conditions Ya = 0, Yi = 1.

18.57. Solve Yk+2 + 6Yk+1 + 25Yk = 2k with Ya = 0, Y1 = O.

18.58. Solve Yk+2 - 4Yk+I + 4Yk = sin k + 2k with initial conditions Ya = Y1 = 0,
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18.59. For wh at values of aare the solutions of Yk+2 - 2Yk+1 + (1 -a )Yk = 0 oscilatory in character?

18.60. Solve Yk+2 - 2Yk+l - 3Yk = P2(k) where Pz(k) is the second-degree Legendre polynomial and Yo = Y1 = 0,

18.61. What is the character of the solutions of Yk+2 - 2aYk+1 + aYk = 0 for 0 ~ a ~ I? For a = I? For a ? I?

18.62. Show that the nonlinear equation Qk+l = a - b/Qk can be converted to the linear equation

Yk+2 - aYk+l + bYk = 0 by the change of argument Qk = Yk+l/Yk'

18.63. Show that fòr N even there is no solution of Yk+2 - Yk = 0 satisfying the boundary conditions Yo = 0,

YN = 1.

18.64. Show that there are infinitely many solutions of the equation of the preceding problem satisfying

YO=YN=O.

18.65. Show that there is exactly one solution of Yk+2 - Yk = 0 satisfying the boundary conditions Yo = 0, YN = 1

if N is odd, Find this solution, Also show that there is exactly one solution satisfying Yo = YN = 0, namely

Yk=O,



Chapter 19

Differential Equations

TUE CLASSICAL PROBLEM

Solving differential equations is one of the major problems of numerical analysis, This is because
such a wide variety of applications lead to differential equations, and so few can be solved
analytically, The classical initial value problem is to find a function y(x) which satisfies the first-order
differential equation y' = f (x, y) and takes the initial value y (xo) = Yo, A broad variety of methods
have been devised for the approximate solution of this problem, most of which have then been
generalized for treating higher-order problems as weiL. The present chapter is focused on solution
methods for this one problem,

1. The method of isoclines ispresented first, Bàsed upon the geometrical interpretation of
y'(x) as the slope of the solution curve, it gives a qualitative view of the entire solution
family, The functionf(x, y) defines the prescribed slope at each point, This "direction field"
determines the character of the solution curves, '

2, The historical method of Euler involves computing a discrete set of Yk values, for arguments
Xk, using the difference equation

Yk+1 = Yk + hf(Xk' Yk)

where h = Xk+i - Xk' This is an obvious and no too accurate approximation of y' = fex, y),

3, More emcient a1gorithms for computing solutions are then developed. Polynomial ap-
proximation is the basis of the most popular algorithms, Except for certain series methods,
what is actually computed is a sequence of values Yk corresponding to a discrete set of
arguments Xkt as in the Euler method, Most methods are equivalent to the replacement of
the given differential equation by a difference equation. The particular difference equation
obtained depends upon the choice of polynomial approximation,

4, The Taylor series is heavily used, if fex, y) is an analytic function the successive derivatives
of y(x) may be obtained and the series for y(x) written out in standard Taylor format,
Sometimes a single series wil serve for all arguments of interest. In other problems a single
series may converge too slowly to produce the required accuracy for all arguments of
interest and. several Taylor series with different points of expansion may be used. Th~
eventual truncation of any such series means that the solution is being approximated by a
Taylor polynomial.

5, Runge-Kutta methods were developed to avoid the computation of high-order derivatives
which the Taylor method may involve. In place of these derivatives extra values of the given
function fex, y) are used, in a way which duplicates the accuracy of a Taylor polynomial.
The most common formulas are

ki = hf(x, y)

kz=hf(X +~h, y +~ki)

k3 = hf(x +~h, y +~kz)

k4 = hf(x + h, y + k3)

y(x + n) = y(x) + ~ (ki + 2kz + 2k3 + k4)

but there are numerous variations,

197
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6, .Predictor-corrector methods involve the use of one formula to make a prediction of the
next Yk value, followed by the application of a more accurate corrector formula which then
provides successive improvements, Though slightly complex, such methods have the
advantage that from successive approximations to each Yk value an estimate of the error may
be made, A simple predictor-corrector pair is

Yk+l = Yk + hy~

Yk+l = Yk + ~ h(y~ + Y~+l)

the predictor being Euler's formula and the corrector being known as the modified Euler
formula, Since Y~ = f(Xb Yk) and Y~+l = f(Xk+l' Yk+l) the predictor first estimates Yk+l' This
estimate then leads to a Y~+l value arid then to a corrected Yk+l' Further corrections of Y~+l
and Yk+l successively can be made untìl a satisfactory result is achieved,

7, The Milne method uses the predictor-corrector pair

4h (' , ')
Yk+l = Yk-3 + 3 2Yk-2 - Yk-l + 2y k

h( , , ')
Yk+l=Yk-l+"3 Yk+i+4Yk+Yk-l

in which Simpson's rule is easily recognized, It requires four previous values
(Yk, Yk-l, Yk-2, Yk-3) to prime it. These must be obtained by a different method, often the
Taylor series,

8, The Adams method uses the predictor-corrector pair

Yk+l = Yk + 2: (55y~ - 59y~-1 + 37Y~_2 - 9Y~-3)

Yk+l = Yk + ~ (9y~+1 + 19y~ - 5y~-1 + Y~-2)

and like the Milne method requires four previous values,

ERROR

Truncation error is made when a partial sum is used to approximate the value of an infinite
series and this is perhaps the original use of the term, which is now used more loosely, When a
differential equation is replaced by a difference equation, a local truncation error is made with each
forWard step from k to k + 1. These local errors then blend together in some obscure way to produce
the cumulative or global truncation error. It is rarely possible to follow error development through a
differential equations algorithm with any realism but some rough estimates are possible,

A convergent method is one which, when continually refined (more and more terms of aseries
, being used, or smaller and smaller intervals between successive arguments), yields a sequence of

approximate solutions converging to the exact solution, The Taylor, Runge-Kutta, and some
predictor-corrector methods wil be proved convergent under appropriate circumstances, Conver-

gence proofs deal with truncation error only, ignoring the problem of roundoffs,

Roundotf error is, needless to say, present in all these methods, sometimes in an important way,
It is more elusive than truncation error and very limited success has rewarded the efforts made to
analyze it,

The relative error of an approximation, the ratio of error to exact solution, is usually of greater
interest than the error itself, since if the solution grows larger, then a larger error can probably be
tolerated, Even more important, if the exact solution diminishes, then eri:r must do the same or it
wil overwhelm the solution and computed results wil be meaningless, The simple problem y' = Ay,
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y(O) = 1, for which the exact solution is y = eAX, often serves as a test case for tracing relative error
behavior in our various methods, One hopes that information obtained in this way wil have so me
relevance for the use of the same methods on the general equation y' = f(x, y), This may seem
optimistic, but the study of error has its limitations,

A stable method is one for which relative error remains bounded, hopefully by its initial value,
This is a strong requirement and one that may be hard to verify, Also, a method may be stable for
some equations and unstable for others, Only partial results can be offered, in particular for the
equation y' =Ay,

Error monitorig refers to a step-by-step effort to measure local truncation error and to use this
information for determining whether or not the current step size is suitable, With predictor-
corrector methods, a practical error estiinate can be made using the predicted and corrected values,
With Runge-Kutta methods, a parallel computation using double step size leads to an error estimate
much as in adaptive integration, Here, as there, the objective is to attain a final result of specified
áccuracy with minimum effort,

Solved Problems
THE METHOD OF ISOCLINES
19.1. Use the method of isoclines to determine the qualitative behavior of the solutions of

y'(x) =xy1f,
Trus equation can of course be solved by elementary methods but we shall use it as a test case for

various approximation methods, The method of isoc1ines is based on the family of curves y' (x) =
constant which are not themselves solutions but are helpful in determining the character of solutions. In
thís example the isoc1ines are the family'xylI3 = M where M is the constant value of y'(x), Some of these
curves are sketched (dashed) in Fig, 19-1, withM values indicated, Where a solution of the differential
equation crosses one of these isoc1ines it must have for its slope the M number of that isoc1ine. A few
solution curves are also inc1uded (solid) in Fig. 19-1. Others can be sketched in, at least roughly,

Accuracy is not the goal of the isoc1ine method but rather the general character of the solution
family, For example, there is symmetry about both axes. One solution through (0,0) and those above it
have a U shape. Solutions below this are more unusual. Along y = 0 different solutions can come
together. A solution can even inc1ude a piece of the x axis, One such solution might enter (0, 0) on a
descending arc, follow the x axis to (2, 0) and then start upwards again as shown in Fig. 19-2. The
possible combinations of line and arc are countless. Information of this sort is often a useful guide when
efforts to compute accurate solutions are made.

M=

Fig.19.1 Fig.19-2
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TUE EULER METUOD
19.2. Ilustrate the simplest Euler method for computing a solution of

y'=f(x,y)=xi/3 y(l)=l
This is perhaps the original device for converting the method of isoc1ines into a computational

scheme. It uses the formula "

LXk+1
Yk+I-Yk= y'dx=hy~

Xk

which amounts to considering y' constant between Xk and Xk+I' It also amounts to the linear part of a
Taylor series, so that if Yk and Y~ were known exactly the error in Yk+1 would be !h2i2)(~). This is called
the tocat truncation error, since it is made in this step from Xk to Xk+l' Since it is fairly large, it follows
that rather sm all increments h would be needed for high accuracy.

The formula is seldom used in practice but serves to indicate the nature of the task ahead and some
of the diffculties to be faced. With Xo, Ya=" 1 three applications of this Euler formula, using h = .01,

bring

YI = 1 + (.01)(1) = 1.0100

Y2 = 1.0100 + (.01)(1.01)(1.0033) = 1.0201

Y3 = 1.0201 + (.01)(1.02)(1.0067) = 1.0304

Near x = 1 we have i2) = yl/3 + hy-2/3(X/13) = t wh 
ich makes the truncation error in each step about

,00007. After three such errors, the fourth decimal place is already open to suspieion, A smal1er

increment h is necessary if we hope for greater accuracy. The accumulation of truncation error is further
illustrated in Fig. 19-3 where the computed points have been joined to suggest a solution curve. Our
approximation amounts to following successively the tangent lines to various solutions of the equation.
As a result the approximation tends to follow the convex side of the solution curve. Notice also that
Euler's formula is a nonlinear difference equation of order one: Yk+1 = Yk + hXkyt3.

C'omputed solution

(1.1) _
Xo

.
X2 :r:i

Fig,19-3

19.3. Ilustrate the concept of convergence by comparing the results of applying Euler's method

with h = ,10, ,05, and ,01 with the correct solution y = ((x2 + 2)/3)3/2,

Convergence refers to the improvement of approximations as the intervalh tends to zero, A

method which does not converge is of doubtful value as an approximation scheme. Convergence for the
various schemes to be introduced wil be proved later, but as circumstantial evidence the data of Table
19.1, obtained by Euler's method, are suggestive. Only values for integer x arguments are inc1uded, all
others being suppressed for brevity.

Notice that across each row there is areassuring trend toward the exact value. Using sm 
aller

intervals means more computing. The value 25,96 in the bottom row, for instance, was obtained in 50
steps whereas the value 26.89 required 500 steps, The extra labor has brought an improvement, which
seems only fair. As h tends to zero the computation grows even longer and we hope that the results
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Table 19.1

x h=,10 h=,OS h =,01 Exact

1 1.00 1.00 1.00 1.00
2 2,72 2.78 2.82 2.83
3 6.71 6,87 6.99 7.02
4 14.08 14,39 14.63 14,70
5 25,96 26.48 26.89 27.00

approach the exact values as limits. This is the convergence concept. Needless to say, roundoff errors
will limit the accuracy attainable but they are not apart of the convergence issue.

TUE TAYLOR METUOD
'19.4. Apply the local Taylor series method to obtain a solution of y' = xil3, y(l) = 1 correct to

three places for arguments up to x = 5.

Generally speaking the method involves using p(x + h) in place of y(x + h), where p(x) is the
Taylor polynomial for argument x, We may write directly1 1 1

y(x + h) = y(x) + hy'(x) + - h2y(2(x) + - hV3l(x) + - hV4)(x)2 6 24
accepting a local truncation error of amount E = hYS)(g)/120,

The higher derivatives of y(x) are computed from the differential equation:1 _ 1 _ _ 1 2y(2)(X) = -x2y 1/3 + yl/3 i3)(x) = _ -x3y 1+ xy 1/3 y(4)(X) = _ x4y-S13 _ _ x2y-1 + y-1133 9 9 3
The initial condition y(l) = 1 has been prescribed, so with x = 1 and h = ,1 we find

2 4 1
y(l + ,1) = 1 +.1 +:3(.1)2 + 27 (.1)3 + 54 (,lt= 1.0682

Next apply the Taylor formula at x = 1. 1 and find

y(1. + ,1)= 1.22788 y(1. -.1) = 1.00000

The second of these serves as an accuracy check since it reproduces our first result to five-place
accuracy, (This is the same procedure used in Chapter 14 for the error function integral.) Continuing in
this way," the results presented in Table 19.2 are obtained. The exact solution is again included for
comparison, Though h =.1 was used, only values for x = 1(.5)5 are listed. Notice that the errors are
much smaller than those made in the Euler method with h = .01. The Taylor method is a more rapidly
convergent algorithm,

Table 19.2

x Taylor resuIt Exact resuIt Error

1.0 1.00000 1,00000
1.5 1.68618 1.68617 -1
2.0 2,82846 2,82843 -3
2.5 4.56042 4,56036 -6
3,0 7,02123 7,02113 -10
3.5 10.35252 10.35238 -14
4,0 14.69710 14,69694 -16
4.5 20.19842 20,19822 -20
5.0 27,00022 27,00000 -22
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19.5. Apply the Taylor method to y' = -xy2 to obtain the solution satisfying y(O) = 2,

The procedure of the preceding problem could be applied, Instead, however, an alternative will be
ilustrated, essentially a method of undetermined coeffcients. Assuming convergence at the outset, we

~

write the Taylor series y(x) = L a¡/ Then
I=O

y2(X) = (i: a¡x¡) (' i: aixi) = i: (:: a¡ak_i)xk

i=O )=0 k=O 1=0
y'(x) = L iaixi-¡

i=l

Substituting into the differential equation and making minor changes in the indices of summation,

~ ~ (i-¡ )~ (j + 1)ai+1xi = - ~ ~ a¡ai-1-i xi

Comparing coeffcients of xi makes a1 = 0 and
j-1

(j + 1)ai+1 = - L a¡aj-1-i
i=O

for j = 1,2" . ,

The initial condition forces ao = 2 and then we find recursively

1 2
a2= --ao=-2

21 .
a3 = -:3 (2aoa¡) = 0

_ 1 ( ,2
a4 - - 4: 2aOa2 + a I). = 2

1
as = - 5 (2aOa3 + 2aia2) = 0

1 2)
a6 = - - (2aOa4 + 2a1a3 + a2 =-26 .

1
a7 = -7 (2aoas + 2a1a4 + 2a2a3) = 01 ( 2
a8 = -"8 2aOa6 + 2a¡as + 2a2a4 + a3) = 2

and so on. The recursion can be programmed so that coeffcients could be computed automatically as far
as desired, The indicated se ries is

y(x) = 2(1 - x2 + x4 - x6 + x8 - . , ,)

Since the exact solution is easily found-.to be y(x) = 2/(1 + x2), the se 
ries obtained is no surprise,

This method sees frequent application, The principal assumption involved is that the solution does
actually have aseries representation, In this case the series converges only for - 1 ~ x ~ 1. For
_~ ~x ~ ~ only six terms are needed to give three-place accuracy, In the previous problem a new Taylor
polynomial was used for each value computed. Hefe just one such polynomial is enol1gh, The issue is
one of range and accuracy required. To proceed up to x = 5, for example, theearlier method can be
used, In further contrast we mayaIso note that in Problem 19.4 polynomials of fixed degree are used
and the convergence issue does not arise explicitly, Here in 

Problem 19.5 we introduce the entire series

into the differential equation, assuming y(x) analytic in the interval of interest,

RUNGE-KUTA METHODS
19.6. Find coeffcients a, b, c, d, m, n, and p in order that the Runge-Kutta formulas

ki = hf(x, y)

k2 = hf(x + mh, y + mki)

k3 = hf(x + nh, y + nk2)

k4 = hf(x + ph, Y + pk3)

y(x + h) - y(x) = aki + bk2 + ck3 + dk4

duplicate the Taylor se ries through the term in h4, Note that the last formula, though not a
polynomial approximation, is then ne 

ar the Taylor polynomial of degree four.
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We beginby expressing the Taylor series in a form which facilitates comparisons. Let

F¡ = fx + fh F; = f= + 2ffy + F/Yy F3 = fxxx + 3ffxy + 3Ffxyy + P/yyy

Then differentiating the equation y' = fex, y), we find

i2) = fx + /yy' = fx + /yf = F¡

y(3) = fxx + 2ffy + F/Yy + /y(fx + fh) = F; + /yF¡

i4) = fxxx + 3ffxy + 3Ffxyy + P/Yyy + /Y(fxx + 2ffy + F/Yy) + 3(fx + fh)(f"y + fhy) + f;(fx + fh)

= F3 + /yF; + 3F¡(fxy + fhy) + f;F¡

which allows the Taylor se ries to be written as"1.213 14( ( ) 2)
y(x + h) - y(x) = hf + Z h F¡ +"6 h (F; + /yF¡) + 24 h F3 + /yF; + 3 fxy + fhy F¡ + fyF¡ +..,

Tuming now to the various k values, similar computations produce

k1=hf

( 122 133 Jk2 = h f + mhF¡ + Z m h Fi + "6 m h F; + ' , ,

( 1 2( 2 1 3 3 2 2 Jk3=h f+nhF¡ +zh n F;+2mn/YF')+"6h (n F3+3m n/YFi+ 6mn (fxy +fhy)F¡)+ ,,'

( 1 2( 2 ) 1 3( 3 2 2( 2 Jk4 = h f + phF¡ + zh p F; + 2np/yF' +"6h p F3 + 3n p/yF; + 6np fxy + fhy)F¡ + 6mnpfyF¡) + ' , .

Combining these as suggested by the final Runge-Kutta formula,

1
y(x + h) - y(x) = (a +b + c + d)hf + (bm + cn + dp )h2F' + Z (bm2 + cn2 + dp2)h3F;1 . 1

+"6 (bm3 + cn3 + dp3)h4F; + (cmn + dnp )h3/yF¡ + 2 (cm2n + dn2p )h,%F;

+ (cmn2 + dnp2)h4(fxy + fhy)F¡ + dmnph'Y;F¡ + ' . ,

Comparison with the Taylor se ries now suggests the eight conditions

a+b+c+d=l 1
cmn +dnp =-

6

1
cmn2 + dnp2 = -

8

1
cm2n + dn2p =-

12

" 1dmnp=-
24

1bm +cn +dp=Z

1
bm2 + cn2 + dp2 =-

3

1
bm3 + cn3 + dp3 =-

4

These eight equations in seven unknowns are actually somewhat redundant, The classieal solution set is

1m=n=Z

leading to the Runge-Kutta formulas

p = 1 a=d=!
6

1b =c=3

ki = hf(x, y) k2 = hf 

(x +~h, y +~ki) k3 = hf (x +~h, y +~k2)
1

k4 = hf(x + h,' y + k3) y(x + h) = y(x) +"6 (k¡ + 2k2 + 2k3 + k4)
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It is of some interest tonotice that for fex, y) independent of y this reduces to Simpson's rule applied to
y'(x) = fex),

19.7. What is the advantage of Runge-Kutta formulas over the Taylor method?

Though approximately the same as the Taylor .polynomial of degree four, these formulas do not
require prior calculation of the higher derivatives of y(x), as the Taylor method does. Since the
differential equations arising in applications are often complicated, the calculation ofderivatives can be
onerous. The Runge-Kutta formulas involve computation of fex, y) at various positions instead and this
function occurs in the given equation. The method is very extensively used.

19.8. Apply the Runge-Kutta formula to y' = fex, y) = xy1l, y(l) = 1.

With Xo = 1 and h = .1 we find

k¡=(.l)f(l,l)=,l
k2 = (. 1)f(1.05, 1.05) =.10672

k3 = (, 1)f(1.05, 1.05336) =,10684

k4 = (, l)f(1. 1, 1. 10684) =.11378

from which we compute

1
yi = 1 + 6 (. 1 + .21344 + .21368 + .11378) = 1. 10682

This completes one step and we begin another with Xl and Y1 in place of x~ and Yo, and continue in this
way, Since the method duplicates the Taylor series through h4, it is natural to expect results similar to
those found by the Taylor method, Table 19,3 makes a few comparisons and we do find differences in
the last two places, These are partly explained by the fact that the local truncation errors of the two
methods are not identical. Both are of the form Ch5, but the factor Cis npt the same, Also, roundoff
errors usually differ even between algorithms which are algebraically identical, which these are not,
Here the advantage is clearly with the Runge-Kutta formulas,

Table 19.3

X Taylor Runge-Kutta Exact

1 1.00000 1.00000 1.00000

2 2,82846 2.82843 2,82843

3 7.02123 7,02113 7.02113

4 14.69710 14,69693 14,69694

5 27,00022 26,99998 27,00000

19.9. Ilustrate variations of the Runge-Kutta formulas,

It is not hard to verify that

y(x + h) = y(x) + hf 
(x + ~ h, y + ~ hf(x, h))

in which y denotes y(x), duplicates the Taylor series through terms of second degree. (See Problem
19,63). It is, therefore, known as a Runge-Kutta method of order two, Similarly,

k¡ = hf(x, y)

k2 = hf 
(x +~h, y +~k1)

k3 = hf(x + h, y - k¡ + 2k2)1 .
y(x + h) = y(x) +6(k1 + 4k2+ k3)
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has order three. Other methods of order two and three also exist. The set

ki = hf(x, y)

ki = hf 

(x + ~ h, y + ~ ki)

( 1 1 1)k3=hf x+Zh,y+4k¡+4k2

k4 = hf(x + h, y - k2 + 2k3)

1
y(x + h) = y(x) +6(kl + 4k3 + k4)

is an alterI)ate method of order four, while the more exotic

k¡=f(x,y)

k2 = hf(x +~h, y,+~k1)

( 1 1 1)k3 = hf x + Z h, y + 4 k¡ +14 k2

k4 = hf(x + h, y - k2 + 2k3)

(2 7101)ks = hf x +:3 h, y + 27 ki + 27 k2 + 27 k4

( 1 28 1 546 54 378)k6 = hf x + '5 h, y + 625 ki - '5 k2 + 625 k3 + 625 k4 - 625 ks

1 5 27 125
y(x + h) = y(x) + 24 ki +48 k4 + 56 ks + 336 k6

has order five, The higher the order, the greater is the diversity of possible methods, and the lower the
truncation errör. .A method of order n duplicates the Taylor series through terms of nth degree, and so
has truncation error

T = cy(n+I)hn+i

which means that for a smooth function y(x) the coínputation can proceed with a relatively large hand
progress more rapidly, The development of high-order methods involves some strenuous algebra, and it
has been feasible only with the aid of computer programs for doing the manipulations,

CONVERGENCE OF THE TAYLOR METHOD
19.10. The equation y' = y with y(O) = 1 has the exact solution y(x) = eX, Show that the approximate

values Yk obtained by the Taylor method converge to this exact solution for h tending to zero
and p fied, (The more familiar convergence concept keeps h fixed and lets p tend to infinity.)

The Taylor method involves approximating each correct value Yk+1 by1 1
Y, = Y, + hY' + - h2Y(2) + ' , . + - hPY(p)k+1 k k 2 k p! k

For the present problem all the derivatives are the same, making

Yk+¡ ~ (1 + h +~h2 +, ., + p\ hP )Yk = rYk

When p = 1 this reduces to the Euler method. In any case it is a difference equation oforder one. '1ts
solution with Yo = 1 is

( 1 l)kYk = rk = 1 + h + - h2 + ' , , + - hP2 p!
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But by Taylor's polynomial formula,

1 1 hP+Ieh = 1 +h +-h2+", +-hP + eoh2 p! (p + I)!
with S between Ò and 1. Now recalling the identity

ak _ rk = (a _ r)(ak-1 + ak-2r + . , . + ark-2 +rk-1)

we find for the case a? r? 0, ak - rk -c (a - r)kak-I
Choosing a = eh and r as above, this last inequality be 

comes

hP+1 khP+I
o -c ekh - y; -c - e"hke(k-I)h -c ekhk (p + I)! . (p + I)!

the last step being a consequence of 0 -c s -c 1. The question of convergence concerns the behavior of
values computed for a fixed argument x as h tends to zero, Accordingly we put Xk = kh and rewrite our
last result as

hP
o -c ò - Yk -c (p + I)! Xkexk

Now choose a sequence of step sizes h, in such a way that Xk recurs endlessly in the finite argument set
of each computation, (The simplest way is to continually halve h,) By the above inequality the sequence.
of Yk values obtained at the fixed Xk argument converges to the exact eXk as hP. The practical implication
is, of course, that the sm aller h is chosen the closer the computed result draws to the exact solution,
Naturally roundoff errors, which have not been considered in this problem, wil limit the accuracy

attainable,

19.11. How does the error of the Taylor approximation, as developed in the previous problem,

behave for a fixed step size as k increases, in other words as the computation is continued to
larger and larger amounts?

Note that this is not a convergence question, since h is fixed, It is a question of how the error, due
to truncation of the Taylor series at the term hP, accumulates as the computation continues, By the last
inequality we see that the error contains the true solution as a factor. Actually it is. the relative error
which may be more significant, since it is related to the number of significant digits in our computed
values. We find

leXk-Yk! hP
Relative error = - -c -( XkeXk p+1)!

which, for fixed h, grows linearly with Xk'

19.U. Prove the convergence of the Taylor method for the general first-order equation y' = f(x, y)
with initial condition y(xo) = Yo under appropriate assumptions on f(x, y),

This generalizes the result of Problem 19.10. Continuing to use capital Y for the approximate
solution, the Taylor method makes 1 1

y; = y; + hY' + _h2y(2) +. , ,+ -hPY(p)k+l k k 2 k p! k
where all entries yt) are computed from the differential equation, For example,

Y~ = f(x., Yk) Yi2) = ¡,(X., Yk) + fvx., Yk)f(x., Y.) = f'(X., Yk)

and suppressing arguments for brevity,

Yi3) = !x + 2tJ + ty¡Z + (t + tf)t = r(Xk' Yk)

it being understood that fand its derivatives are evaluated at Xk' Yk and that Yk denotes the computed
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value at arguments Xk' The other yt) are obtained from sìmilar,but more involved, formulas, If we use

y(x) to represent the exact solution of the differential problem, then Taylor's formula offers a similar
expression for Y(Xk+1)'

1 1 hP+1"
Y(Xk+I) = Y(Xk) + hY'(Xk) + -2 h2y(2)(Xk) + ' , , + I hPyCP)(Xk) + ( ) y(P+I)(;)p. p+1 !

provided the exact solution actually has such derivatives, As usual ; is between Xk and Xk+l' In view of
y'(x) = fex, y(x)), we have

and differentiating,
y'(Xk) = f(Xb y(Xk))

In the same way

y(2)(Xk) = fxXb y(xd) + t,(Xb y(xk))f(Xb Y(Xk)) = t(Xb Y(Xk))

y(3)(Xk) = f"(Xb Y(Xk))

and so on, Subtraction now brings

1
Y(Xk+I) - Yk+1 = Y(Xk) - Yk + h(Y'(Xk) - Y~) + Z h2(yC2)(Xk) - YÍc2))

1 hP+I
+,., + p! hP(y(P)(Xk) - yt)J + (p + l)!y(P+l)(;)

Now notiee that if fex, y) satisfies a Lipschitz condition,

ly'(Xk) - y~i = If(Xb Y(Xk)) - f(Xb Yk)1 ~ L IY(Xk) - Ykl

We wil further assurne that fex, y) is such that

/y(i)(Xk) - yt)i = If(i-I)(Xb Y(Xk)) _¡U-1)(Xb Yk)/ ~ L IY(Xk) - Ykl

This can be proved to be true, for instance, for i = 1, , , . ,p iff(x, y) has continuous derivatives through
order p + 1. This same condition also guarantees that the exact solution y (x) has continuous derivatives
through order p + 1, a fact assumed above. Under these assumptions on fex, y) we now let

dk = Y(Xk) - Yk and have, 1 1) hP+1
/dk+i1~/dkl(1+hL+-2h2L+'''+lhPL +( l),B

p, P + I'
where B is abound on lyp+I(X)I, For brevity, this can be rewritten as

where ( 1 2 1)£1 = L h + - h +.,' + - hP2 p!
ekcx - 1Idkl~ß-

£1

Idk+il ~ (1 + £1) Idkl + ß

hP+1

ß = (p + I)! B

We now prove that

The numbers £1 and ß are positive, Since the exact and approximate solutions both satisfy thc initial
condition, da = 0 and the last inequality holds for k = 0, To prove it by induction we ass urne it for some
nonnegative integer k and find

ekcx - 1 (1 + £1)ekcx - 1 e(k+1)cx - 1/dk+i1~(l+£1)ß-+ß= ß.: ß£1,£1 £1
the last step following since 1 + £1 .: e cx, The induction is therefore valid and the inequality holds for
nonnegative integers k, Since £1 = Lh + Eh .: Mh where E tends to zero with h, we can replace L by the
slightly larger M and obtain

Iy(xd - Ykl ~~, eM(Xk-XO)_ 1(p + I)! M
with the usual change of argument Xk = xa'+ kh, so that convergence is again like hP,
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19.13. What does the result of Problem 19.12 tell about the error for fixed h as the computation
continues to larger arguments Xk?

The result is adequate for proving convergence, but since the exact solution is unknown it does not
lead at once to an estimate of the relative error. Further error analysis and an extrapolation to the limit
process have been explored.

19.14. Are Runge-Kutta methods also convergent?

Since these methods duplicate the Taylor series up to a point (in our example up to the term in h4),
the proof of convergence is similar to that just offered for the Taylor method itself, The details are more
complicated and wil be omitted.

THE PREDICTOR-CORRECTOR METHOD
19.15. Derive the modified Euler formula Yk+l = Yk + !h(y~ + Y~+l) and its local truncation error,

The formula can be produced by applying the trapezoid 
al rule to the integration of y' as follows:

rk+1 1Yk+1-Yk=J Y'dx=Zh(Y~+Y~+l)
Xk

By Problem 14,66, the error in this application of the trapezoidal rule to y' wil be -hV3)(t)/12,
and this is the local truncation error. (Recall that local truncation error refers to error introduced by the
approximation made in the step from Xk to Xk+1' that is, in the integration process, Effectively we
pretend that Yk and earlier values are known correctly,) Comparing our present result with that for the
simpler Euler method, we of course find the present error substantially smaller. This may be viewed as
the natural reward for using the trapezoidal rule rather than a stil more primitive integation rule, It is
also interesting to note that instead of treating y' as constant between Xk and Xk+I' so that y(x) is
supposed linear, we now treat y' as linear in this interval, so that y(x) is supposed quadratic,

19.16. Apply the modified Euler formula to the problem y' = xyl/, y(1) = 1.

Though this method is seldom used for serious computing, it serves to ilustrate the nature of the
predictor-corrector method, Assuming Yk and Y ~ already in hand, the two equations

Yk+I = Yk + ~ h(y~ + Y~+l) Y ~+1 = f(Xk+¡' Yk+1)

are used to determine Yk+l and Y~+l' An iterative algorithm much like those to be presented in Chapter
25 for determining roots of equations will be used, Applied successively, beginning with k = 0, this
algorithm generates sequences of values Yk and y~, It is also interesting to recall aremark made in the
solution of the previous problem, that we are treating y(x) as though it were quadratic between the Xk
values, Our overall approximation to y(x) may thus be viewed as a chain of parabolic segments, Both
y(x) and y'(x) wil be continuous, while y"(X)wil have jumps at the "corner points" (Xk, Yk).

To trigger each forward step of our computation, the simpler Euler formula wil be used as a

predietor, It provides a first estimate of Yk+i. Here, with Xo = 1 and h = ,05 it offers

y(1.05) = 1 + (.05)(1) = 1.05

The differential equation then presents us with

y'(1.05) = (1.05)(1.016) = 1.0661

Now the modified Euler formula serves as a corrector, yielding

y(1.05) = 1 + (,025)(1 + 1.0661) = 1.05165

With this new value the differential equation corrects y'(1.05) to 1.0678, after which the corrector is
reapplied and produces

y(1.05) = 1 + (.025)(1 + 1.0678) = 1.0517
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Another cyde reproduces these four-place values, so we stop. This iterative use of the corrector
formula, together with the differential equation, is the core of the predietor-corrector method. One
iterates until convergence occurs, assuming it wil, (See Problem 19,29 for a proof.) It is then time for
the next step forward, again beginning with a single application of the predictor formula. Since more
powerfl predietor-corrector formulas are now to be obtained, we shall not continue the present
computation further. Notice, however, that the one result we have is only two units too small in the last
place, verifying that our corrector formula is more accurate than the simpler Euler predictor, which was
barely yielding four-place accuracy with h = ,01. More powerful predictor-corrector combinations wil
now be developed.

19.17. Derive the "predictor" formula Yk+! = Yk-3 + ~h(2Y~_2 - Y~_! -+ 2yD,

Earlier (Chapter 14) we integrated a collocation polynomial over the entire interval of collocation
(Cotes formulas) and also over just apart of that interval (formulas with end corrections), The second
procedure leads to more accurate; if more troublesome, results, Now we integrate a collocation
polynomial over more than its interval of collocation, Not too. surprisingly, the resulting formula wil
have somewhat diminished accuracy but it has an important role to play nevertheless, The polynomial

" , 2'+ '
_ , kYI - Y-l kZY1 - Ya Y-IPk - Ya + 2 + 2

satisfies Pk = Y ~ for k = - 1, 0, 1. It is a collocation polynomial for y' (x) in the form of Stirling's formula
of degree two, a parabola, Integrating from k = -2 to k = 2, we obtain

f2 8 4-2 Pk dk = 4y~ + 3" (y; - 2y~ + Y~l) = 3" (2y; - Y~ + 2y~i)

With the usual change of argument x = Xa + kh this becomes

¡X2 4
p(x) dx = 3" h(2y; - Y~ + 2Y~1)

X_2

Since we are thinking of p(x) as an approximation to y'(x),

f2 y'(x) dx = Y2 - Y-2 = ~ h(2y; - Y~ + 2y~i)X_2

Since the same argument applies on other intervals, the indices may all be increased by k -: 1 to obtain
the required predictor formula, It is so called because it allows the Y2 to be predicted from data for
smaller arguments,

19.18. What is the local truncation error of this predictor?

It may be estimated by the Taylor series method, Using zero as a temporary reference point,1 1 1 1
Yk = Ya + (kh )y~ + Z (kh lYÒ2) + (; (kh )3YÒ3) + 24 (kh )4YÒ4) + 120 (kh )5YÒ5) + ' . , .

it follows that 8 8
Y2 - Y-2 = 4hy~ + - h3YÒ3) + - h5YÒ5) + ' , ,3 15

Differentiation also brings.

y~= y~ + (kh)YÒ2) +~(kh)2YÒ3) +~(kh)3YÒ4) + 2~ (khtYÒ5) +'"

1
2y; -y~ + 2Y~i = 3y~ + 2h2YÒ3) + (;h4YÒ5) +, , ,from which we find

The local truncation error is therefore

(Y2 - y-2) -~h(2Y; - y~ +2Y~i) = ~;h5YÒ5) +'"
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of whichthe first term will be used as an estimate. For o.ur shifted interval this becomes

_ 14 5 (5)
Ep-45hYk-1

19.19. Compare the predictor error with that of the "corrector" formula
1 ( i I ')

Yk+l = Yk-l +:3 h Yk-l + 4Yk + Yk+l

This corrector is actually Simpson's rule applied to YI(X), The local truncation error is therefore

fXk+! 1 1Ec= Y'(x)dx-3h(Y~-i+4y~+y~+1)= -90h5y¡()(ç)
Xk-l

by Problem 14,65. Thus Ep = -28Ec where the difference in the arguments of i5) has been ignored.

19.20. Show that the error of the corrector formula of Problem 19,19 can be estimated in terms of
the difference between predictor and corrector values,

Considering just the local truncation errors made in the step from Xk to Xk+b we have

Yk+I = P + Ep =; C + Ec

with P and C denoting the predictor and corrector values, Then

and

P - C = Ec - Ep = 29Ec

P-CEC=29

more or less, It is not uncommon to apply this estimate as a further correctiori, yielding

P-C
Yk+I=C+29

and this formula does have truncation error of order "h6, Under some conditions, however, the use of
such "mop-up" terms can make a computation unstable,

19.21. The Milne method uses the formula 4 (' 1 ')
Yk+l = Yk-3 +:3 h 2Yk-2 - Yk-l - 2Yk

as a predictor, together with

1 ( I 1 ')
Yk+i = Yk-I +:3 h Y k+l + 4Yk + Yk-l

as a corrector. Apply this method using h = ,2 to the problem y' = -xy2, y(O) = 2,

The predictor requires four previous values, whìCh it blends into Yk+I' The initial value y(O) = 2 is
one of these, The others must be obtained. Since the entire computation wil be based on these starting
values, it is worth an extra effort to get them reasonably accurate. The Taylor method or Runge-Kutta
method may be used to obtain

y(,2) = Yi = 1.92308 y(.4) = Y2 = 1. 72414 y(,6) = Y3 = 1.47059

correct to five places. The differential equation then yields

y'(O)=yb=O y'(,2) = y; = - .73964
yl(.4) = y; = - 1.8906 y'(.6) = y~ = - 1.29758
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correct to five places, The Milne predictor then manages

4
Y4 = Yo + 3 (.2)(2y~ - Y~ +2y;) = 1.23056

In the differential equation we now find our first estimate of y~,

y~= -(,8)(1.3056)2= -1.21142

The Milne corrector then provides the new approximation,1 .
Y4 = Y2 + 3 (.2)( - 1.21142 + 4y~ + Y~) = 1.21808

Recomputing y i from the differential equation brings the new estimate y ~ = - 1. 18698, Reapplying the
corrector, we next have

1

Y4 = Y2 + 3 (,2)(- 1. 18698 + 4y~ + Y~) = 1.21971

Onceagain applying the differential equation, we find

Y~= -1.9015

and returning to the corrector,

1
Y4 = Y2 + 3 (.2)( - 1. 19015 + 4y~ + yD = 1.21950

The next two rounds produce

y~=-1.8974 Y4 = 1.21953 Y ~ = - 1.8980 Y4 = 1.21953

andsince our last two estimates of Y4 agree, we can stop. The iterative use of the corrector formula and
differential equation has proved to be a convergent process, and the resulting Y4 value is actually correct
to four places. In this case four applications of the corrector have brought convergence. lf h is chosen
too large in a process of this sort, an excessive number of iterative cycles may be needed for

convergence or the algorithm may not converge at all. Large differences between predictor and
corrector outputs suggest reduction of the intervaL. On the other hand, insignificant differences between
predictor and corrector outputs suggest increasing hand perhaps speeding up the computation, The
computation of Ys and Y~ may now be made in the same way. Results up to x = 10 are provided in Table
19,4, Though h = ,2 was used, only values for integer arguments are printed in the interest of brevity.
The exact values are included for comparison,

Table 19.4

x y (correet) y (predictor) Error y (corrector) Error

0 2,00000

1 1.00000 1.00037 -37 1.00012 - 12

2 .40000 .39970 30 .39996 4

3 .20000 .20027 -27 ,20011 -11
4 ,11765 ,11737 28 .11750 15

5 .07692 .07727 -35 .07712 -20
6 .05405 .05364 41 ,05381 14

7 ,04000 ,04048 -48 .04030 -30
8 .03077 .03022 55 .03041 36
9 ,02439 .02500 -61 .02481 -42

10 .01980 ,01911 69 ,01931 49
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19.22. Discuss the error of the previous computation,

Since the exact solution is known for this test case, it is easy to see some things which would usually
be quite obscure. The fifth derivative of y(x) = 2/(1 + x2) has the general behavior shown in Fig. 19.4.

y(r'¡

100

-100

i
2

x

Fig.19.4

The large fluctuations between 0 and 1 would usually make it diffcult to use OUf truncation error
formulas. For example, the local error of the predietor is 14h515)/45 and in our first step (to x = ,8) we
actually find the predictor in error by - .011. This corresponds to 15) = - 100. The local corrector error
is -h515) /90 and in the same first step the error was actually - ,00002, This corresponds to 15) = 6, This
change of sign in i5) annuls the anticipated change in sign of error between the predictor and corrector
results, It also me ans that an attempt to use the extrapolation to the limit idea would lead to worse
results rather than better, in this case, The oscilating sign of the erroT as the computation continues wil
be discussed later. .

19.23. Derive the Adams predictor formula
,

_ h( 1 1 V' 5 V2' 3 V3 i)Yk+1-Yk+ YÆ+i Yk+12 YÆ+Š Yk

= Yk + 2~ h(55y~ - 59Y~-1 + 37Y~_2 - 9Y~-3)

As in Problem 19,17, we obtain this predictor by integrating a collocation polynomial beyond the
interval of collocation, The Newton backward formula of degree three, applied to y'(x), is1 1

Pk = yh+ k Vyh +Zk(k + 1) V2Yh+6k(k + l)(k +2) V3yh

where as usual Xk = Xo + kh, Integrating from k = 0 .to k = 1 (though the points of collocation are

k=O, -1, -2, -3), we obtain

t dk ' In' 5n21 3n31
Jo Pk = Yo + Z vYo + 12 v Yo +"8 v Yo

In terms of the argument x and using P (x) = y' (x), this becomesrXl ( 1 . 5 3)
1. y'(x) dx = Yi - Yo = h yh + z Vyh + 12V2yh +"8 V3yhXo

Since the same reasoning may be applied between Xk and Xk+1' we may raise all indices by k to obtain
the first result required, The second then follows by writing out the differences in terms of the y values,
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19.24. What is the local truncation error of the Adams predictor?

The usual Taylor series approach leads to E = 251h5i5)/720.

19.25. Derive other prèdictors of the form

Yk+l = aOYk + alYk-l + a2Yk-2 + h(boY~ + biY~-l + bzÚ-z + b3Y~-3)

Varying the approach, we shall make this formula exact for polynomials through degree four. The
convenient choices are y(x) = 1, (x - Xk), (x - Xk)2, (x - Xk)3, and (x - Xkt. This leads to the' five
conditions

1 =ao+ ai + a2
1 = -ai - 2a2 + bo + bi + b2 + b3

1 = ai + 4a2 - 2bi - 4b2 - 6b3

which may be solved in the fórm

1 = -ai - 8a2 + 3bi + 12bz + 27b3

1 = ai + 16a2 - 4bi - 32b2 ~ 108b3

ao = 1 -ai - a2
1 \

b2 = 24 (37 - 5ai + 8a2)

1
b3 = 24 (-9 + ai)

1
bo = 24 (55 + 9ai + 8a2)

1
bi = 24 (-59 + 19ai + 32a2)

with ai and a2 arbitrary. The choiee ai = a2 = 0 leads us back to the previous problem. Two other simple
and popular choices are ai = t a2 = 0 which leads to

Yk+I = ~ (Yk + Yk-I) + 4~ h(ii9y~ - 99y~_1 + 69Y~_2 - 17Y~_3)

with local truncation error 161h5i5)/480 and ai = t a2 = l which leads to

1 ( ) 1 h( i I I 1
Yk+I = 3" 2Yk_1 + Yk-2 + 72 191Yk - 107Yk_1 + 109Yk-2 - 25Yk_3)

with local truncation error 707h5y(5) /2160,

Clearly, one could use these twofree parameters to further reduce truncation error, even to order
h 7, but another factor to be considered shortly suggests that truncation error is not our only problem, It
is also clear that other types of predictor, perhaps using a Yk-3 term, are possible, but we shall limit
ourselves to the abundance we already have.

19.26. Ilustrate the possibilties for other corrector formulas,

The possibilities are endless, but suppose we seek a corrector of the form

Yk+1 = aOYk + a1Yk-1 + a2Yk-2 + h(cy~+1 + boY~ + bIY~_¡ + b2Y~-2)

for which the local truncation error is of the order h5, Asking that the corrector be exact for y(x) = 1,
(x - Xi), . . , , (x - Xkt leads to the five conditions

ao + a¡ + a2 = 1

ai +24c= 9
Bai + 8a2 - 24bo = - 19

Bai + 32a2 - 24b¡ = 5

a1 - 8a2 + 24b2 = 1

involving seven unknown constants It would be possible to make this corrector exact for even more
powers of x, thus lowering the local truncation error stil further. However, the two degrees of freedom
will be used to bring other desirable features instead to the resulting algorithm. With ao = 0 and ai = 1
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the remaining constants prove to be those of the Milne corrector:

a2 = 0
1c=-
3

4
bO="3

1
b1="3 b2=0

Another choice, which matches to some extent the Adams predictor, involves making a1 = a2 = 0,
which pro duces the formula

Yk+1 = Yk + ;4 h(9y£+1 + 19y£ - 5y£-i + Y£-2)

If ai = t a2 = 1, then we have a formula which resembles another predictor just ilustrated:1 1(, 9'4' ,
Yk+I ="3 (2Yk-1 + Yk-2) + 72 h 25y k+1 + 1y k + .. 3y k-1 + 9y k-2)

Stil another formula has ao = ai = t making

Yk+1 = ~ (Yk + Yk-I) + :8 h(17y£+1 + 51y£ + 3y£-i + Y£-2)

The various choices differ somewhat in their truncation errors,

19.27. Compare the local truncation errors of the predictor and corrector formulas just ilustrated,

The Taylor series method can be applied as usual to produce the following error estimates:

. 1, I , , 251h5yi5)
Predictor: Yk+1 = Yk + 24 h(55Yk - 59Yk-I + 37Yk_? - 9Yk-3) + 720

1 , I I I 19hsyi5)
Corrector: Yk+l = Yk + 24 h(9Yk+l + 19Yk - 5Yk-1 + Yk-2) ---

. 1 1, i , , 161hV5)
Predictor: Yk+1 = Z (Yk + Yk-l) + 48 h(1l9YÆ - 99Yk-I + 69Yk-2 -17YÆ-3) + 480

1 1 i " i 9h5y(5)
Corrector: Yk+ I = Z (Yk + YÆ-J + 48 h(l 7y k+ I + 51YÆ + 3y k- I + Y k-2) - --

, 1 1 i i. , i 707h5y(S)
Predictor: Yk+1 ="3 (2Yk-I + YÆ-2) + 72 h(191Yk - 107Yk_1 + 109Yk-2 - 25Yk-3) + 2160

1 1, I I , 43h5yi5)
Corrector: Yk+l ="3 (2Yk-1 + Yk-2) + 72 h(25Yk+I + 91y k + 43Yk-I + 9Yk-2) - 2160

In each ca se the corrector error is considerably less than that of its predictor mate, It is also of
opposite sign, which can be helpful information in a computation, The lower corrector error can be
explained by its pedigree, It uses information concerning Y£+I while the predictor must take the leap
forward from Yk' This also explains why the burden of the computation falls on the corrector, the
predictor being used only as a primeL

For each pair of formulas a mop-up term may be deduced. Take the Adams predictor and the
corrector below it, the first pair above, Proceeding in the usual way, considering local truncation errors
only and remaining aware that results so obtained must be viewed with some skepticism, wefind

I=P+£i=C+£2
where I is the exact value. Since 19£1 = -251£2, we have £2 = 2!.0(1) - C), This is the mop-up term and
1= C + No(p - C) is the corresponding extrapolation to the limit. Once again it must be remembered
that yi5) does not really mean the same thing in both formulas, so that there is stil a possibility of sizable
error in this extrapolation.

19.28. Apply the Adams method to y' = -xy2 with y(O) = 2, using h = .2,
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Themethod is now familiar, each step involving a prediction and then an iterative use of the
corrector formula, The Adams method uses the first pair of formulas of Problem 19.27 and leads to the
results in Table 19.5,

Table 19.5

x y (correct) y (predicted) Error y (corrected) Error

0 2,000000

1 1.000000 1.000798 -789 1.000133 -133
2 .400000 .400203 -203 .400158 -158
3 ,200000 .200140 -140 .200028 --28
4 ,117647 ,117679 -32 .117653 -6
5 .076923 ,076933 -10 ,076925 -2
6 ,054054 ,054058 -4 .054055 -1
7 .040000 ,040002 -2 .040000
8 .030769 ,030770 -1 ,030769
9 ,024390 .024391 -1 .024390

10 .019802 ,019802 .019802

The error behavior suggests that h = ,2 is adequate for six-place accuracy for large x, but that a smaller
h (say .1) might be wise at the start. The diminishing error is related to the fact (see Problem 19.36) that
for this method the "relative error" remains bounded,

19.29. Prove that, for h suffciently smalI, iterative use of a corrector formula does produce a
convergent sequence, and that the limit of this sequence is the unique value Yk+l satisfying
the corrector förmula,

We are seeking a number Yk+1 with the property

Yk+I = hcf(xk+1' Yk+i) +, , ,

the dots indicating terms containing only previously computed results, and so independent O(~+I'
Assurne as usual that fex, y) satisfies a Lipschitz condition on y in so me region R. Now define a
sequence

y(0), y(l), y(2)

subscripts k + 1 being suppressed for simplicity, by the iteration

y(i) = hcf(Xk+I' y(i-1)) + ' . .

and assume al1 points (Xk+l' y(i)) are in R, Subtracting, we find

y(i+1) _ y(i) = hc(f(Xk+1' y(i)) - f(Xk+1' y(i-I)))

Repeated use of the Lipschitz condition then brings

ly(i+1) - y(i)1 ~ hcK iy(i) _ y(i-I)I ~, , '~(hcKtly(i) _Y(°)1

Now choose h smal1 enough to make IhcKI = , .: 1, and consider the sum

yen) _ y(O) = (y(l) _ y(O)) + ' . , + (y(n) _ yen-i))

For n tending to infinity the series produced on the right is dominated (apart from a factor) by the
geometric series 1 +, +,2 + ' , , and so converges. This proves that yen) has a limit. Cal1 this limit Yk+I'

Now, because of the Lipschitz condition,

If(Xk+l' yen)) - f(Xk+i, Yk+I)1 ~ K iy(n) - Yk+11
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and it follows that limf(xk+l' y(n)) = f(Xk+¡' Yk+1), We rtay thus let n tend to infinity in the iteration
yen) = hcf(Xk+i, y(n-I)) +, , .

and obtain at once, as required,
i

Yk+1 = hcf(Xk+I' Yk+1) + ' , ,

To prove uniqueness, suppose Zk+1 were another value satisfying the corrector formula at Xk+1'
Then much as before,

IYk+i - Zk+i1 ~ hcK IYk+I - Zk+11 ~ , , '~(hcK)(i) IYk+1 - Zk+11

for arbitrary i, Since IhcKI = r -: 1, this forces Yk+1 = Zk+1' Notice that this uniqueness result proves the
correct Yk+I to be independent of Y(°J, that is, independent of the choice of predictor formula, at least
for small h. The choice of predictor is therefore quite free. It seems reasonable to use a predictor of
comparable accuracy; from the local truncation errot point of view, with a given corrector. This leads to
an attractive "mop-up" argument as weIl, The pairings in Problem 19.27 keep these factors, and some
simple esthetie factors, in mind,

CONVERGENCE OF PREDICTUR-CORRECTOR METHODS

19.30. Show that the modified Euler method is convergerit.

In this method the simple Euler formula is used to make a first prediction of each Yk+1 value, but
then the actual approximation is found by the modified formula

Yk+I = Yk + ~ h(Y~+l + Y~)

The exact solution satisfies a similar relation with a truncation error term, Callng the exact solution y(x)
as before, we have 1 1

Y(Xk+1) = Y(Xk) + Z h(Y'(Xk+1) + Y'(Xk)l- 12 hV3)(;)

the truncation error term having been evaluated in Problem 19,15, Subtracting and using dk for

Y(Xk) - Yb we have

Idk+11 ~ Idkl + ~hL(ldk+11 + Idkl) + 1~ h3B

provided we assurne the Lipschitz condition, which makes

ly'(Xk) - Y~I = If(Xb Y(Xk)) - f(Xk' Yk)1 ~ L Idkl

with a similar result at argument k + 1. The number B is abound for lyC3)(x)l, which we also assurne to
exist, Our inequality can also be written as

(1 - ~hL )ldk+i1 ~ (1 +~hL )Idkl + 1~ h3B

Suppose no initialerror (do = 0) and consider also the solution of

(1 -~hL )Dk+i = (1 +~hL )Dk + 1~ h3B

with initial value Do = O. For purposes of induction we aSsurne Idkl ~ Dk and find as a consequence

(1 -~hL )ldk+11 ~ (1 -~hL )Dk+1

so that Idk+ 11 ~ Dk+ l' Since do = Do the induction is complete and guarantees Idk I ~ Dk for positive

integers k, To find Dk we solve the difference equation a.nd find the solution family

D = (1+!hL)k_h2Bk C 1- !hL 12L
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with C an arbitrary constant. To satisfy the initial condition Do = 0, we must have C = (h2B/12L) so that

" h2B((1 + ~hL)k J
IY(Xk) - Ykl;; 12L 1 _ ~hL - 1

To prove convergence at a fixed argument Xk = Xo + kh we must investigate the second factor, since as h
tends to zero k wil increase indefinitely, But since

(1 + ~hL)k (1 + L(Xk - Xo)/2kJk eL(Xk-XO)/2 " ~ "
- = ~ eL(.'tk _\(1)
1 - ~hL 1 - L(Xk - xo)/2k e-L(Xk-xo)l2

we have Y(Xk) - Yk = 0(h2)

Thus as h tends to zero, lim ~ = Y(Xk)' which is the meaning of convergence. Our result also provides a
measure of the way truncation errors propagate through the computation.

19.31. Prove the convergence of Milne's method.

The Milne corrector formula Is essentially Simpson's rule and provides the approximate values

Yk+i = Yk-i + ~ h(Y~+1 + 4Y~ + Y~_i)

The exact solution y(x) satisfies a similar relation, but with a truncation error term

- ~h( f 4 f f )_~h5 (5)(l:)Yk+I-Yk-I+3 Yk+I+ Yk+Yk-1 90 Y "

with ç between Xk-I and Xk+I' Subtracting and using dk = Y(Xk) - Yb

Idk+11;; Idk-il + ~ hL(ldk+11 + 41dkl + Idk-i1) + 9~ h5 B

with the Lipschitz condition again involved and B abound on yC5)(X). Rewriting the inequality as

(1)" 4 (1) 1,1-3hL Idk+i1;;3hLIdkl+ 1+3hL Idk-i1+90h-B

we compare it with the difference equation

(1) 4 (1) 151-3hL Dk+I=3hLDk+ 1+3hL Dk-I+90h-B

Suppose initial errors of do and d i' We wil seek a solution Dk such that do;; Do and d 1 ;; D1. Such a

solution wil dominate Idkl, that is, it wil have the property Idkl;; Dk for nonnegative integers k. This
can be proved by induction much as in the previous problem, for if we assurne Idk-i1;;Dk-1 and
Idkl;; Dk we at once find that Idk+ll;; Dk+i also, and the induction is al ready complete, To find the
required solution the characteristic equation

( 1 - ~ hL) r2 - ~ hLr - ( 1 + ~ hL) = 0

may be solved, It is easy to discover that one root is slightly greater than 1, say ri, and another in the
vicinity of - 1, say r2' More specifically,

ri = 1 + hL + 0(h2)
1

r2 = -1 +-hL + 0(h2)
3

The associated homogeneous equation is solved by a combination of the kth powers of these roots. The
nonhomogeneous equation itself has the constant solution -h4B/180L. And so we have

k k h4BDk = c1ri + C2r2 - 180L
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Let E be the greater of the two numbers do and d1, Then

( h4B) h4BDk = E + 180L r~ - 180L

wil be a solution with the required initial features, It has Do = E, and since 1.: r1 it grows steadily
larger. Thus

h4B) k h4B
Idkl ~ (E + 180L r1 - 180L

If we make no initial error, then do = 0, If also as h is made smaller we improve our value Yi (which
must be obtained by some other method such as the Taylor series) so that d1 = O(h), then we have
E = O(h) and as h tends to zero so does dk, This proves the convergence of the Milne method.

19.32. Generalizing the previous problems,. prove the convergence of methods based on the
corrector formula

Yk+1 = aOYk + ai Yk-i + a2Yk-2 + h(cY~+l + boY~ + bi Y~-l + b2Y~-2)

We have chosen the available coeffcients to make the truncation error of order h5, Assuming this to
,be the case, the difference dk = Y(Xk) - Yk is found by the same procedure just employed for the Milne
corrector to satisfy 2

(1 -lei hL) Idk+11 ~ 2: (Iail + hL Ibd) Idk-l + T
;=0

where Tis the truncation error term, This corrector requires three starting values, perhaps found by the
Taylor series, Call the maximum error of these values E, so that Idkl ~ E for k = 0, 1,2, Consider also
the difference equation 2

(1 -lei hL)Dk+i = 2: (Iail + hL Ibi!)Dk-i + T
;=0

We wil seek a solution satisfying E ~ Dk for, k = 0, 1,2, Such a solution will dominate Idkl, For,
assuming Idk-il ~ Dk-i for i = 0, 1,2 we at once have Idk+11 ~ Dk+1. This completes an induction and
proves Idkl ~ Dk for nonnegative integers k, To find the required solution we note that the characteristie
equation 2

(1 -lei hL)r3 - 2: (Iail + hL Ib;l)r2-i = 0
i=O

has areal root greater than one, This follows since at r = 1 the left side becomes
2

A = 1 - lei hL - 2: (Iail + hL Ibi!)
i=O

which is surely negative since ao + a1 + a2 = 1, while for large r the left side is surely positive if we

choose h small enough to keep 1 -lei hL positive, Call the root in question r1' Then a solution with the
required features is

( T) k TDk= E-.: ri +.:

since at k = 0 this becomes E and as k increases it grows stillarger. Thus

Iy(xk) - Ykl ~ (E - ~)r~ + ¡

As h tends to zero the truncation error T tends to zero. If we also arrange that the initial errors tend to
zero, then lim Y(Xk) = Yk and convergence is proved,

ERROR AND STABILITY
19.33. What is meant by a stable method for solving differential equations?

The idea of stabilty has beep described in many ways, Very loosely, a computation is stable if it
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doesn't "blow up," but this would hardly be appropriate as a formal definition. In the introduction to
this chapterstability was defined as boundedness of the relative error and without question this would be
a desirable feature for an algorithm, Gradual deterioration of the relative error means gradual loss of
significant digits, whieh is hardly something to look forward to. The trouble is, over the long run relative
error often does deteriorate, An easy example may be useful to gain insight, Consider the modified
Euler method.

1 ( , ')
Yk+1 = Yk + Zh Yk+I + Yk

Apply it to the trivial problem y'=Ay y(O) = 1

for which the exact solution is Y = eAx, The Euler formula becomes

( 1 - ~ Ah )Yk+1 = (1 + ~ Ah )Yk

which is a difference equation of order one with solution

k (1 + lAh)kY-r --k- - 1 -Mh

For small h this is elose to
( e(ll2)Ah ke-(ll2)Ah) = eAkh = eAx

giying us an intuitive proof of convergence, But our goal here lies in another direction. The exact
solution satisfies

(1 - ~ Ah )Y(Xk+1) = (1 + ~ Ah )Y(Xk) + T

where T is the truncation error -h3A3y(ç)/12, Subtracting, and using dk = Y(Xk) - Yb we find the

similar equation

(1 -~Ah )dk+1 = (1 +~Ah )dk - 1~ h3A3y(ç)

for the error dk. Now divide by (1 - lAh)Yk+1 and assurne Ah sm all to obtain

1 3 3
Rk+1 = Rk - 12 hA

for the relative error Rk = Yk/Y(Xk)' Solving

R =R -.!kh3A3=R ~.!x h2A3k 0 12 ° 12 k

suggesting that the relative error grows like Xk, or linearly, as the computation proceeds. This may be far
from a blow-up, but neither is it a case of relative error remaining bounded.

Taking another view, we wil watch the progress of a single ertor as it penetrates through the
solution process, say an initial error do' Assuming no other errors committed; we omit T and have

_ (1 + lAh)k = doeAkh
dk - tlo 1 - lAh

which makes the relative error Rk = dk/eAkh = do, So the long-range effect of any single error is an
imitation of the behavior of the solution itself, If A is positive, the error and the solution grow in the
same proportion, while if A is negative, they decay in the same proportion, In both casesthe relative
error holds firm. That this view is slightly optimistie is suggested by the linear growth predicted above,
but at least no blow-up is forecast, By some definitions this is enough to consideÌ the Euler algorithm
stable, This informal, relaxed usage of the term can be convenient.

There remains the question of how sm all Ah should be to justify the approximations made in these argu-
ments, Since the true solution is monotone, it seems advisable to keep the value of (1 + lAh)/(1- lAh)
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positive. This is true only for Ah between -2 and 2, Prudence suggests keeping one's distance from both
of these extremes.

19.34. Analyze error behavior in the Milne corrector formula.

h ( I I i
Yk+l = Yk-l +"3 Yk+l + 4Yk + Yk-l)

Again choosing the special equation y ,= Ay, the error dk is easily found to satisfy the difference
equation of order two

(1 -~Ah )dk+i =~Ahdk + (1 +~Ah)dk-I + T

for which the characteristic equation is (see Chapter 18)

( 1 - ~ Ah )r2 - ~ Ahr - (1 + ~ Ah ) = 0

The roots are

ri = 1 + Ah + 0(h2)
1

r2 = -1 + -Ah + 0(h2)
3

which makes

dk =Ci(1 +Ah)k +C2( -1 +~Ahr

= cieAhk + (da - CI)( - 1)ke-AhkI3

Now it is possible to see the long-range effect of the initial error da. If A is positive, then dk behaves very
much like the correct solution eAhk, since the second term tends to zero, In fact, the relative error can be
estimated as

dk

eAhk = Cl + (da - c1)(_1)ke-4Ahkl3

which approaches a constant. If A is negative, however, the second term does not disappear. Indeed it
soon becomes the dominant term. The relative error becomes an unbounded oscillation and the
computation degenerates into non sense beyond a certain point,

The Milne method is said to be stable for A positive and unstable for A negative. In this second
case the computed "solution" truly blows up.

19.35. Do the computations made earlier confirm these theoretical predictions?

Referring once again to Table 19.4 the following relative errors may be computed, Though the
equation y i = _xy2 is not linear its solution is decreasing, as that of the linear equation does for negative
A. The oscillation in the above data is apparent. The substantial growth of relative error is also
apparent.

Xk 1 2 3 4 5 6 7 8 9 10

dk/Yk -,0001 ,0001 -.0005 .0013 -.0026 ,0026 -,0075 ,0117 -.0172 .0247

19.36. Analyze error behavior for the Adams corrector

Yk+l = Yk + ;4 h(9Y~+1 + 19Y~ - 5Y~-1 + Y~-2)
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The usual process in this ca se leads to

( 9) (19) 5 11 - 24 Ah dk+1 = 1 + 24 Ah dk - 24 Ahdk_¡ + 24 Ahdk_2 + T

Ignoring T we attempt to discover how a solitary error would propagate, in particular what its inf1uence
on relative error would be over the long run. The first step is once again to consider thè roots of the
characteristic equation.

( 9 ) 3 ( 19 ), 5 11 ~ - Ah r - 1 + - Ah r- + - Ahr - - Ah = 024 24 24 24
This has one root ne ar 1, which may be verified to be ri = 1 + Ah. If this root is removed, the quadratic
factor

(24 - 9Ah)r2 - 4Ahr + Ah = 0

remains. If Ah were zero this quadratic would have a double root at zero, For Ah nonzero "but small the

roots, call them r2 and r3, wil stil be ne ar zero. Actually for sm all positive Ah they are complex with
moduli Irl = VAh/24, while for small negative Ah they are real and approximately iV -6Ah/12. Either
way we have

Ir21, Ir31-: 1 + Ah = eAIi

for small Ah. The solution of the difference equation can now be written as

dk = ci(1 + Ahl + 0(IAhlk/2) = c¡eAkli + O(eAkh)

The constant Cl depends upon the solitary error whieh has been assumed, Dividing by the exact solution,
we find that relative error remains bounded. The Adams corrector is therefore stable for both positive
and negative A. A single error will not ruin the computation,

19.37. Do the computations made earlier confirm these theoretical predictions?

Referring once again to Table 19,5, the following relative errors may be computed:

Xk 1 2 3 4 5 6 7 to 10

dk/Yk -,00013 -,00040 -,00014 -,00005 -.00003 -,00002 zero

As predicted the errors are diminishing, even the relative error. Once again results obtained for a linear
problem prove to be informative about the behavior of computations for a nonlinear problem,

19.38. What are parasitic solutions and what is their connection with the idea of computational

stability which underlies the preceding problems?

The methods in question involve substituting a difference equation for the differential equation, and
for the case Y i = Ay it is a difference equation which is linear with constant coeffcients, Its solution is,
therefore, a combination of terms of the form r7 with the ri the roots of the characteristic equation, One
of these roots wil be r1 = 1 + Ah, apart from terms of high er degree in h, and r7 wil then be elose to

eAhk = eAx when h is smalI. This is the solution we want, the one that converges to the differential

solution. Other components, corresponding to the other ri, are called parasitic solutions. They are the
price paid for the lower truncation error that methods such as Milne and Adams bring.

lf the parasitic terms are dominated by the ri term, then their contribution will be negligible and the
relative error will remain acceptable, If, on the other hand, a parasitic solution becomes dominant, it
wil ruin the computation. In Problem 19.33, for the modified Euler method, the relevant difference
equation had only the root

1 +Ah/2 = 1 +Ah +0(h2)
r1 = 1 -Ah/2
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There were noparasitic solutions. In Problem 19.34, the Milne method offered us

'1 = 1 +Ah
1

'2= -1 +-Ah
3

up to the terms in h2, For A? 0 it is '1 that dominates, but for A.: 0 it is '2 that takes over and the
desirèd solution is buried, In Problem 19.36, apart from the usual '1 = 1 + Ah, we found two parasitic
solution terms, both of size about Ah, Both are dominated by the '¡ term, whether A is positive or
negative, The Adams method me ans stable computing in either case,

We are drawn to the conc1usion that to avoid a computational blow-up any parasitìc term should be
dominated by the principal term, that is, we want

l'il~'l

for i '* 1. Any method for which these conditions are violated is called unstable, In fact, it is best if the
inequalities are satisfied by a wide margin,

19.39. Apply the second-order Runge-Kutta method

Yk+l = Yk + hf( Xk + ~ h, Yk + ~ hf(xb Yk))

to y' = Ay, What does this reveal about the stability of this formula?

Substituting Ay for fex, y) brings, '( 1 2?Yk+I= l+Ah+zAh-)Yk

( 1 2 2)kmaking Yk = 1 + Ah + Z A h
which is c10se to the true solution Yk = ekh = eXk if Ah is smalI. But how small should Ah be? Figure 19-5
provides a view of the quadratic , = 1 + Ah +!A2h2, When A is positive, , wil be greater than one, so
both ,k and ekh will be increasing. The qualitative behavior of ,k is, therefore, correct, But when A is
negative, we want a decreasing solution, and this wil occur only if Ah is between -2 and 0, Below this
interval the approximate solution ,k wil be increasing and wil bear no resemblance whatsoever to ekh,

Here there are no parasitic solutions, since Runge-Kutta methods do not reach back beyond Yk to do
their work, The blow-up of relative error has a different origin, in the nature of the root '¡ itself.

-2 -1 () A/i

Fig.19.5

19.40. Apply the fourth-order Runge-Kutta formulas of Problem 19,12 to y' =Ay, For what range
of Ah values is it stable?
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With a litte care we find

( 1 1 1)Y = 1+Ah+-A2h2+-A3h3+-A4h4yk+1 2 6 24 k
in which the approxímation to eAh is prominent, Denoting it by r, our approximate solution is again
Yk = rk, A plot of r against Ah appears as Fig, 19-6 and, as with the second-order method, suggests that
for positive A the true and the approximate solutions wil have the same character, both increasing

steadily, But for negative A, just as in the preceding problem, there is a lower bound below which the rk
values wil not follow the decreasing trend of the true solution, Here that bound is near -2,78. For Ah
smaller than this, we find r greater than one and an exploding computation,

r

-2.78 -2 -1 o Ah

Fig.19.6

19.41. How can an analysis based upon the equation y' =Ay tell us anything useful about the
general problem y' = fex, y)?

There are certainly no guarantees, but the geneialequation is too diffcult for such analysis so the
issue is really one of doing what is possible, One link that can be established between the two problems
is the identification of our constant A with the partial derivative h, evaluated originally in the vicinity of
the initial point (xo, Yo), and later at other regions of the plane to which the solution has penetrated, If h
changes sign along the way, we would expect the stability of Milne's method to react quiekly and that of
Runge-Kutta methods to show some sensitivity as weIl,

19.42. Apply the fourth-order Runge-Kutta method to the nonlinear equation y' = -100xy2 with
y(O) = 2, The exact solution is y = 2/(1 + lOOx2), Test the stabilty for different step sizes,

Since h = -200xy = -400x/(1 + 100x2), which is zero initially but climbs quickly to -20 at x = ,1,
we recall the stability condition

-2,78;;Ah = -20h

and decide to test h values around ,14. With h =.10 the computed solution decays nicely to ,0197 at
x = 1 and to ,0050 at x= 2, With h = ,12, a similar descent is observed, But witJ: h = ,13, three steps
bring us to the very unsatisfactory -29,11, followed by overflow, This definite blow-up speaks weIl for
efforts to transfer our linear stability criteria to the nonlinear scene.

19.43. What can bedone to control roundoff error?

In a long solution process, roundoff can become a serious factor. If double precision arithmetic is
available, it should probably be used, in spite of the additional expense, It may be the only recourse,
There is an intermediate step which may be helpful if the use of higher precision throughout the entire
computation is deemed too time consuming, To ilustrate, many of our formulas for solving differential
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equations amount to

Yk+i = Yk + h AYk

with the term !:Yk small compared with Yk itself. To perform the addition on the right, this small
correction term has to be shifted (to line up the binary points) and this is where many roundoffs occur.
To avoid them, the Yk are stored in double precision and this addition is done in double precision. The
job of computing !:Yb usually the heaviest work, is stil done in single precision because this term is
expected to be small anyway. In this way double precision is used only where ît is needed most.

ADAPTIVE METHODS, VARIABLE STEP SIZE
19.44. How can the idea of adaptive integration, introduced in Problem 14,27, be extended to treat

differential equations?

Suppose the goal is to solve y':; fex, y) approximately from an initial point x = a to a terminal
point x = b, arriving with an error no greater than e, Assurne that the error wil accumulate linearly, so
that over a step of length h we can allow an error of size eh/(b - a), This is precisely the idea of
adaptive integration used earlier. Let T be an estimate of the truncation error made in taking the step of
length h. Then if T does not exceed eh/(b - a), this step is accepted and we move on to the next,
Otherwise, the step size h is reduced (to ,5h or a suitable alternative) and the step repeated, With a
convergent method the requirements will eventually be met, provided the step size h does not become
so sm all that roundoff becomes the dominant error source,

If the Milne predietor-corrector method is being used, then Problem 19,20 provides the needed
truncation error estimate (P - C)/29 and the condition for acceptance is

IP- CI ~ 2gehb -a

which is easily computed from ingredients al ready in hand, If the Adams method is being used, then.,
Problem 19,27 leads to the similar condition of acceptance

IP - CI ~ 2i~ehb -a

In either case, rejection wil require reactivating the supplementary start-up procedure,

19.45. To make Runge-Kutta methods adaptive, a practical way of estimating local truncation error
is needed, Develop such an estimate, one that does not involve the higher derivatives of y(x),

The now familiar idea of comparing errors for step sizes hand 2h wil be used, Take the classieal
fourth-order method and make a step of size 2h from the current position Xk' The local error is about

Tih = C(2h)5 = 32Ch5

Now cover the same interval in two steps of size h, The combined error is about

2Th = 2Ch5

leading to these two estimates of the true value Yk+2:

Yk+2 = A2h + 32Ch5 = Ah + 2Ch5

The subscripts 2h and h indicate the step sizes used in getting the two approximations. Subtraction now
yields the value of C and the error estimate

T" = Ch5
Ah -A2h

30

which may be doubled for the full forward run, This estimate assurnes that Ch5 is an appropriate error
measure and that C (with the higher derivatives imbedded) does not change much over.the intervaJ.
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19.46. Use the error estimate of the preceding problem to make the Runge-Kutta method adaptive,

For the interval (a, b) let the allowable error be e. For this to be distributed proportionately, we ask
that between Xk and Xk+2 the localerror not exceed 2eh/(b - a), If 2T" as just estimated does not exceed

this, that is, if

IAh - A2hl ~ 30ehb -a
the value Ah can be accepted at Xk+2 and one moves on. Otherwise a smaller step size h* is needed such
that the new truncation error Th. wil be suitable. Returning to basics, we assurne

T". = Ch*5 = T¡,h*5
h5

Th = Ch5

with the latter not to exceed h*e/(b - a) in magnitude. Putting the pieces together, the new step size is
determined,

( eh5 )114
h* =

(b - a)T"

In view of the various assumptions made in deriving this formula, it is suggested that it not be pushed to
the limit, An insurance factor of ,8 is usually introduced, Moreover, if h is already quite smalI, and T¡,

small with it, the computation of h* may even cause an overflow, The formula should be used with
discretion,

19.47. Which methods are better for adaptive computing, the predictor-corrector pairs or
Runge- Kutta?

Predietor-corrector methods have the advantage that. ingredients for estimating local error are
already in hand when needed, With Runge-Kutta aseparate application of the formulas must be made,
as just outlined. This almost doubles the number of times that fex, y) has to be evaluated, and since this
is where the major computing effort is involved, running time may be almost doubled, On the other
hand, and as said before, whenever the step size is changed it wil be necessary to assist a
predictor-corrector method in making arestart, This me ans extra programming, and if frequentchanges
are antieipated, it may be just as weIl to use Runge-Kutta throughout.

19.48. Try varying the step in the classical Runge-Kutta method as it solves the problem

y' = -xy2 y(O) = 2

for which we have the exact solution y = 2/(1 + x2),

The solution starts with a relatively sharp downward turn, then gradually levels off 'lnd becomes
rather flat, So we anticipate the need for a small step size at the start and a gradual relaxation as things
move along. It is interesting to watch these expectations develop in a run to x = 27,

x ,15 1 2 3 4 9 12 17 27

h ,07 ,05 ,1 ,2 .3 ,9 1.4 2,7 4.3

19.49. What are variable order methods?

Varying the order of the formulas used in integrating a differential equation is another way of trying
to achieve a given level of accuracy with a minimum of computing, Starting with a low-order formula to
make the process self-starting, and a small step size to keep it accurate, both are adjusted as
computation proceeds. The idea is to find an optimal order and step size for thecurrent step, A variety
of professional programs are available for doing this, all somewhat complex, but the underlying strategy
is similar to that in Problems 19,44 to 19.46,
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STIFF EQUATIONS

19.50. What is a stiff differential equation?

The term is usually associated with a system of equations, but can be illustrated in principle at a
simpler leveL. Take the equation

y' = - ioOy + 9ge-x

which has the solution y :: e-x _ e-1OOx

satisfying the initial condition y(O) = 0, Both terms of this solution tend to zero, but the point is, the
second decays much faster than the first, At x = ,1, this term is already zero to four decimal places, It is
truly a transient term compared with the first, which could almost be called the "steady state," Systems
in which different components operate on quite different time scales are called stiff systems and offer
more than normal resistance to numerical solution,

19.51. In view of the rapid decay of the above transient term, one might expect a step size of h = ,1
to generate values of the remaining term e-x, Wh at does the classic Runge-Kutta method
actually produce?

Much as in Problem 19.42, we have fi = - 100 and assotiate this .with the A of our stability criterion,
wh ich becomes

-2.78~Ah = -100h

and suggests that we keep the step size h less than. ,0278, This is something of a surprise because it seems
to imply that the transient term, negligible in size after x = ,1, can stil infiuence the computation in an
important, underground way, Putting theory to the test, a run was made with h = .03, The predicted
blow-up did occur, values of Y quickly descending to the vicinity of _1014, But using h = .025 led to a
successful run, producing ,04980 at x = 3, This is just one unit high in the fifth place,

19.52. Develop the Gear formula

1 2 1 3 ,
V'Yn+l +:2 V' Yn+l +:3 V' Yn+l = hYn+l

where V' is the backward difference operator, Show that it is equivalent to

18 9 2 6h ,
Yn+l = 11 Yn - 11 ~n-i + 11 Yn-2 + 11 Yn+l

where Y~+l = f(xn+v Yn+l)

Starting with the Newton backward formula

Pk = Yn+1 + k V'Yn+t + k(k + 1) V'2y + k(k + l)(k + 2) 32 n+I 6 V' Yn+1

(see Problem 7,9) in which x - Xn+l = kh and Pk is a polynomial of degree three in k collocating with Y at
k = 0, - 1, -2, -3, we differentiate and set k = 0

dP! dP11 1( 12 13)
dx k~O = dk h k~O = h V'Yn+l + Z V' Yn+l + 3 V' Yn+1

Adopting this as an approximation to Y~+lt we already have the first Gear formula, The second follows
easily by replacing the backward differences with their equivalents in terms of the Yi'

These formulas can also be found by the method of undetermined coeffcients, requiring exactness
for polynomials of degree up to three. Corresponding formulas of higher order are available by

extension, For example, if the Newton formula is extended back to k = -4, by introducing the fourth
difference term, then l V'4Yn+1 is added to the left side above,
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19.53. Why are the formulas of Gear preferred for solving stiff equations?

They prove to be stable for considerably larger values of h than our other formulas, Take once
again the equation of Problem 19,50. We have found the Runge-Kutta method unstable for h = ,03, In
contrast, the Gear formula now reduces to

18Yn - 9Yn-1 + 2Yn-2 + 594he-(xn+h)Yn+1 = ii + 600h
upon inserting y' from the equation and then solving for Yn+1' With h = .1, this generated (using three
correct starting values) .

x 2 4 6

Y ,135336 ,018316 .002479

the first of which is one unit high in the final place, Even h = .5 can be considered amodest success.

x 2 4 6

Y .1350 ,01833 ,002480

The larger h brings more truncation error but there is no cause to complain about the stabilty,

19.54. The Gear formiilas are usually nonlinear in Yn+l' Develop the Newton iteration as it applies
to the extraction of this unknown, .

In the above èxample fex, y) was linear in Y, permitting a direct solution for Yn+l' Generally,
however, we must view the Gearformula as

6h .
F(y) = Y - iif(xn+v y) - S = 0

where Yn+1 has been abbreviated to Y and S stands for the sum of three terms not involving Yn+1'
Newton's iteration is then

where

(k+1) _ y(k) _ F(y(k))Y - F,(/k))
F'(y) = 1 - ~~ h(xn+i, y)

Supplementary Problems

19.55. By considering the direction field of the equation y' = x2 - y2, deduce the qualitative behavior of its
solutions. Where will the solutions have maxima and minima? Where will they have zero curvature?
Show that for large positive x we must have y(x) ~x.

19.56. For the equation of the preceding problem try to estimate graphically where the solution through

( - 1, 1) wil be for x = O.

19.57. By considering the direction field of the equation y' = - 2xy, deduce the qualitative behavior of its
solutions.
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19.58. Apply the simple Euler method to y' = _xy2, y(O) = 2, computing up to x = 1 with a few hintervals such
as ,5, ,2, ,1, ,01. Do the results appear to converge toward the exact value y(l) = I?

19.59. Apply the "midpoint formula" Yk+l = Yk-I + 2hf(Xb Yk) to y' = _xy2, y(O) = 2, using h =,1 and
verifying the result y(l) = .9962.

19.60. Apply the modified Euler method to y' = _xy2, y(O) = 2 and compare the predictions of y(l) obtained
in the last three problems. Which of these very simple methods is performing best for the same h
interval? Can you explain why?

19.61. Apply the local Taylor series method to the solution of y' = -xy2, y(O) = 2, using h = ,2, Compare your
results with those in the solved problems.

19.62. Apply a Runge-Kutta method to the above problem and again compare your results.

19.63. Verify the first statement in Problem 19,9,

19.64. Apply the Milne predictor-corrector method to y' = Xi!3, y(l) = 1, using h = .1. Compare results with
those in the solved problems,

19.65. Apply the Adams predictor-corrector method to the above problem and again compare results,

19.66. Apply two or three other predictor-corrector combinations to Problem 19,64. Are there any substantial
differences in the results?

19.67. Apply various methods to y' = x2 - y2, y( - 1) = 1. What is y(O) and how elose was your estimate made
in Problem 19,56?

19.68. Apply various methods to y' = -2xy, y(O) = 1. How do the results compare with the exact solution
y = e-X2?

19.69. Show that Milne's method applied to y' = y with y(O) = 1, using h = ,3 and carrying four decimal places,
leadsto the following relative errors:

x 1. 3,0 4,5 6,0

Re!. error ,00016 ,00013 .00019 ,00026

This means that the computation hassteadily produced almost four significant digits,

19.70. Show that Milne's method applied to y' = -y with y(O) = 1, using h = ,3 and carrying five decimal
places, leads to the following relative errors:

x 1. 3,0 4,5 6,0

Re!. error 0 -,0006 ,0027 ...0248

Though four almost correct decimal places are produced, the relative error has begun its growing
oscillation.

19.71. Prove the instability of the midpoint method,

Yk+i = Yk-1 + 2hf(Xb Yd
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Show that this formula has a lower truncation error than the Euler method, the exact solution satisfying

Yk+l = Yk-l + 2hf(Xb yd + ~ hV3)(~)

For the special casef(x, y) =Ay, show that

dk+i = dk-i + 2hAdk

ignoring the truncation error term in order to focus once again on the long-range effect of a single error
do. Solve this difference equation by proving the roots of ,2 - 2hA, - 1 = 0 to be

, = hA :: Vh2A2 + 1 = hA :: 1 + 0(h2)

For small hA these are ne ar ehA and _e-hA and the solution is

dk = Ci(1 + Ah)k + C2( - l)k(l - AhY "" cieAhk + c2( - l)ke-Ahk

Setting k = 0, show that do = Cl + C2. Dividng by Yb the relative error becomes

'k "" Cl + (do - ci)( - l)ke-2Ahk

Show that for positive A this remains bounded, but that for negative A it grows without bound as.k
increases. The method is therefore unstable in this case,

19.72. The results in Table 19,6 were obtained by applying the midpoint method to the equation'y' = -xy2 with
y(O) = 2. The interval h = .1 was used but only values for x = .5(,5)5 are printed, This equation is not
linear, but calculate the relative error of each value and discover the rapidly increasing oscillation

forecast by the analysis of the previous linear problem.

Table 19.6

Xk çomputedYk Exact Yk Xk ComputedYk Exact Yk

.5 1.958 1.6000 3,0 .1799 .2000
1.0 ,9962 1.0000 3.5 ,1850 .1509
1. .6167 .6154 4,0 .0566 .1176
2,0 .3950 .4000 4.5 ,1689 .0941
2,5 ,2865 ,2759 5,0 -,0713 ,0769

,

19.73. Analyze relative error for the other corrector formulas listed in Problem 19.27.

19.74. Show that the formula
1 h( , ') 1 h2(" ")

Yk+l "" Yk +z Yk+1 + Yk + 12 -Yk+l + Yk

has truncation error h5yC5)(~)/720, while the similar predictor

Yk+1 "" Yk + ~ h( -Y~ + 3Y~-1) + 1~ h2(17y% + 7Y%-i)

has truncation error 31h5y(5ic~)/6!. These formulas use values of the second derivative to reduce
truncation error.

19.75. Apply the formulas of the preceding problem to y' = -xy2, y(O) = 2, using h = .2. Oneextra starting
value is required and may be taken from an earlier solution of this same equation, say the Taylor series,

19.76. As a test case compute y(:r/2), given y' = Vi - y2, y(O) = 0, using any of our approximation methods.



230 DIFFERENTIAL EQUA TIONS (CHAP, 19

19.77. Use any of our approximation methods to find y(2), given y' = x - y, y(O) = 2,

y(l -xY)
19.78. Solve by any of our approximation methods y' = ( 2 4)' Y (1) = 1 up to x = 2,, x 1 +x Y
19. 79. S~lve by any of our approximation methods y i = - ~y + e:, y(l) = 0 up to x = 2,

x +xe

19.80. Solve by any of our approximation methods y' = - 2x + y, y(l) = 0 up to x = 2,
2y -x

~,if,"

19.81. An object fallng toward the earth progresses, under the Newtoniim theory with only the gravitational
attraction of the earth considered, according to the equation(also see Problem 20,16)

dy = _ \12 R2 VH - Y
dt g Hy

where y = distance from the earth's center, g = 32, R = 4000(5280), and H = initial distance from the
earth's center, The exact solution of this equation can be shown to be

H3/2 (~y (y)2 1 (2Y)J
t = 8y Ii - Ii + Z arccos H - 1

the initial speed being zero, But apply one of our approxímation methods to the differential equation
itself with initial condition y(O) = H = 237,000(5280), At what time do you find that y = R? This result
may be interpreted as the time required for the moon to fall to earth if it were stopped in its course and
the earth remained stationary.

19.82. A raindrop of mass m has speed v after falling for time t. Suppose the equation of motion to be

dv = 32 _ cv2

dt m
where c is a measure of air resistance. It can then be proved that the speed approaches a limiting value,
Confirm this result by directly applying'one of our approximate methods to the differential equation
itself for the case c/m = 2, Use any initial speed.

19.83. A shot is fired upwards against air resistance of cv2. Assurne the equation of motion to be

dv cv2-=-32--dt m
If c/m = 2 and v(O) = 1, apply one of our methods to find the time required for the shot to reach
maximum height,

y

x

Fig.19.7
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19.84. One end of a rope of length L is carried along a straight line. The path of a weight attached to the other
end is determined by (see Fig. 19-7)

,,' 'yJ=-YL2_y2

The exact solution may be found, However, use one of our approximation methods to compute the path
of the weight, starting from (0, L). Take L = 1.



Chapter 20

Differential Problems of Higher Order

TUE BASIC PROBLEM
A system of first-order differential equations such as

y;=l;x,Yi"."Yn) i=l,.",n
for determining the n functions y¡(x), with given initial conditions Yi(XO) = ai, is the basic problem to
be considered in this chapter. It arises in a wide variety of applications, That it is a direct
generalizationof the initial value problem treated in Chapter 19 is made especially plain by writing itin the vector form .

Y'(x) = F(x, Y) Y(xo) =A

where Y, F, and A have components Yi, f¡, and ai, respectively,
An equation of higher order can be replaced by such a system of first-order equations and this,is

the standard method of treatment. As the simplest example, the se co nd-order equation

y" = f(x, Y, y')

y'=p p'=f(x,y,p)becomes the system

for the two functions Y and p, The accompanying initial conditions y(xo) = a, y'(xo) = bare replaced
by y(xo) = a and p(xo) = b, The basic problem above is then in hand, With a third-order equation,
the definitions y' = p and y" = q quickly lead to a system of three first-order equations, and so on,
Systems of higher-order equations are handled by treating each as just described, The option is thus
available to reduce any higher-order problem to a system of first-order equations,

SOLUTION METUODS

The methods of the preceding chapter are easily extended to systems of first-order equations,
Taylor series are frequently appropriate, their application being quite direct,

Runge-Kutta methods also apply, each equation of the system being treated almost exactly as in
Chapter 19, The same is true of predictor-corrector methods: Examples of such extensions wil be
provided in the solved problems,

Solved Problems

20.1. Ilustrate the Taylor se ries procedure for simultaneous equations by solving the system

x'=-x-Y
y' = x - Y

for the two functions x(t) and y(t) satisfying initial conditions x(O) = 1, y(O) = 0,

We substitute directly into the two series

1
x(t) = x(O) + tx' (0) + Z ò"(O) + . . .

. 1
y(t) = y(O) + ty '(0) + 2 t2y"(0) + . , ,

232
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obtaining the needed ingredients from the given system. First x'(O) = - 1 and y'(O) = 1. Then from
x" = -x' - Y 'and y" = x' - Y i come x"(O) = 0, y"(O) = - 2, Higher derivatives follow in the same way,
The series begin as folIows:

() 1314X t =l-t+-t --t +,.,3 6

( 2 1 3Y t) = t - t + - t +. . ,
3

The given system is not only linear but also has constant coeffcients. Writing it in the form

with X=C)

X'(t) = AX(t)

A = ( - 11 -=11 Jand

the exact solution can be found by trying

X= eÅt(;)

Substituting into the system leads to an eigenvalue problem for the matrix A. For the present A we have

( - 1 - À)a - b = 0
a + ( - 1 - À)b = 0

yielding À = - 1 :l i and after a slight effort

x(t) = e-I cos t y(t) = e-I sin t

The Taylor series begun above is, of course, the se ries for these functions,
The process as illustrated is easily extended to larger systems of equations,

20.2. Write out the Runge-Kutta formulas for two simultaneous first-order equations using the
classical fourth-order set.

Let the given equations be

y'=fix,y,p) p'=Jzx,y,p)
with initial conditions y(xo) = Yo, p(xo) = Po' The formulas

ki = h!i(xn, Yn, Pn) k3 = h!i(xn + !h, Yn + !k2, pn + V2)

I1 = h!i(xn, Yn, Pn) 13 = h!i(Xn + !h, Yn + !k2, Pn + !12)

k2 = h!i(xn + !h, Yn + !ki, Pn + !Ii) k4 = h!i(xn + h, Yn + k3, Pn + 13)

12 = h!i(xn + !h, Yn + !k1, pn + Vi) 14 = hf2(Xn + h, Yn + k3, Pn + 13)

Yn+1 = Yn + g(k1 + 2k2 + 2k3 + k4)

Pn+1 = Pn + W1 + 212 + 213 + 14)

may be shown to duplicate the Taylor seriesfor both functions Up through terms òf order fOUL The
details are identical with those for a single equation and wil be omitted. For more than two
simu1taneous equations, say n, the extension of the Runge-Kutta method paralleIs the above, with n
sets of formulas instead of two. For an example of such formulas in use see Problem 20,7,

20.3. Write out the Adams type predictor-corrector formula for the simultaneous equations of the
preceding problem,

Assurne that four starting values of each function are available, say Yo, Y1, Y2, Y3 and Po, Pi, P2' P3'
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/' Then the predictor formulas/,/ 1 h(' , , 9')
~k+1 = Yk + 24 55y k - 59y k-I + 37y k-2 - Y k-3

Pk+I = Pk +2~ h(55p~ - 59p~_1 + 37p~_2 - 9p~-3)

may be applied with y~ = fi(Xb Yb Pk) P~ = fiXb Yb Pk)

The results may be used to prime the corrector formulas

Yk+l = Yk + 2~ h(9y~+i + 19y~ - 5y~-1 + Y~-2)

hH = Pk + 2~ h(9p~+1 + 19p~ - 5p~-i + P~-2)

which are then iterated untI1 consecutive outputs agree to a specified tolerance, The process hardly
differs from that for a single equation, Extension to more equations or to other predictor-corrector
combinations is similar.

IDGHER.ORDER EQUATIONS AS SYSTEMS

20.4. Show that a second-order differential equation may be replaced by a system of two first-order
equations,

Let the second-order equation be y" = fex, Y, y'). Then introducing P = y' we have at once y' = p,
p' = fex, y, p), As a result of this standard procedure a second-order equation may be treated by system
methods if this seems desirable,

20.5. Show that the general nth-order equation
y(n) = fex, y, y', y(2), , , , , y(n-l))

mayaiso be replaced by a system of first-order equations,

For convenience we assign y(x) the alias Yi(X) and introduce the additional functions Y2(X), ' . . , y,,(x)
by

Y; =Y2 Y~ = Y3 Y~-I = Yn

Then the original nth-order equation becomes

.y~ = fex, Y¡, Y2, , . , ,Yn)

These n equations are of first order and may be solved by system methods,

20.6. Replace the following equations for the motion of a particle in three dimensions:1I_!i(t "')X-i ,x, y, Z, x , y , Z 11 - .r (t I I ')
Y - J2 ,x, y, Z, x , y , Z "-f(t " . ')Z - 3 ,x, y, z, x ,y , Z

by an equivalent system of first-order equations,

Let x' = u, y' = V, z' = wbe the velocity components, Then

u' = fi(t, x, Y, z, u, v, w) v' = fz(t, x, y, z, u, v, w) w' = h(t, x, Y, z, Ú, v, w)

These six equations are the required first-order system, Other systems of higher-order equations may be
treated in the same way,

20.7. Compute the solution of van der Pöl's equation

y"- (,1)(1- y2)y' + Y = 0
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with initial values y(O) = 1, y'(O) = 0 up tothe third zero of y(t), Use the Runge-Kutta
formulas for two first-order equations.

An equivalent first-order system is

y'=p=fi(t,y,p)
p'= -y+(.1)(1-y2)p=f2(t,y,p)

The Runge-Kutta formulas for this system are

ki =hpn

k2=h(Pn +~ll)

k3=h(Pn +~l2)

k4 = h(Pn + 13)

II = h( -Yn + (,1)(1 - y~)Pn)

12=ht -(Yn+~ki)+(.1)(1-(Yn+~k1r)(Pn+~ll)J

13 = ht - (Yn + ~ k2) + (,1)( 1 - (Yn + ~ k2) 2) (Pn + ~ 12) J

14 = h (-(yn + k3) + (.1)(1- (Yn + k3)2)(Pn + 13))

and 1
Yn+1 = Yn + 6 (k¡ + 2k2 + 2k3 + k4)

1

Pn+1 =Pn +6(l1 + 212 + 213 + 14)

Choosing h = ,2, computations produce the following results to three places:

ki = (,2)(0) = 0

k2 = (,2)( -,1) = -.02

k3 = (.2)( -,1) = -,02

k4 = (,2)( -,198) = -,04

II = (.2)( - 1 + (.1)(1 - 1)(0)) = -.2

12 = (,2)( - 1 + (,1)(1 - 1)( -,1)) = -,2

13 = (,2)( -,99 + (,1)(.02)( -,1)) = -.198

14 = (,2)( -(,98) + (,1)(.04)( -.198)) = -.196

These values now combine into

1
Y1 = 1 + 6 ( -,04 - ,04 - ,04) = ,98

1
Pi =0 +6(-,2 -.4- .396 - ,196) = -,199

The second step now follows with n = 1 and the computation is continued in this way. Results up to
t = 6.4 when the curve has crossed below the Y axis again are ilustrated in. Fig, 20-1, in which Y and P
values serve as coordinates, This "phase plane" is often used in the study of oscilatory systems, Here
the oscillation (shown solid) isgrowing and will approach the periodic oscilation (shown dashed) as x
tends to infinity, This is proved in the theory of nonlinear oscillations.
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HIGHER-ORDER EQUATIONS SOLVED BY SERIES

20.8. Obtain aseries solution of the linear equation y" + (1 + x2)y = eX in the neighborhood of

x=O,

Let the series be Y (x) = L a¡x¡ and substitute to obtain
i=O

i a¡i(i - 1)x¡-2 + (1 + x2) i a¡x¡ = i ~i=2 i=O i=O l.
which can be converted by changes of indices to00 00 k

(ao + 2a2) + (ai + 6a3)X + t:2 ((k + 2)(k + 1)ak+2 + ak + ak_2)xk = t:o~!

Comparing coeffcients of the powers of x brings a2 = (1 - ao)/2, a3 = (1 - a1)/6, and then the recursion

1

(k + 2)(k + 1)ak+2 = -ak - ak-2 + k!

which yields successively a4 = -ao/24, as = -ai/24, a6 = (Bao - 11)/720, and so on. The numbers ao and
a1 would be determined by initial conditions,

A similar series could be developed near any other argument x, since the ingredients of our
differential equation are analytic functions. Such se ries may be adequate for computation of the solution
over the interval required, or if not, serve to generate starting values for other methods,

20.9. Obtain aseries solution of the nonlinear equation y" = 1 + y2 in the neighborhood of x = 0,
with y(O) = y'(O) = 0,

The method of the preceding problem could be used, but the alternative of computiiig the higher
derivatives directly wil be ilustrated once again. We easily compute

y(3) = 2yy' y(4) = 2y(1 + y2) + 2(y'Y~ /5) = 10y2y' + 6y' /6) = 20y(y')Z + (1 + y2)(lOy2 + 6)

and so on. With the initial conditions given these are all zero except for /6), and by Taylor's theorem
y= lX2 + i~ox6 + . , . .

20.10. Apply the Gear method of Problem 19,52 to the stiff system

y'=p
p' = -100y -101p

with initial conditions y(O) = 1 and p(O) = - 1. This system is equivalent to the second-order
equation

y" + 101y' + 100y = 0

with y = 1 and y' = -1 initially, The exact solution is y(x) = e-x.

Runge-Kutta methods could handle this system, but the c1assic fourth-order set would require a
step size less than .0278 for a stable computation. Writing out the Gear formula for both y and p we
have 1 6h

Yn+1 = 11 (18Yn - 9Yn-1 + 2Yn-2) + U Pn+i1 6h
Pn+ 1= 11 (18pn - 9pn-1 + 2pn-z) + U (- lOOYn+1 - lOlpn+l)
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which can be rewritten as a linear system for Yn+I and Pn+1:

6h 1
Yn+I - ii Pn+1 = 11 (18Yn - 9Yn-1 + 2Yn-2)

600h (606h) 1
U Yn+1 + 1 + U Pn+1 = 11 (18pn - 9pn-1 + 2pn-2)

Since the system is linear, there is no need to use the Newton iteration for its solution. Results for two
choices of step size h appear below, both much larger than what is needed for Runge-Kutta, The true
values are also listed for comparison,

x y=e-x h=.l h=,2

2 .1353 ,1354 .1359
4 ,01832 ,01833 . ,0185

6 ,002479 ,002483 ,00251

8 .0003355 ,0003362 .000342

10 .0000454 .0000455 .0000465

20.11. A dog, out in a field, sees his master walking along the road and runs toward hirn, Assuming
thàt the dog always aims directly at his master, and that the road is straight, the equation
governing the dog's path is (see Fig, 20-2)

xy" = cYl + (i'?

with c the ratio ofthe man'sspeed to the dog's, A well-known line of attack leads to the exactsolution ..
1.( x1+c X1-C) C

Y = 2 1 + c - 1 - c + 1 - c2

for c less than one, As x approaches zero, the dog catches his master at position

y = c/(l- c2), Solve this problem by an approximate method for the case c = l, The chase

should end at y = ~,

'1 , , ,master

x
(0.0) (I. 0)

Fig.20.2

The second-order equation is first replaced by the system

y' =p
p' = cVi

x

and the initial conditions by y(l) = 0, p(l) = O. The Runge-Kutta formulas of Problem 20.2 can again
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be used, this time with a negative h. The only diffculty here is that as x ne ars zero the slope p grows
very large. An adaptive method, with h decreasing in size, seems to be indicated. A primitive strategy
was attempted, with h = -,1 down to x = .1, then h= -.01 down to x = ,01, and so on. The results
appear as Table 20.1. The last two x entries appear to contain roundoff error. Values of p are not listed
but rose to nearly 1000 in size,

Table 20.1

,

x y

.1 ,3608

.01 .5669

,001 .6350

,0001 ,6567

.00001 ,6636

.0000006 .6659

-.0000003 .6668

20.12. The equations

11 9 2r' =---
r3 r2

3ei --
- r2

in which prim es refer to differeótiation relative to time t, describe the Newtoniaó orbit of a
particle in an inverse square gravitation al field, after suitable choices of so me physical
constants, if t = 0 at the position of minimum r (Fig, 20-3) and

r(O) = 3 e(O) = 0 r'(O) = 0
then the orbit proves to be the ellpse r = 9/(2 + cos e), Use one of our approximation
methods and compare with this exact result,

1= ()

Fig.20-3

The application is quite straightforward, The familiar reduction to a first-order system comes first,

r' =p
, 9 2

P ="¡-;:
3

8'=2:
r

followed by the programming of three sets of Runge-Kutta formulas, still following the model of
Problem 20,2. Integration continued until the angle 8 exceeded 2n. A selected fragment of the output is
provided as Table 20.2 (step size h = ,1 was used) and it clearly has the desired orbital quality, As a
further check, theory offers the period T = 12nV3, or about 65.3, and this fits in very nicely.
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Table 20.2

t r 9 p

0 3.00 ,00 ,00
6 4.37 1.51 .33

7 4.71 1.66 .33

32 9,00 3,12 ,01

33 9,00 3,15 -,004
59 4.47 4,73 -.33
65 3.00 6.18 -.03
66 3,03 6,52 .08

Supplementary Problems

20.13. The equations

'( ) 2x . '( ) 2yx t = -,~ Y t = 1 -v 2 2yx + Y x +y
describe the path of a duck attempting to swim across a river by aiming steadily at the target position T.
The speed of the river is 1 and the duck's speed is 2, The duck starts at S, so that x(O) = 1 and y(O) = 0,

(See Fig, 20-4,) Apply the Runge-Kutta formulas for two simu1taneous equations to compute the duck's
path, Compare with the exact trajectory y = !(Xl/2 - X312), How long does it take the duck to reach the
target?

y

T §. x

Fig.20-4

20.14. Solve the preceding problem by the Adams predictor-corrector method,

20.15. Apply the Milne method to Problem 20,13,

20.16. The c1assical inverse square law for an object fallng toward an attracting gravitational mass (say the
earth) is

y"(t) = _gR2y2

where g is a constant and R is the earth's radius, This has the well-known and somewhat surprising
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solution

H3/2( /y (y)2 1 (2Y)Jt = 8y Y¡¡ - H + 2 arccos H - 1

where H is the initial altitude and the initial speed is zero. Introducing the equivalent system

gR2y'=p p'=--i
y

apply the Runge-Kutta formulas to compute the velocity pet) and position y(t), When does the fallng
object reach the earth's surface? CQmpare with the exact result. (lf miles and seconds are used as units,
then g = 5~~O' R = 4000, and take H to be 200,000 which is the moon's distance from earth. The problem
ilustrates some of the diffculties of computing space trajectories,)

20.17. Apply the Adams method to Problem 20,16,

20.18. Show that the solution of yy"+ 3(y')2 = 0 with y(O) = 1 and y'(O) = ~ can be expressed as

x 3x2 7x3 77x4y(x)=l+---+---+" ,4 32 128 2048

20.19. Show that x2y" - 2x2y' + (l + x2)y = 0 has a solution of the form

y(x) = \I(ao:t a¡x + a2x2 +, , ,)

dd . h ff' 'fh d" i' y(x) l' . d& h'an etermine t e coe cients 1 t e con ItlOn im \I = IS require ¡or X approac ing zero,

20.20. Apply the Runge-Kutta formulas to

y' = - 12y + 9z z' = lly - lOz

which have the exact solution

y = ge-x + 5e-2Ix z = lle-x - 5e-2Ix

using y(l) = ge-I, z(l) = lle-I as initial conditions, Work to three orfour decimal pI aces with h = .2
and carry the computation at least to x = 3, Notice that lly/9z, which should remain elose to one,

begins to oscilate badly. Explain this by comparing the fourth-degree Taylor approximation to e-21x

(whieh the Runge-Kutta method essentially uses) with the exact exponential.



Chapter 21

Least-Squares Polynomial Approximation

TUE LEAST-SQUARES PRlCIPLE

The basic idea of choosing a polynomial approximation p(x) to a given function y(x) in a way

which minimizes the squares of íhe errors (in some sense) was developed first by Gauss, There are
several variations, depending on the set of arguments involved and the error measure to be used.

First of all, when the data are discrete we may minimize the sum
N

S= ¿ (Yi-ao-aiXi-". -amxi)z
i=O

for given data Xi, Yi, and m .: N, The condition m .: N makes it unlikely that the polynomial

p(x) = ao + aiX + azxz +" ,+ amxm

can collocate at all N data points, So S probably cannot be made zero, The idea of Gauss Is to make
S as small as we can, Standard techniques of calculus then lead to the normal equations, which
determine the coeffcients aj' These equations are

soao + Siai + ' . , + Smam = to

Siao + Szai + ' . , + Sm+iam = ti

Smao + Sm+iai + . . , + SZmam = tmN N
where Sk = ~ x7, tk = ~ Yix7, This system of linear equations does determine the ai uniquely, andi=O i=O
the resulting aj do actually produce. the minimum possible value of S, For the case of a linear
polynomial

p(x)=Mx +B
the normal equations are easily solved and yield

M
soti - sito

SoSz - si
B

szto - Siti

SoSz - si

In order to provide a unifying treatment of the various least-squares methods to be presented,
including this first method just described, a general problem of minimization in a vector space is
considered, The solution is easily found by an algebraic argument, using the idea of orthogonal
projection, Naturally the general problem reproduces our p(x) and normal equations, It wil be
reinterpreted to solve other variations of the least-squares principle as we proceed, In most cases a
duplicate argument for the special case in hand wil also be provided,

Except for very low degree polynomials, the above system of normal equations proves to be
il-conditioned. This means that, although it does define the coeffcients aj uniquely, in practice it
may prove to be impossible to extricate these aj' Standard methods for solving linear systems (to be
presented in Chapter 26) may either produce no solution at all, or else badly magnify data errors, As
a result, orthogonal polynomials are introduced, (This amounts to choosing an orthogonal basis for
the abstract vector space,) For the case of discrete data these are polynomials Pm,N(t) of degree

m = 0, 1, 2, ' , , with the property
N

¿ P m,N(t)Pn,N(t) = 0
t=O

241
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This is the orthogonality property, The explicitrepresentation
m .(m) (m + i) tU)

Pm.N(t) = ~ (- IY i i NU)

wil be obtained, in which binomial coeffcients and factorial polynomials are pro.minent.
An alternate form of our least-squares polynomial now becomes convenient, namely

m

p(t) = ¿ akPk.N(t)
k=O

with new coeffcients ak' The equations determining these ak prove to be extremely easy to solve. In
fact,

N

¿ y1Pk,N(t)
1=0ak =--
¿ PtN(t)

1=0

These ak do minimize the error sum S, theminimum being
N m

Smin = ¿ Y; ~ ¿ Wka~
1=0 k=O

where Wk is the denominator sum in the expression for ak'

APPLICA TIONS

There are two major applications of least-squares polynomials for discrete data,
1. Data smoothing. By accepting the polynomial

p(X) = ao + a¡x +, ,', + amxm

in place of the given y(x), we obtain a smooth line, parabola, or other curve in pi ace of the
original, probably irregular, data function, What degree p(x) should have depends on the
circumstances, Frequently a five-point least-squares parabola is used, corresponding to
points (x¡, Yi) with i = k - 2, k - 1, , . , , k + 2, It leads to the smoothing formula

3
Y(Xk) = P(Xk) = Yk - 35 Ö4Yk

This formula blends together the five values Yk-2, , . , , Yk+2 to provide a new estimate to the
unknown exact value Y(Xk)' Near the ends of a finite data supply, minor modifications are
required,

The root-mean-square error of a set of approximations Ai to corresponding true values
T¡ is defined as

RMS error = r f (T¡ - Ai)2J. 1/2
L=o N

In various test cases, wherethe T¡ are known, we shall use this error measure to estimate the
effectiveness of least-squares smoothing, .

2, Approximate differentiation. As we saw earlier, fitting a collocation polynomial to irregúlar
data leads to very poor estimates of derivatives, Even sm all errors in the data are magnified
to troublesome size. But a least-squares polynomial does not collocate. It passes between
the data values and provides smoothing, This smoother function usually brings better
estimates of derivatives, namely, the values of p' (x), The five-point parabola just mentioned



CHAP, 21) LEAST-SQUARES POLYNOMIAL APPROXIMATION 243

leads to the formula

1
Y'(Xk) = P'(Xk) = Wh (-2Yk-2 - Yk-I + Yk+1 + 2Yk+Z)

Near the ends of a finite data supply this also requires modification. The formula usually
pro duces results much superior to those obtained by differentiating collocation polynomials,
However, reapplying it to the P'(Xk) values in an effort to estimate Y"(Xk) again leads to
questionable accuracy,

CONTINUOUS DATA

For continuous data y(x) we may minimize the integral

1= fi (y(x) - aoPo(x) -, . , - amPm(xW dx

the ~(x) being Legendre polynomials, (We must assurne y(x) integrable,) This means that we have
chosen to represent our least-squares polynomial p(x) from the start in terms of orthogonal

polynomials, in the form

p(x) = aoPo(x) + ' , ,+ amPm(x)

The coeffcients prove to be

2k + 1 fl
ak = -- _/(x)Pk(x) dx

For convenience in using the Legendre polynomials, the interval over which the data y(x) are given
is first normalized to (-1, 1), Occasionally it is more convenient to use the interval (0, 1), In this
case the Legendre polynomials must also be subjected to a change of argument. The new
polynomials are called shifted Legendre polynomials.

Some type of discretization is usually necessary when y(x) is of complicated structure, Either the
integrals which give thecoeffcients must be computed by approximation methods, or th'e continuous
argument set must be discretized at the outset and a sum minimized rather than an integral. Plainly
there are several alternate approaches and the computer must decide which to use for a particular
problem,

Smoothing and approximate differentiation of the given continuous data function y(x) are again
the foremost applications of our least-squares polynomial p(x), We simply accept p(x) and p'(x) as
substitutes for the more irregular y(x) and y'(x), .

A generalization of the least-squares principle involves minimizing the integral

1= t w(x)(y(x) - aoQo(x) - , . , - amQm(x))2 dx

where w(x) is a nonnegative weight function. The Qk(X) are orthogonal polynomials in the

generalized sense

r w(x)Q/x)Qk(x)dx=Oa .
for j =1 k, The details parallel those for the case w(x) = 1 àlready mentioned, the coeffcients ak being
given by

t w(;)Y(X)Qk(X) dxak =

t w(x)Q~(x) dx



244 LEAST-SQUARES POLYNOMIAL APPROXIMATION rCHAP, 21

The minimum value of I can be expressed as

Lb mImin = a W(X)y2(X) dx - ~O WkaZ

where Wk is the denominator integral in the expression for ak. This leads to Bessel's inequalitym lb
~o WkaZ~ a W(X)y2(X) dx

oe

and to the fact that for m tending to infinity the series I: WkaZ is convergent, If the orthogonal
k=O

family involved has a property known as completeness and if y(x) is suffciently smooth, then the
series actually converges to the integral which appears in Imin' This means that the error of
approximation tends to zero as the degree of p(x) is increased,

CHEBYSHEV POLYNOMIALS

Approximation using Chebyshev polynomials is the important special case w(x) = 1/V1 - x2 of
the generalized least-squares method, the interval of integration being normalized to (-1,1), In this

case the orthogonal polynomials Qk(X) are the Chebyshev polynomials

Tk(x) = cos (k arccosx)

The first few prove to be Jò(x) = 1 1ì (x) = x 12(x) = 2x2 - 1 1; (x ) = 4x3 - 3x

Properties of the Chebyshev polynomials include

T,(x) = 0
Tn(x)=(-1Y

Tn+i(x) = 2xT,(x) - Tn-i(x)

i 1 0 if m =ln
f T~)dX= Jr/2 ifm=n=lOi 1-x- Jr ifm=n=O

for x = cos ((2i + 1)Jr/2n), i = 0, 1"", n-1
for x = cos (iJr/n), i = 0, i, , , , , n

An especiallyattractive property is the equal-error property, which refers to the oscilation of the
Chebyshev polynomials between extreme values of :I 1, reaching these extremes at n + 1 arguments
inside the interval (-1,1), As a consequence of thisproperty the error y(x) - p(x) is frequently
found to oscilate between maxima and minima of approximately :1£, Such an almost-equal-error is
desirable since it implies that our approximation has almost uniform accuracy across the entire
intervaL. For an exact equal-error property see the next chapter.

The powers of x may be expressed in terms of Chebyshev polynomials by simple manipulations,
For example,

1 = 1ò x = Ti
2 1 .

x = 2 (1ò + 12)
3 1 (x =4 3Ti + 1;)

This has suggested a process known as economization of polynomials, by which each power of x in a
polynomial is replaced by the corresponding combination of Chebyshev polynomials, It is often
found that a number of the higher-degree Chebyshev polynomials may then be dropped, the terms

retained then eonstituting a least-squares approximation to the original polynomial, of suffeient

accuracy for many purposes, The result oQtained wil have the almost-equal-error property, This
processof economization may be used as an approximate substitute for direct evaluation of the
coeffcient integrals of an approximation by Chebyshev polynomials, The unpleasant weight factor
w(x) makes these integrals formidable for most y(x),
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Another variation of the least-squares principle is to minimize the sum
N-l
2: (Y(Xi) - aOTO(xi) -, . . - am Tm (x;)Y
i=O

the argum~nts being Xi = cos ((2i + 1)ir12N), These arguments may be recognized as the zeros of
TN(x) , The coeffcients are easily determined using a second orthogonality property. of the
Chebyshev polynomials,

and prove to be

N-l i 0 ifm*n
.2: Tm(Xi)Tn(Xi)= NI2 ifm=n*O1=0 N if m = n = 0
1 N-l 2 N-lao = - 2: Y(Xi) ak = - 2: y(xi)Tk(Xi)N i=O N i=O

The approximating polynomial is then, of course,

p(x) = ao1ò(x) + ' , ,+ am Tm (X)

This polynomial also has an almost-equal-error.

TUE Lz NORM
The underlying theme of this chapter is to minimize the norm

lIy-pl12
where Y represents the given data and p the approximating polynomial.

Solved Problems

DISCRETE DATA, TUE LEAST-SQUARES UNE
N

21.1. Find the straight line p(x) = Mx + B for which I; (Yi - MXi - B)2 is aminimum, the data
(Xi' y;) being given, i=O

Callng the sum S, we follow a standard minimum-finding course and set derivatives to zero.

as N
- = - 2 ¿ 1 . (y¡ - Mx¡ - B) = 0aB ¡=o

Rewriting we have

as ..N
aM = - 2 ¿ X¡ , (y¡ - Mx¡ - B) = 01=0

(N + l)B + (¿x;)M = ¿y¡ (¿ x¡)B + (¿ x;)M = ¿ X¡y¡

which are the "normal equations," Introducing the symbols

so=N + 1 Si=¿X¡ S2= ¿x; to= ¿y¡ ti = ¿x¡y¡

these equations may be solved in the form

M = sot1 - Sito
sosz - si

B=S2tO-Sit1
SOS2 - si

To show that SOS2 - si is not zero, we may first notiee that squaring and adding terms such as (xo - Xi)2

leads to
0, ¿ (x¡ - Xj)2 = N ' ¿ x; - 2 ¿ x¡xji~ i~j
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But also (¿xY= ¿x;+2¿xix¡
i-:j

so that SOS2 - si becomes

(N + 1) ¿x;- (¿Xi)2 =N' ¿x;-2 ¿XiX¡/O
i..j

H~re we have assumed that the Xi are not all the same, which is surely reasonable. This last inequality
also helps to prove that the M and B chosen actually produce aminimum. Calculating second

derivatives, we find
a2s
aB2 = 1.0

a2s
aM2 =1.2

a2s
aBaM=1.1

Since the first two are positive and since

(1.1)2 - 2(N + 1)(1.2) = 4(si - SOS2)': 0

the second derivative test for a minimum of a function of two arguments Band M is satisfied, The fact
that the first derivatives can vanish together only once shows that our minimum is an absolute minimum,

21.2. The average scores reported by golfers of various handicaps on a diffcult par-three hole are as
folIows:

Handicap 6 8 10 12 14 16 18 20 22 24

Average 3,8 3,7 4,0 3,9 4,3 ,4.2 4,2 4.4 4,5 4,5

Find the least-squares linear function for this data by the formulas of Problem 21,1,

Let h represent handicap and X = (h - 6)/2, Then the Xi are "the integers 0, , , , ,9, Let y represent
average score, Then So = 10, SI = 45, S2 = 285, to = 41.5, t1 = 194,1 and so

M = (10)(194.1) - (45)(41.5) ,089 B = (285)(41.) - (45)(194,1)(10)(285) - (45Y" (10)(285) - (45)2
,This makes y = p(x) where p(x) = ,09x + 3,76= ,045h + 3.49,

3,76

21.3. Use the least-squares line of the previous problem to smooth the reported data,

The effort to smooth data proceeds on the assumption that the reported data contain inaccuracies of
a size to warrant correction, In this case the data seem to fall roughly along a straight line, but there are
large fluctuations, due perhaps to the natural fluctuations in a golfer's game, (See Fig, 21-1 below.) The

average score

4.6

4.0

4.4

4.2

3.8
. handicap

3.6

6 8 10 12 14 16 18 20 22 24

Fig.21.1
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least-squares li ne may be assumed to be a better representation of the true relationship between the
handicap and the average scores than the original data are, It yields the following smoothed values:

Handicap 6 8 10 12 14 16 18 20 22 24

Smoothed y 3,76 3.85 3,94 4,03 4.12 4.21 4.30 4,39 4.48 4,57

21.4. Estimate the rate at which the average score increases per unit handicap,

From the least-squares li ne of Problem 21.2 we obtain the estimate ,045 stroke per unit handicap,

21.5. Obtain a formula of the type P(x) = AeMx from the following data:

x¡ 1 2 3 4

P; 7 11 17 27

Let y = log P, B = log A. Then taking logarithms, log P = log A + Mx which is equivalent to
y(x)=Mx+B.

We now decide to make this the least-squares line for the (x;, y¡) data points,

x¡ 1 2 3 4

y¡ 1.95 2.40 2.83 3.30

Since So = 4, SI = 10, S2 = 30; to = 10.48, t1 = 28.44, the formulas of Problem 21.1 make M =.45 and
B = 1.5, The resulting formula is P = 4.48e.45x,

It should be noted that in this procedure we do not minimize E (P(x¡) - p;y, but instead choose the
simpler task of minimizing E (y(x;) - y¡f This is a very common decision in such problems,

DISCRETE DATA, THELEAST-SQUARES POLYNOMIAL
21.6. Generalizing Problem 21.1, find the polynomial p(x) = ao + aiX + ' , . + amxm for. which

N
S = I: (Yi - ao - aiXi - , , . - amxi)2 is aminimum, the data (Xi' Yi) being given, and mO: N.

i=O

We proceed as in the simpler case of the straight line, Setting the derivatives relative to
ao, ai, , , , , am to zero produces the m + 1 equations

aas = - 2 £ x~(y¡ - ao - a1x¡ - , , , -amx7') = 0ak ¡=o
N N

where k = 0, , . . , m, Introducing the symbols Sk = E x~, tk = E y¡x~, these equations may be rewrittenu ~ ~
soao + Siai + ' , ,+ Smam = to

SlaO + S2a1 + ' , . + Sm-1am = t1

SmaO + Sm+1a1 + . , ,+ S2mam = tm

and are called normal equations, Solving for the coeffcients a¡, we obtain the least-squares polynomial.
We wil show that there is just one solution and that it does rnnimize S, For smaller integers m, these
normal equations may be solved without diffculty, For larger m the system is badly il-conditioned and
an alternative procedure wil be suggested,
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21.7. Show how the least-squares idea, as just presented in Problem 21.6 and earlier in Problem
21.1, may he generalized to arbitrary vector spaces. What is the relationship with orthogonal
projection?

'This more general approach wil also serve as a model for other variations of the least-squares idea
to be presented later in this chapter and focuses attention on the common features which all these
variations share. First recall that in Eudidean plane geometry, given a point y and a line S, the point on
S dosest to y is the unique point p such that py is orthogonal to S, p being the orthogonal projection

point of y onto S. Similarly in Eudidean solid geometry, given a point y and a plane S, the point on S
dosest to y is the unique point p such that py is orthogonal to all vectors in S. Again p is theorthogonal
projection of y, This idea is now extended to a more general vector space.

We are given a vector y in a vector space E and are to find a vector p in a given subspace S such
that

Ily-pll~lIy-qll
where q is any other vector in Sand the norm of a vector v is

IIVLL =V(v, v)

parentheses denoting the scalar product associated with the vector space. We begin by showing that
there is a unique vector p for which y - p is orthogonal to every vector in S. This p is called the
orthogonal projection of y.

Let eo, . . . , em be an orthogonal basis for Sand consider the vector

p = (y, eo)eo + (y, ei)ei + ' , , + (y, em)em

Direct calculation shows that (p, ek) = (y, ek) and therefore (p - y, ek) = 0 for k = 0, . . . ,m. It then
follows that (p - y, q) = 0 for any q in S, simply by expressing q in terms of the orthogonal basis. If

another vector p i also had this property (p' - y, q) = 0, then. it would follow that for any q in S
(p - p', q) = 0, Since p - p'is itself in S, this forces (p - p', p - p ') = 0 which by required properties of
any scalar product implies p = p', The orthogonal projection pis thus unique.

But now, if q is a vector other than p in S,

ily - ql12 = II(y _ p) + (p _ q)112

= ily -pW+ ilp _qI12+2(y -p,p -q)
Since the last term is zero, p - q heing in S, we deduce that 11 y - p 11 ~ 11 y - q 11 as required,

21.8. If uo, Ui, , , , , Um is an arbitrary basis for S, determine the vector p of the preceding problem
in terms of the Uk'

We must have (y - p, Uk) = 0 or (p, Uk) = (y, uk) for k = 0, ' . . ,m, Since p has the unique
representation p = aouo + a¡ui + . , , + amum, substitution leads directly to

(uo, uk)aO + (u¡, udai + ' , , + (um, Uk)am = (y, Uk)

for k= 0, ' , . ,m. These are the normal equations for the given problem and are to be solved for the
coeffcients ao, . . . ,am' A unique solution is guaranteed by the previous problem. Note that in the
special case where the UD' U¡, . . . , Um are orthonormal, these normal equations reduceto ai = (y, u;) as
in the proof given in Problem 21.7.

Note also the following important corollary. If y itself is represented in terms of an orthogonal basis
in" E which indudes UD' . , . , Um, say

y = aOuO + aiu¡ + . , . + amUm + am+IUm+1 +, . ,

then the orthogonal projection p, which is the least-squares approximation, is available by simple

truncation of the representation after the amUm term:

p = aouo + aiu¡ +, , ,+ amUm

21.9. How is the specific case treated in Problem 21.6 related to the generalization given in
Problems 21.7 and 21.8?
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The following identifications must be made:

(Vi, V2):

Ilv112:

ily _pI12:

(y, ud:

(Uj, Uk):

E:

s:

y:

The space of discrete real-valued functions on the set of arguments xo, . , , , XN

The subset of E involving polynomials of degree m or less

The data function having values Yo, . , . , YN

N
The scalar product L V1(X¡)Vi(x¡)

i=O

N
The norm L (V(X¡))2

;=0

Uk: The function with values x7

The polynomial with values p¡ = ao + aix¡ + . , , + amx,!p: N . 2
The sum S = L (y¡ - Pi)

;=0
N

tk = L y,x7
i=O

N
Sj+k = L x1+k

i=O

With these identifications we also learn that the polynomial p of Problem 21.6 is unique and actually
does provide the minimum sumo The general result of Problems 21.7 and 21.8 establishes this,

21.10. Determine the least~squares quadratic function for the data of Problem 21.2,

The sums so, Si, S2' to, and ti have already been computed, We also need S3 = 2025, S4 = 15,333,

and t2 = 1292,9 which allow the normal equations to be written

lOao + 45ai + 285a2 = 41.5 45ao + 285a i + 2025a2 = 194,1 285ao + 2025ai + 15,333a2 = 1248

After sçime labor these yield ao = 3,73, ai = .11, and a2 = - .0023 so that our quadratic function is

p(x) = 3.73 + ,l1x - ,0023x2.

21.11. Apply the quadratic function öf the preceding problem to smooth the reported data.

Assuming that the data should have been values of our quadratic function, we obtain these values:

Handicap 6 8 10 12 14 16 18 20 22 24

Smoothed y 3.73 3.84 3,94 4,04 4.13 4.22 4.31 4,39 4.46 4,53

These hardly differ from the predictions of the straight-line hypothesis, and the parabola corresponding
to our quadratic function would not differ noticeably from the straight line of Fig, 21-1. The fact that a2
is so small already shows that the quadratic hypothesis may be unnecessary in the golfing problem.

SMOOTHING AND DIFFERENTIATION

21.n. Derive the formula fora least-squares parabola for five points (Xi' y¡) where i = k - 2, k - 1,
k, k + 1, k +2,

Let the parabola be pet) = ao + ait + a2t2 where t = (x - xk)/h, the arguments X¡ being assumed
equally spaced at interval h. The five points involved now have arguments t = -2, - 1, 0, 1, 2, For this

symmetric arrangement the normal equations simplify to

5ao + lOa2 = :¿ y¡

10ai = :¿ t¡y¡

10ao + 34a2 = :¿ t;y¡
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and are easily solved. Wefind first

70ao = 34 L Y¡ - 10 L t7Y¡

from which

= -6Yk-2 + 24Yk-1 + 34Yk + 24Yk+1 - 6Yk+2

= 70Yk - 6(Yk-2 - 4Yk-1 + 6Yk - 4Yk+1 + Yk+2)

3 -"4
ao = Yk - 35 U Yk

Substituting back we also obtain

1
a2 = 14 (2Yk-2 - Yk-1 - 2Yk - Yk+I + 2Yk+2)

And directly from the middle equation

1
ai = 10 ( - 2Yk-2 - Yk-1 + Yk+1 + 2Yk+2)

21.13. With Y(Xk) representing the exact value of which Yk is an approximation, derive the smoothiiig
formula Y(Xk) = Yk - ls O4Yk'

The least-squares parabola for the five points (Xk-2' Yk-2) to (Xk+2' Yk¿-2) is

p(x) = ao + ait + a2t2

At the center argument t = 0 this becomes P(Xk) = ao = Yk - fs Ô4Yk by Problem 21.12. Using this formula

amounts to accepting the value of P on the parabola as better than the data value Yk'

21.14. The square roots of the integers from 1 to 10 were rounded to two decimaI places and a
random error of -,05, -~04" , , , ,05 added to each (determined by drawing cards from a

pack of 11 cards so labeled), The results form the top row of Table 21.1. Smooth these values
using the formula of the preceding problem,

Table 21.1

.

xk 1 2 3 4 5 6 7 8 9 10

Yk 1.04 1.7 1.0 2.00 2.26 2.42 2.70 2.78 3.00 3.14

oy 33 33 30 26 16 28 8 22 14

o2y 0 -3 -4 -10 12 -20 14 -8
o3y -3 -1 -6 22 -32 34 -22
o4y 2 -5 28 -54 66 -56

fso4y 0 0 2 -5 6 -5

p(xk) 1.70 2.00 2.24 2.47 2.64 2.83

Differences through the fourth also appear in Table 21.1, as weil as fsô4y. Finally the bottom row
contains the smoothed values,

21.15. The smoothing formula of Problem 21,13 requires two data values on each side of Xk for
producing the smoothed value P(Xk)' It cannot therefore be applied to the two first and last
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entries of a data table. Derive the formulas

1 3 3 4
Y(Xo) = Yo + 5 L\ Yo + 35 L\ Yo

2 3 1 4
y(x¡)=y¡ -5L\ Yo-7L\ Yo

2 3 1 4
Y(XN-i)=YN-i +5V YN-7V YN

1 3 3 4
Y(XN) = YN - 5 V YN +35 V YN

for smoothing end values,

If we let t = (x - X2)/ h, then the quadratic function of Problem 21. 12 is the least-squares quadratie
for the first five points, We shall use the values of this funçtion at Xo and Xi as smoothed values of y,
First

p(xo) = ao - 2a1 + 4a2

and inserting our expressions for the a¡, with k replaced by 2,

1

p(xo) = 70 (62yo + 18Y1 - 6Y2 - lOh + 6Y4)

1
= Yo + 70 (( - 14yo + 42Y1 - 42Y2 + 14Y3) + (6yo - 24Y1 + 36Y2 - 24Y3 + 6Y4))

whieh reduce to the above formula for y(xo), For P(X1) we have

P(Xi) = ao - ai+ a2

and insertion of our expressions for the a¡ again leads to the required formula, At the other end of our
data supply the change of argument t = (x - XN-2)/ h applies, the details being similar,

21.16. Apply the formulas of the preceding problem to complete the smoothing of the Y values in
Table 21.1.

We find these changes to two places

1 3
y(xo) = 1.04 +:5 (-:,03) + 35 (,02) = 1.03

2 1
y(xi) = 1.7 -:5 (-,03) -;; (.02) = 1.8

2 1
y(XN-I) = 3,00 +:5 (-.22) -;; (-,56) = 2,99

1 3
y(xN) = 3,14 -:5 (-,22) + 35 (-.56) = 3,14

21.17. Compute the RMS error of both the original data and the smoothed values,

The root-mean-square error of a set of approximations A¡ corresponding to exact values T; is
defined by

( N (T - AYJll2
RMS error= 6 i N i

In this example we have the following values:

T; 1.00 1.41 1.73 2,OÒ 2,24 2,45 2.65 2,83 3,00 3.16

y¡ 1.04 1.37 1.70 2,00 2,26 2.42 2,70 2,78 3,00 3,14

p(x¡) 1.03 1.38 1.70 2.00 2,24 2,47 2,64 2.83 2,99 3.14
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The exact roots are given by two places. By the above formula,

(.0108)1/2
RMS error of Y¡ = W = .033

( 0037) 11
RMS error of p(x;) = ~ = .019

so that the error is less by nearly half. The improvement over the center portion is greater. If the two
values at each end are ignored we find RMS errors of .035 and .015, respectively, for a reduction of
more than half, The formula of Problem 21.13 appears more effective than those of Problem 21. 15.

21.18. Use the five-point parabola to obtain the formula

y'(xd = 1~h ( - 2Yk-2 - Yk-l + Yk+l + 2Yk+2)

for approximate differentiation.

With the symbols of Problem 21.13 we shall use y'(Xk), which is the derivative of our five-point
parabola, as an approximation to the exact derivative at Xk' This again amounts to assuming that our
data values y¡ are approximatevalues of an exact but unknown function, but that the five-point parabola
will be a better approximation, especially in the vicinity of the center point. On the para bola

p = ao + ait + a2t2

and according to plan, we calculate p'(t) at t = 0 to be ai' To convert this to a derivative relative to x
involves merely division by h, and so, recovering the value ai found in Problem 21. 12 and taking p' (x)
as an approximation to y'(x), we come to the requiredformula,

21.19. Apply the preceding formula to estimate y'(x) fram the Yk values given in Table 21.1.

At X2 = 3 we find

and at X3 = 4,

y'(3) = 1~ (-2.08 -1.7 + 2.00 + 4.52) = ,307

y'(4) = 1~ (-2.74 - 1. 70 + 2.26 + 4.84) ~ ,266

The other entries in the top row shown are found in the same way, The second row was computed using
the approximation

y'(Xk) = l~h (Yk-2 - 8Yk-1 + 8Yk+1 - Yk+2)

found earlier from Stirling's five-point collocation polynomial. Notice the supenonty of the present
formula, Errors in data were found earlier to be considerably magnified by approximate differentiation
formulas, Preliminary smoothing can lead to better results, by reducing such data errors.

y' (x) by least squares .31 .27 ,24 ,20 ,18 .17

y'(x) by collocation ,31 .29 ,20 .23 .18 ,14

Correct y' (x) ,29 ,25 .22 .20 ,19 .18

21.20. The formula of Problem 21.18 does not apply ne ar the ends of the data supply, Use a
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four-point parabola at each end to obtain the formulas

y'(xo) = 2~h (-21yo + 13Yi + 17Y2 - 9Y3)1 .
y'(xi) = 20h (-11yo + 3Yi + 7Y2 + Y3)

Y'(XN-i) = 2~h (11YN - 3YN-i -7YN-2 - YN-3)

y'(XN) = 2~h (21YN ..13YN-i -17YN-2 + 9YN-3)

Four points wil be used rather than five, with the thought that a fifth point may be rather far from
the position Xo or XN where a derivative is required, Depending on the size of h, the smoothness of the
data, and perhaps other factors, one could use formulas based on five points or more, Proceeding to the
four-point parabola we let t = (x - x1)/h so that the first four points have arguments t = - 1, 0, 1,2, The
normal equations become

4ao + 2a1 + 6a2 = Yo + Yi + Y2 + Y3 2ao + 6ai + 8a2 = - Yo + Y2 + 2Y3

6ao + 8a1 + 18a2 = Yo + Y2 + 4Y3

and may be solveçi for

20ao = 3yo + 11Y1 + 9Y2 - 3Y3 20ai = - 11yo + 3Y1 + 7Y2 + Y3 4a2 = Yo - Yi - Y2 + Y3

With these and y'(xo) = (ai - 2a2)/h, y'(xi) = ai/h the required results follow, Details at the other end
of the data supply are alm ost identieal.

21.21. Apply the formulas of the preceding problem to the data of Table 21.1.

We find

y'(l) = 2~ (-21(1.04) + 13(1.7) + 17(1. 70) - 9(2,00)) = .35

y'(2) = 2~ (- 11(1.04) + 3(1.7) + 7(1. 70) + 2.00) = ,33

Similarly y'(9)=,16 and y'(lO)';.19. The correct values are ,50, ,35,.17, and ,16. The poor results
obtained at the endpoints are further evidence of the diffculties of numerical differentiation, Newton's
original formula

1 2 1 3 1 4
y' (xó) = LlYo - 2 Ll Yo + '3 Ll Yo - 4 Ll Yo + . , ,

produces from this data the value ,32, which is worse than our .35. At the other extreme the

corresponding backward difference formula manages .25 which is much worse than our ,19.

21.22. Apply the formulas for approximate derivatives a second time to estimate y"(x), using the
data of Table 21.1.

We have already obtained estimates of the first derivative, of roughly two-place accuracy, They are
as follows:

x 1 2 3 4 5 6 7 8 9 10

y'(x) .35 ,33 .31 .27 .24 ,20 ,18 .17 ,16 .19
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Now applying the same formulas to the y'(x) values will produce estimates of y"(x). For example, at
x=5,

y"(5) = ;0 (-2(.31) - (.27) + (.20) + 2(.18)) = -.033

which is half again as large as the correct - ,022. Complete results from our formulas and correct values
are as folIows:

-y" (computed) .011 ,021 ,028 .033 .033 .026 ,019 .004 ,012 -0.32

-y" (correct) .250 .088 .048 .031 ,022 .017 .013 .011 .009 .008

Near the center we have an occasional ray of hope but at the ends the disaster is evident.

21.23. The least-squares parabola for seven points leads to the smoothing formula

3 4 2 6
Y(Xk) = Yk -7 D Yk - 21 D Yk

(The derivation is requested as a supplementary problem,) Apply this to the data of Table
21.1. Does it yield better values than the five-point smoothing formula?

A row of sixth differences may oe added to Table 21. 1:

40 -115 202 -242

Then the formula yields
3 2

y(4) = 2,00 - - (-.05) - - (.40) = 1.987 21
3 2

y(5) = 2,26 -7 (.28) - 21 (- 1. 15) = 2,25

and similarly y(6) = 2.46, y(7) = 2.65, These are a slight improvement over the results from the
five-point formula, except for y(4) which is slightly worse.

ORTHOGONAL POLYNOMIALS, OISCRETE CASE

21.24. For large N and m the set of normal equations may bebadly il-conditioned, To see this show
that for equally spaced Xi from 0 to 1 the matrix of coeffcients is approximately

1 1 . 1

1 - - " , -
2 3 m+1

1 1 1 1- - - " , -
2 3 4 m+2

................................ .0

1 1 1 1- - - " , -
m+1 m+2 m+3 2m + 1

if a factor of N is deleted from each term, This matrix is the Hilbert matrix of order m + 1.

For large N the area under y(x) =xk between 0 and 1 will. be approximately the sum of N
rectangular areas. (See Fig. 21-2,) Since the exact area is given by an integral, we have

1 N LI 1- ¿x7= xkdx=-Ni=o 0 k + 1
Thus Sk = N I(k + 1), and deleting the N we have at once the Hilbert matrix. This matrix will later be

shown to be extremely twublesome for large N.
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X2 XN

Fig,21.2

21.25. How can the Hilbert matrices bê avoided?

The preceding problem shows that the normal equations which arise with the basis 1, x, , . . , xmand
equally spaced arguments involve an approximately Hilbert matrix, which is troublesome. It is
computationally more effcient to find an orthogonal basis so that the corresponding normal equations
become triviaL. A convenient orthogonal basis is constructed in the next problem. It is interesting to
note that in developing this basis we will deal directly with the Hilbert matrix itself, not with
approximations to it, and that the system of equations encountered will be solved exactly, thus avoiding
the pitfalls of computing with il-conditioned systems, (See also Chapter 26,)

21.26. Construct a set of polynomials P rn,N(t) of degrees m = 0, 1, 2, , , , such that
N

2: P rn,N(t)Pn,N(t) = °
t=O

for m:?n

Such polynomials are called orthogonal over the set of arguments t,

Let the polynomial be

Pm,N(t) = 1 + cit + c2t(2) + ' , ,+ cmt(m)

where tU) is the factorial t(t - 1) , , , (t - i + 1). We first make the polynomial orthógonal to (t + s)(s) for
s = 0, 1, , . , , m -1, which me ans that we require

N

L (t+s)(S)Pm,N(t)=O
/=0

Since (t + s )'S) P";,N(t) = (t + S )(S) + c1(t + S)'S+I) + ' , , + cm(t + s)'s+m)

summing over the arguments t and using Problem 4,10 brings

N (N + s + 1)(S+I) (N + s + 1)(s+2) (N + s + 1)(s+m+1)
L (t +s)(S)Pm N(t) + CI +, . . + Cm, .. _.L 1 ~ i ..
1=0

which is to be zero. Removing the factor (N + s + l)(s+i), the sum becomes

1 Nci N(2)C2 N(m)cm-+-+-+"'+ 0s+l s+2 s+3 s+m+1
and setting NU)c¡ = a¡ this simplifies to

1 ai a2 am-+-+-+"'+-=0s+l s+2 s+3 s+m
for s = 0, 1, . , , , m - 1. The Hilbert matrix again appears in this set of equations, but solving the system
exactly wil stil lead us to a useful algorithm, If the last sum were merged into a single quotient it would
take the form Q(s)/(s + m'+ l)(m+l) with Q(s) a polynomial of degree at most m, Since Q(s) must be
zero at the m arguments s = 0, 1, . . , , m - 1, we must have Q(s) = Cs(m) where Cis independent of s,



256 LEAST-SQUARES POLYNOMIAL APPROXIMATION (CHAP, 21

To determine C we multiply both the sum and the equivalent quotient by (s + 1) and have

(ai am) Cs(m)1+ s+l -+...+ =( ) s + 2 s + m + 1 (s + 2) .. , (s + m + 1)

which must be true for all s except zeros of denominators, Setting s = - 1, we see that C =
m!/((-1)(-2)'" (-m)) = (_1)m. We now have

1 ai am (_l)'ns(m)--+-+,.,+ =
s + 1 s + 2 s + m + 1 (s + m + l)(m+i)

The device which produced C now produces the a¡. Multiply by (s + m + l)(m+l) and then set s = -i - 1
to find for i = 1, ' . . , m

and then solve for

(- 1Yi! (m - i)! a¡ = (- l)m( -i - l)lm) = (m + i)lm)

~m +i)(m) ""(m)(m + i)
a¡ = ( - 1 )'( _ ') l . l ( - 1)', .m i, i. i I

Recallng that a¡ = c¡N(i) , the required polynomials may be written as

Pm.N(t)= i (_ly(~)(m :i) ~
,=0 I I N(')

What we have proved is that each P m,N(t) is orthogonal to the functions

1 t+1 (t+2)(t+1) ,,' (t+m-1)(m-l)

but in Problem 4.18, we saw that the powers 1, t, t2, . , . ,tm-I may be expressed as combinations of
these, so that Pm.N(t) is orthogonal to each of these powers as weIl. FinaIly, since Pn,N(t) is a
combination of these powers we find Pm,N(t) and Pn,N(t) to be themselves orthogonaL. The first five of
these polynomials are

PO,N = 1

2t
P1,N= 1-N

6t 6t(t - 1)
P2,N= 1 -N+ N(N - 1)

P = 1 _ 12t + 30t(t - 1) _ 20t(t - l)(t - 2)3,N N N(N -: 1) N(N - l)(N - 2)

P _ 1 _ 20t 90t(t - 1) _ 140t(t - l)(t - 2) + 70t(t - l)(t - 2)(t - 3)4.N - N + N(N - 1) N(N - l)(N - 2) N(N - l)(N - 2)(N - 3)

21.27. Determine the coeffcients ak so that

p(x) = aOPO.N(t) + aiPi.N(t) + . . , + amPm.N(t)

(with t=(x-xo)/h) wil be the least-squares polynomial of degree m for the data (xtiYr),
t=O, 1"", N,

We are to minimize
N

S = L (Yt - aOPO,N(t) - . , , - amPm.N(t))21=0 ~
Setting derivatives relative to the ak equal to zero, we have

as N
-a = - 2 L (Yt - aOPO.N(t) - . , , - amPm.N(t))Pk.N(t) = 0ak 1=0
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for k = 0, 1, . . " m, But by the orthogonality property most terms here are zero, only two contributing,
N

2: (Yt - akPk.N(t))Pk.N(t) = 0
t=O

Solvirìg for ab we find
N

E y,Pk.N(t)
t=Oak=N
E P%.N(t)

1=0

This is one advantage of the orthogonal functions, The coeffcients ak are uncoupled, each appeàring in a
single normal equation, Substituting the ak into p(x), we have the least-squares polynomial.

The same result follows directly from the general theorem of Problems 21.7 and 21.8, Identifyiiig E,
S, y, (vi. v2), and IIVLL exactly as before, we now take Uk = Pk:~t) so that the orthogonal projection is
stil p = aouo + ' , , + amum, The kth normal equation is (Ub uk)ak = (y, Uk) a.nd leads to the expression
for ak already found, Our general theory now also guarantees that we have actually minimized S, and
that our p(x) is the unique solution, An argument using second derivatives could also establish this but
is now not necessary, N m N

21.28. Show that the minimum value of Stakes the form ¿ YT - ¿ Wka¡ where Wk = ¿ P¡,N(t),1=0. k=O 1=0
Expansion of the sum brings

N N m N m
S = 2: y; - 2 2: y; 2: akPk,N(t) + 2: 2: a¡akP¡.N(t)Pk,N(t)

,=0 '=0 k=O '=0 ¡,k=O

The second term on the right equals -2 E ak(Wkak) = - 2 E Wka~, The last term vanishes by thek=O k=O
orthogonality except when j = k, in which case it becomes E Wka~, Putting the pieces back together,

k=O

N m
Smin = 2: y; - 2: Wka~

'=0 k=O

Notice what happens to the minimum of S as. the degree m of the approximating polynomial is
increased. Since S is nonnegative, the first sum in Smin clearly dominates the second, But the second
increases with m, steadily diminishing the error. When m = n we know by our earlier work that a
collocation polynomial exists" equal to y, at each argument t = 0, 1, , . , , N. This reduces S to zero,

21.29. Apply the orthogonal functions algorithm to find a least-squares polynomial of degree three
for the following data:

Xi 0 1 2 3 4 5 6 7 8 9 10

Yi 1.22 1.41 1.8 1.42 1.48 1.58 1.84 1.79 2,03 2,04 2,17

.

Xi 11 12 13 14 15 16 17 18 19 20

y¡ 2,36 2.30 2,57 2,52 2,85 2,93 3,03 3,07 3,31 3.48

The coeffcients a¡ are computed directly by the formula of the preceding problem, For hand
computing, tables of the Wk and Pk.N(t) exist and should be used, Although we have "inside
information" that degree three is called for, it is instructive to go slightly further. Up through m = 5 we
find ao = 2.2276, a1 = - 1.1099, a2 = .1133, a3 = .0119, a4 = ,0283, a5 = -.0038; and with X = t,

p(x) = 2,2276 - 1.1099P1,20 + . 1133P2.20 + .0119P3.20 + ,0283P4.20 - .0038P5,20
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By the nature of orthogonal function expansions we obtain least-squares approximations of various
degrees by truncation of this result, The values of such polynomials from degree one to degree five are
given in Table 21.2 below, along with the original data. The final column lists the values of
y(x) = (x + 50)3/105 from which the data were obtained by adding random errors of size up to .10. Our
goal has been to recover this cubic, eliminating as much error as we can by least-squares smouthing,
Without prior knowledge that a cubic polynomial was our target, there would be some diffculty in
choosing our approximation. Fortunately the results do not disagree violently after the linear
approximation. A computation of the RMS error shows that the quadratic has, in this case,
outperformed the cubic approximation,

Degree 1 2 3 4 5
Raw
data

RMS ,060 .014 ,016 ,023 .023 .069

Table 21.2

Given ' Correct

x data 1 ,2 3 4 5 results

0 1.22 1.2 1.231 1.243 1.27 1.27 1.250

1 1.41 1.23 1.08 1.13 1.1 1.31 1.27
2 1.38 1.4 1.389 1.388 1.7 1.8 1.406

3 1.42 1.45 1.473 1.469 1.45 1.45 1.489

4 1.48 1.6 1.61 1.54 1.4 1.4 1.75
5 1.58 1.67 1.652 1.645 1.63 1.63 1.663

6 1.84 1.78 1.747 1.740 1.74 1.73 1.756

7 1.79 1.89 1.845 1.839 1.84 1.84 1.852

8 2.03 2,01 1.947 1.943 1.95 1.95 1.951

9 2,04 2,12 2,053 2,051 2,07 2,07 2,054

10 2,17 2,23 2,162 2.162 2,18 2,18 2.160

11 2.36 2,34 2,275 2,277 2.29 2.29 2,270

12 2,30 2.45 2,391 2,395 2.41 2.41 2.383

13 2.57 2.56 2,511 2.517 2.52 2.52 2,500

14 2,52 2,67 2,635 2,642 2,64 2.64 2.621

15 2.85 2,78 2.762 2.769 2.76 2,76 2.746

16 2.93 2.89 2,892 2,899 2.88 2.88 2,875

17 3.03 3.00 3.027 3.031 3,01 3,01 3.008

18 3.07 3.12 3,164 3,165 3.15 3.15 3,144

19 3,31 3,23 3.306 3.301 3,30 3,30 3.285

20 3.48 3.34 3.451 3.439 3.47 3,47 3.430

CONTNUOUS DATA, TUE LEAST-SQUARES POLYNOMIAL
21.30. Determine the coeffcients a¡ so that

1= fi (y(x) - aoPo(x) - aiPi(x) -, , , - amPm(x)f dx

wil be aminimum, the function Pk(x) being the kth Legendre polynomial.
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Here it is not a sum of squares which is to be minimized but an integral, and the data are no longer
discrete values y¡ but a function y (x) of the continuous argument x, The use of the Legendre polynomials
is very convenient. As in the previous section it wil reduce the normal equations, wh ich determine the
ab to a very simple set, And since any polynomial can be expressed as a combination of Legendre

polynomials, we are actually solving the problem of least-squares polynomial approximation for

continuous data. Setting the usual derivatives to zero, we have

Ò¡ fi
-ò = - 2 (y(x) - aoPo(x) -, . ,- amPm(x))Pk(x) dx = 0ak _)

for k = 0, 1, ' . . , m, By the orthogonality of these polynomials, these equations simplify at once to

( (y(x) - akPk(x))Pk(x) dx = 0

Each equation involves only one of the ak so that

r )i(x)Pk(x) dx 2k + 1 1-I I =-- f y(x)Pk(x) dx

L P~(x) dx 2_)
ak

Here again it is true that our problem is a special case of Problems 21.7 and 21.8, with these

identifications:

(v)' v2):

Ilvll:

E:

s:

y:

The space of real-valued functions on - 1 ~ x ~ 1

Polynomials of degree m or less

The data function y(x)

The scalar product Li Vi(X)V2(X) dx

The norm Li (V(X))2 dx

Pk(x)

akPO(X) +, , ,+ am Pm (x)

(y, Uk)/(Ub Uk)

Uk:

p:

These problems therefore guarantee that oUf solution p(x) is unique and does minimize the integral ¡,

ak:

21.31. Find the least-squares approximation to y(t) = P òn the interval (0, 1) by a straight line,

Here we are approximating a parabolic arc by a line segment. First let (= (x + 1)/2 to obtain the
interval (-1,1) in the argument x. This makes y=(x+1)z/4. Since Po(x) = 1 and Pi(x)=x, the
coeffcients ao and ai are

1 f) 1 1
ao = -2 4 (x + 1)2 dx =--I 3 3 f1 1 1

a) =2 _14(x + 1)2xdx =2

and the least -squares line is y = lPo(x) + ~P1 (x) = l + ~x = ( - l,

Both the parabolic arc and the line are shown in Fig, 21-3. The difference between y values on the
line and the parabóla is (2 - ( + t and this takes extreme values at ( = 0, t and 1 of amounts t --l, and
l. The error made in substituting the line for the parabola is therefore slightly greater at the ends than at
the center of the interval. This error can be expressed asIr 2 1 1 1

4 ~x + 1) - 3" Po(x) - 2 Pi(X) ="6 Pz(X)

and the shape of P2(x) corroborates this error behavior.
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Fig.21-3

21.32. Find the least-squares approximation to y(t) = sin ton the interval (0, n) by a parabola.

Let t = .i(x + 1)/2 to obtain the interval (- 1,1) in the argument x. Then y = sin (.i(x + 1)/2). The

coeffcients are

ao=! fi sin (.i(X + l)J dx =3.2 -I 2 .i
3 fi . (.i(X + l)Ja1 = 2 -1 sm 2 x dx = 0

a2 = ~ fl sin (.i(X + l)J ! (3x2 - 1) dx = 10 (1 _ 1~)2 -I 2 2 .i.i
so that the parabola is

y = 3. -t 10 (1 _ 12) ! (3x2 _ 1) = 3. + 10(1 _ 12) (~ (t - !!)2 _!J.i.i .i2 2 .i.i.i2.i2 2 2
The parabola and sine curve are shown in Fig, 21-4, with slight distortions to better emphasize the over
and under nature of the approximation.

y

--:;-~~

,
rr/2

Fig.21.4

21.33. What are the "shifted Legendre polynomials"?

These result from a change of argument which converts the interval (- 1, 1) into (0,1). Let
t = (1 - x)/2 to effect this change, The familiar Legendre polynomials in the argument x then become

1
P2 = 2 (3x2 - 1) = 1 - 6t + 6t2

1
P3 = 2 (5x3 - 3x) = 1 - 12t + 30t2 - 20t3

Po= 1

Pi=x=1-2t
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and so on. These polynomials are orthogonal over (0,1) and.we could have used them as the basis of
our least-squares analysis of continuous data in place of the standard Legendre polynomials, With this'
change of argument the integrals involved in our formulas for coeffcients become

1

f (Pn(t)Y dt = 2n + 1
ak = (2k + 1) f y(t)Pk(t) dt

The argument change t = (x + 1)/2 might also have been used, altering the sign of each odd-degree
polynomial, but the device used leads to a elose analogy with the orthogonal polynomials for the discrete
case developed in Problem 21.26,

21.34. Suppose that an experiment produces the curve shown in Fig, 21-5, It is known or suspected
that the curve should be a straight line, Show that the least-sqúares line is approximately

given by y = ,21t + ,11, which is shown dashed in the diagram,

.5 'y

.4

.3

.2

.1

.5

Fig.21-S

Instead of reducing the interval to (- 1, 1) we work directly with the argument t and the shifted

Legendre polynomials. Two coeffcients are needed,

ao = f y(t) dt a¡ = 3 f y(t)(l - 2t) dt

Since y(t) is not available in analytic form, these integrals must be evaluated by approximate methods,
Reading from the diagram, we may estimate y values as folIows:

.

t 0 ,1 .2 ,3 .4 ,5 .6 .7 ,8 .9 1.0

Y ,10 .17 .13 .15 ,23 .25 .21 ,22 .25 .29 .36

Applying Simpson's rule now makes ao = .214 and ai = - .105. The resulting line is

y = .214 - .105(1 - 2t) = .21t+.11

and this appears in Fig. 21-5. An alternative treatment of this problem could involve applying the
methods for discrete data to the y values read from the diagram.

CONTINUOUS DATA, A GENERALIZED TREATMENT

21.35. Develop the least-squares polynomial in terms of a set of orthogonal polynomials on the

interval (a, b) withnonnegative weight function w(x),
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The details are very similar to those of earlier derivations, We are to minimize

1= f w(x)(y(x)-aoQo(x)-' "-amQm(x)Ydx

by choice of the coeffcients ab where the functions Qk(X) satisfy the orthogonality condition

f w(x)Q¡(X)Qk(X) dx = 0

for j =1 k. Without stopping for the duplicate argument invoÍving derivatives, we appeal at once to
Problems 21.7 and 21.8, with the scalar product

(Vi' V2) = f W(X)V1(X)V2(X) dx

and other obvious identifications, and find

f w(x)Y(X)Qk(X) dx

f w(x)Q~(x) dx

With these ak the least-squares polynomial is p(x) = aoQo(x) +, , ,+ amQm(x),

ak

21.36. What is the importance of the fact that ak does not depend upon m?

This means that the degree of the approximation polynomial does not have to be chosen at the start
of a computation. The ak may be computed successively and the decision of how many terms to use can
be based on the magnitudes of the computed ak' In nonorthogonal developments a change of degree wil
usually require that all coeffcients be recomputed,

21.37. Show that the minimum value of I can be expressed in the formrb m rb
Ja w(x )y2(X) dx - ~o Wka1 where Wk = Ja w(x )Qt(x) dx

Explicitly writing out the integral makes

(b m (b m (bI = Ja w(x)y\x) dx - 2 ~o Ja w(x)y(x)akQk(x) dx + ¡,t,o Ja w(x)a¡akQj(x)Qk(X) dx

The secondterm on the right equals - 2 L ak(Wkak) = - 2 L Wka~, The last term vanishes by thek~ k~ .
orthogonality except when j = k, in which case it becomes L Wka~, Putting the pieces back together,

k~O

Imin = f~ W(X)y2(X) dx - L Wka~.
k~O

21.38. Prove Bessel's inequality, L Wka1 ~ r~ w(x )y2(X) dx,
k=O

Assuming w(x) ¡; 0, it follows that I ¡; 0 so that Bessel's inequality is an immediate consequence of
the preceding problem.

x
21.39. Prove the series I: Wkat to be convergent.

k=O

It is aseries of positive terms with partial sums bounded above by the integral in Bessel's inequality,
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This guarantees convergence, Of course, it is assumed all along that the integrals appearing in our
analysis exist, in other words that we are dealing with functions which are integrable on the interval
(a, b),

21.40. Is it true that as m tends to infinity the value of Imin tends to zero?

With the families of orthogonal functions ordinarily used, the answer is yes. The process is called
convergence in the mean and the set of orthogonal functions is called complete, The details of proof are
more extensive than will be attempted here.

APPROXIMATION WITH CHEBYSHEV POLYNOMIALS

21.41. The Chebyshev polynomials are defined for -1 ~x ~ 1 by T,(x) = cos (n arccosx). Find the
, first few such polynomials directly from this definition.

For n = 0 and 1 we have at once Ta(x) = 1, Ti(x) =x, Let A = arccosx, Then

Tz (x ) = cos 2A = 2 cos2 A - 1 = 2x2 - 1

7; (x ) = cos 3A = 4 cos3 A ~ 3 cos A ;= 4x3 - 3x, etc,

21.42. Prove the recursion relation Tn+i(x) = 2xT,(x) - Tn-i(x),
The trigonometric relationship cos (n + l)A + cos (n - l)A = 2 cos A cos nA translates directly into

T;+l(X) + T;-i(x) = 2xT;(x).

21043. Use the recursion to produce the next few Chebyshev polynomials

Beginning with n = 3,

:I(x) = 2x(4x3 - 3x) - (2x2 - 1) = 8x4 - 8x2 + 1

75 (x ) = 2x(8x4 + 1) - (4x3 - 3x) = 16x5 - 20x3 + 5x

16 (x ) = 2x(16x5 - 20x3 + 5x) - (8x4 - 8x2 + 1) = 32x6 - 48x4 + 18x2 - 1

Tj(x) = 2x(32x6 - 48x4 + 18x2 - 1) - (16x5 - 20x3 + 5x) = 64x? - 1l2x5 + 56x3 -7x etc,

m :fn

m=n:fO
m=n=O

Let x = cos A as before. The above integral becomes

r (cosmA)(cosnA)dA = (Sin (m +n)A + sin (m -n)AJ"o 2(m + n) 2(m - n) 0 = 0
for m :f n. If m = n = 0, the result 1C is immediate. If m = n =/ 0, the integral is

1" 2Ad (l(SinnACOSnAA)J'" n
cos n A = - + =-o 2 n 0 2

21.45. Express the powers of x in terms of Chebyshev polynomials,

We find

1 = Ta x = Ti
2 1x =2(To+ Tz)

1
x3 = 4" (3Ti + 7;)
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x4 = ~ (3 Ta + 4 Ti + '4)
1

x5 = 16(101; + 51; + 7;)

1
x6= 32 (lOTo + 15Ti + 6'4 + T6)

1
x7 = 64 (351; + 211; + 77; + T-)

and so on. Clearly the proces~ may be continued to any power.

21.46. Find the least-squares polynomial which minimizes the integral

f1 1-1 VI _ x2 (Y(x) - ao1ò(x) - , , , - am 

Tm(xW dx

By results of the previous section the coeffcients ak are

a L w(x)y(x)4(x)dx =~fI y(x)Tk(x)dx

L w(x)THx) dx n -1 Vi _x2

~xcept for ao which is ao=.!fI l(X) zdx. The least-squares polynomial is aoTo(x)+..,+amTm(x),n -1 i-x

21.47. Show that Tn(x) has n zeros inside the interval (-1,1) and none outside, What is the "equal-
ripple" property?

Since Tn(x) = cos n(J, with x = cos (J and - 1 ~x ~ 1, we may require 0 ~ (J ~ n without loss,
Actually this makes the relationship betwe.en (J and x more precise, Clearly T" (x) is zero for
(J = (2i + 1)n/2n, or

Xi = cos (2i + l)n2n ' i = 0, 1, , , . , n - 1

These are n distinct arguments between - 1 and 1. Since Tn(x) has only n zeros, there can be none
outside the intervaL. Being equal to a cosine in the interval (- 1, 1), the polynomial T" (x) cannot exceed
óne in magnitude there, It reaches this maximum size at n + 1 arguments, including the endpoints.

Tn(x) = (-1)' at
inx =cos-
n

i = 0,1, . , , , n

This oscilation between extreme values of equal magnitude is known as the equal-npple propert, This

property is ilustrated in Fig, 21-6 which shows Ti(x), 1;(x), T4(x), and 7;(x),

Fig.21.6
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21.48. In wh at way does the equal-ripple property make the least-squares approximation

y(x) = aoTo(x) + ' , . + am Tm (x)

superior to similar approximations using other polynomials in pi ace of the Tk(x)?

Suppose we assurne that, for the y(x) concerned, the series obtained by letting m tend to infinity
converges to y (x) and also that it converges quickly enough so that

y(x) - aoTa(x) - . , ,- am Tm (x) = am+lT,n+l(x)

In other words, the error made in truncating the series is essentially the first omitted term, Since Tm+1(x)
has the equal-ripple property, the error of oUf approximation wil fluctuate between am+i and

-am+i across the entire interval (- 1,1). The error will not be essentially greater over one part of the
interval compared with another. This error uniformity may be viewed as areward for accepting the
unpleasant weighting factor 1/Y1 - x2 in the integrals.

21.49. Find the least-squares line for y(t) = t2 over the interval (0, 1) using the weight function
llY1- x2.

The change of argument t = (x + 1)/2 converts the interval to (- 1, 1) in the argument x, and makes
y = Hx2 + 2x + 1). If we note ñrst the elementary result

fl P f nx "-dx- 0
_IY1-x2 -1 (cosAYdA=o n/2

o

p =0
p = 1

P =2
P =3

then the coeffcient ao becomes (see Problem 21.46) ao = ~G + 0 + 1) = i; and since y (x) Ti (x) is
~(X3 + 2x2 + x), we have a¡ = ~(O + 2 + 0) =!' The least-squares polynomial is, therefore,

3 1 3 1
8" 

Ta(x) 
+2 

Ti(x) =8" +2x
There is a second and much briefer path to this result. Using the results in Problem 21.45,

1 (1 1 . ) 3 1 1
y(x) = 4 2 Ta + 21; + 2Ti + Ta = 8" Ta + 2 Ti + 8" 1;

Truncating this after the linear terms, we have at once the result just found, Moreover we see that the
error is, in the case of this quadratic y(x), precisely the equal ripple function 1; (x )/8. This is, of course,
a consequence of the series of Chebyshev polynomials terminating with this term, For most functions the
error will only be approximately the first omitted term, and. therefore only approximately an equal-ripple
error. Comparing the extreme errors here (1, - 1, g) with tÌiose in Problem 21.31 which were (t - -b, i),

we see that the present approximation sacrifices some accuracy in the center for improved accuracy at
the extremes plus the equal ripple feature. Both lines are shown in Fig, 21-7,

Fig.21.7
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21.50. Find a cubic approximation in terms of Chebyshev polynomials for y(x) = sinx,

The integrals which must V computed to obtain the coeffcients of the least-squares polynomial
with weight function w(x) = 1/ 1 - x2 are too complicated in this case, Instead we wil ilustrate the
process of economization of polynomials. Beginning with

'. 1 3 1 5
smx=x --x +-x6 120

we replace the powers of x by their equivalents in terms of Chebyshev polynomials, using Problem21.45, '1 1 169 5 1
sinx = Ti - 24 (31; + T3) + 1920 (101; + 5T3 + Ts) = 1921; - 128 T3 + 1920 Ts

The coeffcients here are not exactly the ak of Problem 21.46 since higher powers of x from the sine

series would make further contributions to the 1;, T3, and Ts terms, But those contributions would be
relatively smalI, particularly for the early T" terms. For example, the x5 term has altered the Ti term by
less than 1 percent, and the x7 term would alter it by less than ,01 percent. In contrast the x5 term has
altered the T3 term by ab out 6 percent, though x7 wil contribute only about ,02 percent more, This

suggests that truncating our expansion will give us a elose approximation to the least-squares cubic,
Accordingly we take for our approximatidh

. 169 5
sm x =" 192 1; - 128 T3 = .9974x - . 1562x3

The accuracy of this approximation may be estimated by noting that we have made two "truncation
errors," first by using only three terms of the power series for sin x and second in dropping 1;, Both
affect the fourth decimal place, Naturally, greater accuracy is available if we seek a least-squares

polynomial of higher degree, but even the one we have has accuracy comparable to that of the
fifth-degree Taylor polynomial with which we began, Theerrors of our present cubic'and the Taylor
cubic, obtained by dropping the x5 term, are compared in Fig, 21-8. The Taylor cubic is superior near
Zero but the almost-equal-error property of the(almost) least-squares polynomial is evident and should

be compared with Ts(x),

Present
error

Fig.21.8

21.51. Prove that for m and n less than N,

N-l 1 0 m=ln
~ Tm(x¡) Tn(x¡) = N /2 m = n =1 0

N m =n =0

where X¡ = cosA¡ = cos ((2i + 1).n/2N), i = 0, 1, . , , , N - 1.
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From the trigonometric definition of the Chebyshev polynomials, we find directly
N-I N-I 1 N-1
Bi Tm(x¡)Tn(x;) = Bi cos mAi cos nA¡ = 2 Bi (cos (m + n )A¡ + cos (m - n )AJ

Since cos ai = G sin ~a)(~ sin a(i - m both cosine sums may be telescoped, It is simpler, however, to
note that except when m + n or m - n is zero each sum vanishes by symmetry, the angles A; being

equally spaced between 0 and :r, This already proves the result for m *' n. If m = n*,O the second sum
contributes N /2, while if m = n = 0 both sums together total N. It should be noticed that the Chebyshev
polynomials are orthogonal under summation as weIl as under integration. This is often a substantial
advantage, since sums are far easier to compute than integrals of complicated functions, particularly
when the factor V1 - x2 appears in the latter but not in the former,

21.52. What choice of coeffcients ak wil minimize

2: (y(x¡) - aoTo(x¡) - , , . - amTm(x¡)J2
Xi

where the X¡ are the arguments of the preceding problem?

With proper identification it follows directly from Problems 21.7 and 21.8 that the orthogonal
projection p = ao To + ' , , + am Tm determined by

¿ y(x;) Tk(x;)
¡

ak = ¿ (1k(x¡W

¡

provides the minimum, Using Problem 21.51 the coeffcients are

1
ao =NLY(x;)

i

2
ak =NLy(x;)Tk(x;)

i

k= 1"." m

For m = N - 1 we have. the collocation polynomial for the N points (x;, y(x;)) and the minimum sum is
zero.

21.53. Find the least-squares line for y(t) = t2 over (0, 1) by the method of Problem 21.52,

We have already found a line which minimizes the integral of Problem 21.46, To minimize the sum
of Problem 21.52, choose t = (x + 1)/2 as before. Suppose we use onlX two points, so that N = 2. These
points wil have to be Xo = cos :r/4 = 1/V2 and Xl = cos 3:r/4 = - 1/V2. Then

1 (1 i J 3
ao = 2 "8 (3 + 2V2) + "8 (3 - 2V2) ="8

1 (1) 1 ( 1) 1
a=-(3+2V2) - +-(3-2V2) -- =-18 ý2 8 ý2 2

and the line is given by p(x) = iTa + ~Ti = i + h, This is the same line as before and using a larger N
would reproduce it again. The explanation of this is simply that y itself can be represented inthe form
y = aoTa + alTi + ai'Fi and, since the Tk are orthogonal relative to both integration and summation, the
least-squares li ne in either sense is also available by truncation. (See the last paragraph of Problem
21.8, )

21.54. Find least-squares lines for y(x) =x3 over (-1, 1) by minimizing the sum of Problem 21.52,

In this problem the line we get will depend somewhat upon the number of points we use. First take
N = 2, which me ans that we use Xo = - XI = 1/V2 as before. Then

1 3 3
ao = 2 (xo + x I) = 0 4 4 1a1 =xo+x1 =-

2
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Choosing N = 3 we find Xo = 0/2, Xl = 0, and X2 = - 0/2. This makes

_ 1 3 3 3
ao -:3 (xo + Xl + X2) = 0

2 4 4 4 3
a1 =:3 (xo + Xl + X2) = 4"

Taking the general case of N points, we have X¡ = cos A¡ and

1 N-l
ao = - ¿: cos3 A¡ = 0

N.i~O

by the symmetry of the A¡ in the first and second quadrants. Also,

2 N-l 2 N-I (3 1 . 1 )
a1 =- ¿: cos4 A¡ = - ¿: - + -cos 2A¡ + -8 cos 4A¡N ¡=o N ¡~o 8 2

Since the A¡ are the angles n/2N, 3n/2N,.." (2N - 1):i/2N, the doubled angles are' n/N,
3n/N, . . , , (2N - l)n/N and these are symmetrically spaced around the entire circle. The sum of the
cos 2Ai is therefore zero, Except when N = 2, the sum of the cos 4A¡ will also be zero so that a¡ = t for
N = 2, Fm N tending to infinity we thus have trivial convergence to the line p(x) = 3Ti/4 = 3x/4,

If we adopt the minimum integral approach, then we find

1 fi x3' 2 fl x4 3ao=;; _IV1_x2dx=0 a1=;; _iV1-x2dx=4"

which leads to the same line,
The present example may serve as further elementary illustration of the Problem 21.52 algorithm,

but the result is more easily found and understood by noting that y = x3 = ~ Ti + ! ~ and once again
appealing to the corollary in Problem 21.8to obtain 3Ti/4 or 3x/4 by truncation, The truncation process
fails for N = 2 since then the polynomials Ta, Ti, Tz, ~ are not orthogonaL. (See Problem 21.51.)

21.55. Find least-squares lirres for y(x) = Ix! over (-1,1) by rninimizing the surn of Problem 21.52,

With N = 2 we quickly find ao = I/Vi, ai = O. With N = 3 the results ao = 1/0, a1 = 0 are just as
easy, For arbitrary N,

1 N-l 2 i
ao=- ¿: IcosA¡1 =- ¿: cosA¡. N ¡~o N¡=o

where I is (N - 3)/2 forodd N, and (N - 2)/2 for even N. This trigonometrie sum may be evaluated by

telescoping or otherwise, with the result

sin (nU + l)/NJao= .
N sin (n/2N)

It is a further consequence of symmetry that a1 = 0 for all N. Fm N tending to infinity it now follows
that

1
lim ao = lim N sin n /2N n

2

As m()re and more points are used, the limiting line is approached, Turning to the minimum integral
approach, we of course anticipate this same line. The computation produces

ao=.!fI ~dx=~
n _IV1-x2 n

a1=~fl ~dx=On -I Vl-x2
and so we are notdisappointed, The limiting line is the solid line in Fig, 21-9.

21.56. Apply the method of the previous problems to the experimentally produced curve of Fig.
21-5,
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-1

Fig.21.9

For such a function, of unknown analytic character, any of our methods must involve discretization
at some point. We have already chosen one discrete set of values of the function for use in Simpson's
rule, thus maintaining at least in spirit the idea of minimizing an intégral. We could have used the same
equidistant set of arguments and minimized a sumo With the idea of obtaining a more nearly
equal-ripple error, however; we now choose the arguments x¡ = cosA¡ = 2t¡ - 1 instead, With 11 points,
the number used earlier, the arguments, x¡ = cos A¡ = cos ((2i + 1).i/22) and corresponding t¡ as well as y¡
values read from the curve are as folIows:

x¡ .99 .91 .75 ,54 .28 .00 -,28 -.54 -.75 -.91 -.99

t¡ 1.00 .96 .88 .77 .64 .50 .36 ,23 .12 ,04 ,00

y¡ ,36 ,33 ,28 .24 .21 .25 .20 ,12 .17 ,13 ,10

The coeffcients become

1
ao = 11 2: y¡ = .22

2
a¡ = 11 2: x¡y¡ =.11

making the line p (x) = .22 + .11x = .22t +.11 which is almost indistinguishable from the earlier result.
The data inaccuracies have not warranted theextrà sophistication.

Supplementary.Problems

21.57. The average scores reported by golfers of various handicaps on a par-four hole were as folIows:

Handicap 6 8 10 12 14 16 18 20 22 24

Average 4.6 4.8 4,6 4,9 5,0 5.4 5.1 5.5 5.6 6,0

Find the least-squares line for this data.

21.58. Use the least-squares line of the preceding problem to smooth the reported data,

21.59. Estimate the rate at which the average score increases per unit handicap.

21.60. Find the least-squares parabola for the data of Problem 21.57. Does it differ noticeably from the line just
found?

21.61. When the x¡ and y¡ are both subject to errors of about the same size, it has been argued that the sum of
squares of perpendicular distances to a line should be minimized, rather than the surn of squares of
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vertical distances, Show that this requires minimizing

1 N
S = 1 M2 2: (y¡ - Mx¡ - B)2

+ ¡~o

Then-find the normal equations and show that M is determined by a quadratic equation, -

21.62. Apply the method of the preceding problem to the data of Problem 21.57, Does the new line differ very
much from the line found in that problem?

21.63. Find the least-squares line for the three points (xo, Yo), (Xl' Y1), and (X2, Y2) by the method of Problem
21.1. What is true of the signs of the three numbers y(x¡) - Y¡?

21.64. Show that for the data

x¡ 2.2 2,7 3,5 4.1

P; 65 60 53 50

tl:e introduction of Y = log P and computation of the least-squares line for the (x;, Y¡) data pairs leads
eventually to P = 91. 9X-.43.

21.65. Find a function of type P = AeMx for the data

x¡ 1 2 3 4

P; 60 30 20 15

21.66. Show that the least-squares parabola for seven points leads to the smoothing formula

1 4 6
Y(Xk) = Yk - 21 (9o Yk + 2o Yk)

by following the procedures of Problems 21.12 and 21.1~.

21.67. Apply the preceding formula to smooth the center four Y¡ values of Table 21. 1. Compare with the
correct roots and note whether or not this formula yields better results than the five-point formula,

21.68. Use the seven~point parabola to derive the appro~imate differentiation formula

Y'(Xk) =2~h ( - 3Yk-3 - 2Yk-2 -Yk-l +YÆ+i + 2Yk+2 + 3Yk+3)

21.69. Apply the preceding formula to estimate y'(x) for x = 4, 5, 6, and 7 from the y¡ values of Table 21.1.
How do the results compare with those obtained by the five-point parabola? (See Problem 21.19.)

21.70. The following are values of y(x) =x2 with random errors of from -.10 to ,10 added. (Errors were
obtained by drawing cards from an ordinary pack with face cards removed, black meaning plus and red
minus,) The correct values T; are also included,

x¡ 1.0 1. 1.2 1.3 1.4 1. 1.6 1. 1.8 1.9 2,0

y¡ .98 1.23 1.40 1.72 1.86 2.17 2,55 2,82 3,28 3,54 3.92

T; 1.00 1.21 1.44 1.69 1.96 2,25 2,56 2,89 3,24 3.61 -4,00
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Apply the smoothing formulas of Problem 21.13 and 21.15. Compare the RMS errors of the original and
smoothed values.

21.71. Apply the differentiation formula of Problem 21.18, for the center seven arguments. Also apply the
formula obtained from Stirling's polynomial (see Problem 21.19). Which produces better approxima-
tions to Y '(x) = 2x? Note that in this example the "true" function is actually a parabola, so that except
for the random errors which were introduced we would have exact results. Has the least-squares
para bola penetrated through the errors to any extent and produced information a~out the true y' (x)?

21.72. What is the least-squares parabola for the data of Problem 21.70? Compare it with y(x) =x2.

21.73. Use the formulas of Problem 21.20 to estimate y'(x) near the ends of the data supply given in Problem
21.70.

21.74. Estimate y"(x) from your computed y' (x) values,

21.75. The following are values of sinx with random errors of :-.10 to ,10 added, Find the least-squares
para bola and use it to compute smoothed values, Also apply the method of Problem 21.13 which uses a
different least-squares parabola for each point to smooth the data, Which works best?

x 0 ,2 .4 .6 ,8 1.0 1. 1.4 1.6

sinx -,09 ,13 .44 ,57 ,64 ,82 .97 .98 1.04

21.76. A simple and ancient smoothing procedure, which still finds use, is the method of moving averages, In
this method each value Yi is replaced by the average of itself and nearby neighbors. For example, if two
neighbors on each side are used, the formula is

1

Pi ="5 (Yi-2 + Yi-I + Yi + Yi+1 + Yi+2)

where Pi is the smoothed substitute for Yi' Apply this to the data of thepreceding problem, Devise a
method for smoothing the end values for which two neighbors are not available on one side,

21.77. Apply the method of moving averages, using only one neighbor on each side, to the data of Problem
21.75. The formula for interior arguments wil be

1

Pi = 3" (Yi-I + Yi + Yi+l)

Devise a formula for smoothing the end values,

21.78. Apply the formula of the preceding problem to the values y(x) = x3 below, obtaining the Pi values listed,

-
Xi 0 1 2 3 4 5 6 7

Y =x; 0 1 8 27 64 125 216 343

Pi 3 12 33 72 135 228

Show that these Pi values belong to a different cubic function, Apply the moving average formula to the
Pi values to obtain a second generation of smoothed values. Can you tell what happens as successive
generations are computed, assuming that the supply of Yi values is augmented at both ends indefinitely?
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21.79. Apply the method of moving averages to smooth the oscilating data below,

EB
0 1 2 3 4 5 6 7 8

I
0 1 . 0 -1 0 1 0 -1 0

What happens if higher generations of smooth vala.es are computed endlessly? It is easy to see that
excessive smoothing can entirely alter the character of a data supply,

21.80. Use orthogonal polynomials to find the same least-squares line found in Problem 21.2,

21.81. Use orthogonal polynomials to find the same least-squares parabola found in Problem 21.10,

21.82. Use orthogonal polynomials to find the least-squares polynomial of degree four for the square root data
of Problem 21.14, Use this single polynomial to smooth the data, Compute the RMS error of the
smoothed values, Compare with those given in Problem 21.17,

21.83. The following are values of eX with random errors of from -,10 to .10 added. Use orthogonal

polynomials to find.the least-squares cubic, How accurate is this cubic?

x 0 .1 ,2 .3 .4 .5 ,6 ,7 .8 ,9 1.0

y ,92 1.5 1.22 1.44 1.44 1.66 1.79 1.98 2,32 2,51 2.81

21.84. The following are values of the Bessel function Jo(x) with random errors of from - ,010 to .010 added,
Use orthogonal polynomials to find a least-squares approximation. Choose the degree you feel

appropriate, Then smooth the data and compare with the correct results which are also provided,

x 0 1 2 3 4 5 6 7 8 ! 9 10-

y(x) ,994 ,761 ,225 -,253 -.400 -,170 ,161 ,301 ,177 -,094 -,240
.

Correct 1.00 ,765 ,224 -,260 -.397 -.178 ,151 ,300 .172 -,090 -.246

21.85. Find the least-squares line for y(x) = x2 on the interval (- 1,1).

21.86. Find the least-squares line for y(x) = x3 on the interval (- 1,1),

21.87. Find the least-squares parabola for y(x) = x3 on the interval (- 1,1),

21.88. Find approximately the least-squares parabola for the function in Fig, 21-10, evaluating the integrals by
Simpson'srule, This curve should be imagined to be an experimental result which theory claims ought to
have been a parabola.

.8

.6

,4

,2

-1
Fig.21.10
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21.89. Show that the Chebyshev series for arcsin x is. 4( 1 1 1 )
arcsin x = ~ Ti + 9 Ti + 25 Ts + 49 T, + . , ,

by evaluating the coeffcient integrals directly. Truncate after T, to obtain the least-squares cubic for this
function, Compute the actual error of this cubic and compare with the first omitted term (the Ts term).
Notiee the (almost) equal-ripple behavior of the error.

21.90. Find the least-squares li ne for y(x) = x2 on the interval (- 1, 1) with weight function w(x) = itVi - x2,
Compare this line with the one found in Problem 21.85, Which oiie has the equal-ripple property?

21.91. Find the least-squares parabola for y(x)=x3 on the interval (-1,1) with weight function w(x) =
i/Vi - x2, Compare this with the parabola found in Problem 21.87.

21.92. Represent y(x) = e-x by terms of its power series through x7. The error wil be in the fifth decimal pi ace
for x ne ar one. Rearrange the sum into Chebyshev polynomials. How many terms can then be dropped
without seriously affecting the fourth decimal place? Rearrange the trundited polynomial into standard
form, (This is another example of economization of a polynomiaL.)

21.93. Show that for y(x)=T,(x)=cos(narccosx)=cosnA it follows that y'(x)=(nsinnA)/(sinA). Then
show that (1 - x2)y" -xy' + n2y = 0, which is the c1assieal differential equation of the Chebyshev
polynomials.

21.94. Show that Sn(x) = sin (n arccosx) also satisfies the differential equation of Problem 21.93.

21.95. Let Un(x) = Sn (x)/V1 _x2 and prove the recursion Un+i(x) = 2x Un (x) - Un-I(X),

21.96. Verify that Uo(x) = 0, Ui(x) = 1 and then apply the recursion to verify U2(x) = 2x, U3(x) = 4x2 - i,
U4(x) = 8x3 - 4x, Us(x) = 16x4 - 12x2 + 1, U6(x) = 32x5 - 32x3 + 6x, U7(x) = 64x6 - 80x4 + 24x2-1.

21.97. Prove Tm+nCx) + Tm-n(x) = 2Tm(x)Tn(x) ahd then put m = n to obtain

Tzn(x) = 2T~(x) - 1

21.98. Use the result of Problem 21.97 to find Tg, Ti6, and Ti2'

21.99. Prove ~ T~ = 2Tn-1 + ~ T~-2 and then deducen n-2
T~n+i = 2(2n + l)(Tzn + T2n-2 + ' , , + Tz) + 1 T~n = 2(2n )(Tzn-i + T2n-3 + ' . , + Ti)

21.100. Prove T2n+1 = x(2Tzn - 2T2n-2 + 2T2n-4 + . . , :l Ta).

21.101. Economize the result In (1 +x) = x - h2 + lx3 - lx4 + lx5 by rearranging into Chebyshev polynomials
and then retaining only the quadratic terms. Show that the final result In (1 + x) = +i + 1fx - ~X2 has
about the same accuracy as the fourth-degree part of the original approximation,

21.102. Economize the polynomial y(x) = 1 + x + lx2 + gX3 + f,x4, first representing it as a combination of
Chebyshev polynomials, then truÌicating to two terms. Compare the result with 1 + x + lx2, considering
both as approximations to eX, Which is the better approximation? In what sense?

21.103. Show that the change of argument x = 2t - 1, which converts the interval to (0,1) in terms of t, also
converts the Chebyshev polynomials into the following, which may be used instead of the c1assical
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polynomials if the'intervals (0, 1) is feit to be more convenient:

T;(x) = 1 Tt(x) = 2t - 1 Ti(x) = 8t2 - 8t + 1 Tj(x) = 32t3 - 48t2 + 18t - 1 etc,

Also prove the recursion T:dt) = (4t - 2)T:(t) - T:_1(t).

21.104. Prove r To(x) dx = T1(x), r I; (x) dx = lTi(x), and, for n? 1,

J T,(x) dx =! (Tn+I(X) - Tn-1(X)J2 n+1 n-1

21.105. Show that the same line found with N = 2 in Problem 21.53 also appears for arbitrary N.

21.106. Use the method of Problem 21.52 to obtain a leastesquares parabola for y(x) = x3 over (.:1,1) choosing
N = 3. Show that the same result is obtained for arbitrary N and also by the method of minimizing the
integral of Problem 21. 91.

21.107. Find the least-squares parabolas for y(x) = lxi over (- 1,1) and for arbitrary N. Also show that as N
tends to infinity this parabola approaches the minimum integral parabola.

21.1D8. Apply the method of Problem 21.52 to the experimental data of Fig. 21-10. Use the result to compute
smoothed values of y(x) at x = - 1(,2)1.

21.109. Smooth the following experimental data by fitting a least-squares polynomial of degree five:

t 0 5 10 15 20 25 30 35 40 45 50

y 0 ,127 ,216 ,286 .344 .387 .415 .437 .451 .460 .466

21.110. The following table gives the number y of students who made a grade of x on an examination, To use
these results as a standard norm, smooth the y numbers twice, using the' smoothing formula

1
P = 35 (- 3yo + 12Yi + 17Y2 + 12Y3 - 3Y4)

It is assumed that y = 0 for unlisted x values'.

x 100 95 90 85 80 75 70 65 60 55 50 45

y 0 13 69 147 208 195 195 126 130 118 121 85

x 40 35 30 25 20 15 10 5 0

Y 93 75 54 42 30 34 10 8 1

21.111. Find the least-squares polynomial of degree two for the following data. Then obtain smoothed values,

x .78 1.6 2.34 3,12 3.81

y 2.50 1.20 1.2 2,25 4.28



Chapter 22

Min-Max Polynomial Approximation

DISCRETE DATA

The basic idea of min-max approximation by polynomials may be ilustrated for the ca se of a

discrete data supply Xi' Yi where i = 1, , . . , N. Let p(x) be a polynomial of degree n or less and let
the amounts by which it miss es our data points be hi = P(Xi) - Yi' Let H be the largest of these
"errors," The min-max polynomial is that particular p(x) for which H is smallest. Min-max
approximation is also called Chebyshev approximation, The principal results are as folIows:

1. The existence anduniqueness of the min-max polynomial for any given value of n may be
proved by the exchange method described below, The details wil be provided for the case
n = 1 only,

2, The equal.error property is the identifying feature of a min-max polynomial. Calling this
polynomial P(x), and the maximum error

E = max IP(xJ - y(xJI

we shall prove that P(x) is the only polynomial for which P(xJ - y(xJ takes the extreme
values ::E at least n + 2 times, with alternating sign,

3, The exchange method is an algorithm for finding P(x) through its equal-error property,
Choosing some initial subset of n + 2 arguments Xu an equal-error polynomial for these data
points is found, If the maximum. error of this polynomial over the subset chosen is also its
overall maximum H, then it is P(x), If not, some point of the subset is exchanged for an
outside point and the process is repeated, Eventual convergence to P(x) wìl be proved,

CONTINUOUS DATA

For continuous data y(x) it is almost tradition al to begin by recallng a classical theorem of
analysis, known as the Weierstrass theorem, which states that for a continuous function y(x) on an
interval (a, b) there wil be a polynomial p(x) such that

Ip(x) - y(x)1 ~ E

in (a, b) for arbitrary positive E, In other words, there exists a polynomial which approximates y(x)
uniformly to any required accuracy, We prove this theorem using Bernstein polynomials, which have
the form

Bn(x) = i PnkY(~)
k=O

where y(x) is a given function and

Pnk = G)Xk(1- xy-k

Our proof of the Weierstrass theorem involves showing that lim Bn (x) = y (x) uniformly for n tending
to infinity, The rate of convergence of the Bernstein polynomials to y(x) is often disappointing,
Accurate uniform approximations are more often found in practice by min-max methods,

The essential facts of min-max methods somewhat parallel those for the discrete case.

1. The mIn-max approximation to y (x), among all polynomials of degree n or less, minimizes
the max Ip(x) - y(x)f for the given interval (a, b),

2, It exists and is unique.

275
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3, It has an equal-error property, being the only such polynomial for which p(x) - y(x) takes

extreme values of size E, with alternating sign; at n + 2 or more arguments in (a, b), Thus
the min-max polynomial can be identified by its equal-error property, In simple examples it
may be displayed exactly, An example is the min-max line when y"(x) ? 0, Here

P(x)=Mx +B

B =y(a) + y(xi)
2

'( ) y(b)~y(a)y Xi = b -a

with M=y(b)-y(a)b -a
(a + xi)(y(b) - y(a))

2(b - a)

and Xi determined by

The three extreme points are a, Xi, and b, Ordinarily, however, the exact result is not
within reach and an exchange method must be used to produce a polynomial which comes
close to the equal-error behavior,

4, Series of Chebyshev polynomials, when truncated, often yield approximations having almost

equal-error behavior. Such approximations are therefore almost min-max, if not entirely
adequate by themselves, they may be used as inputs to the exchange method ~hich then
may be expected to converge more rapidly than it would from a more arbitrary start,

TUE INFINITY NORM
The underlying theme of this chapter is to minimize the norm

lIy-pll",
where y represents the given data and p the approximating polynomial.

Solved Problems

DISCRETE DATA, TUE MIN-MAX UNE

22.1. Show that for any three points (Xi' Y;)with the arguments Xi distinct, there is exactly one
straight line which misses all three points by equal amounts and with alternating signs, This is
the equal-error line or Chebyshev line.

Lety(x) = Mx + B represent an arbitrary line and let h¡ = y(x¡) - 1' = Y¡ - 1' be the "errors" at the
three data points, An easy calculation shows that, since Y¡ = Mx¡ + B, for any straight line at all

(X3 - X2)Y1 - (X3 - X1)Y2 +(X2 - X1)Y3 = 0

Defining ß1 =X3 -X2, ß2 =X3 -xi' ß3 =X2 -Xi, the above equation becomes

ß1Y1 - ß2Y2.+ ß3Y3 = 0

We may take it that Xl O:X2 O:X3 so that the three ß's are ppsitive numbers, We are to prove that there is
one line for which

h1 =h h2= -h h3=h

making the three errors of equal size and alternating sign, (This is what wil be meant by an
"equal-error" line,) Now, if a line having this property does eXiist, then

Y1 = 1' +h Y2= Y;-h Y3=l'+h
and substituting above,

ß1(1' + h) - ß2(Y; - h) + ß3(l' + h) = 0

Solving for h,
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h = ß1 Yi - ß2 Y; + ß3 Y.,

ßi + ß2 + ß3

This already proves that at most one equal-error li ne can exist and that it must pass through the three
points (Xi' Yi + h), (X2' Y2 - h), (x3, Y3 + h) for the value h just computed. Though normally one asks a
line to pass through only two designated points, it. is easy to see that in this special ca se the three points

do fall on a line. The slopes of Pi P2 and P2P3 (where Pi' P2, fJ, are the three points taken from left to

right) are

Y;-YI-2h
and y',-Y;+2h'

X2-Xi X3 -Xi

and using our earlier 'equàtions these are easily proved to be the same. So there is exactly one
equal-error, or Chebyshev, line,

22.2. Find the equal-error line for the data points (0,0), (1,0), and (2. 1),

First we find ßi = 2 - 1 = 1, ß2 = 2 - 0 = 2, ß3 = i - 0 = 1, and then compute

(1)(0) - (2)(0) + (1)(1) = _ ~
1+2+1 4

The line passes through (0, -;\, (1, n, and (2, Ü and so has the equation y(x) = 4x - j. The li ne and
points appear in Fig, 22-1,

h =

Yi

.

x
2

Fig.22-1

22.3. Show that the equal-error line is also the min-tnax line for the three points (Xi' Y¡),

The errors of the equal-error line are h, -h, h, Let hi, h2, h3 be the errors for any other line, Also

let H be the largest of Ih11, Ih21, Ih31. Then using our earlier formulas,

h = _ ßi Yi - ß2 Y; + ß3 Yi =
ßi + ß2+ ß3

ß¡(i - hi) - ß2(Y2 - h2) + ß3(Y3 - h3)

ßi + ß2 + ß3

where Y1' Y2' Y3 here refer to the "any other line," This rearranges to

(ß1Y1 - ß2Y2 + ß3Y3) - (ßihi - ß2h2 + ß3h3)

ß1 + ß2 + ß3
h=

and the first term being zero we have a relationship between the h of the equal-error li ne and the
h1, h2, h3 of the other line,

h = ßihi - ß2h2 + ß3h3
ß1 + ß2 + ß3

Since the ß's are positive, the right side of this equation wil surely be increased if we replace hi, h2, h3
by H, -H, H, respectively, Thus Ihl ~ H, and the maximum error size of the Chebyshev line, which is
Ihl, comes out no greater than that of any other line.
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22.4. Show that no other line can have the same ¡tnaximum error as the Chebyshev line, sothat the
min-max line is unique,

Suppose equality holds in our last result, Ihl = H, This means that the substitution of H, -H, H
which produced this result has not actually increased the size of ß1h1 - ß2h2 + ß3h3' But this can be true
only if h1, h2, h3 themselves are all of equal sii:e Hand alternating sign, and these are the features which
led us to the three points through which the Chebyshev line passes, Surely these are not two straight
lines through these three points, This proves that the equality Ihl = H identifies the Chebyshev line. We
have now proved that the equal-error line and the min-max line for three points are the same,

22.5. Ilustrate the exchange method by applying it to the following data:

o 1

o

2 6

8
GJ
(T o 1 2

We wil prove shortly that there exists a unique min-max line for N points, The proof uses the
exchange method, which is also an excellent algorithm for computing this line, and-so this method will
first be ilustrated, It involves four steps.

Step 1. Choose any three of the data points, (A set of three data points will be called a tripIe, This
step simply selects an initial tripIe, It wil be changed in Step 4,)

Step 2, Find the Chebyshev line for this tripIe. The value h for this line wil of course be computed
in the process,

Step 3, Compute the errors at all data points for the Chebyshev line just found, Call the largest of
these h¡ values (in absolute value) H. If Ihl = H the search is over, The Chebyshev line for the tripIe in
hand is the min-max line for the entire set of N points, (Weshall prove this shortly.) If Ihl ~ H proceed
to Step 4,

Step 4, This is the exchange step. Choose a new tripIe as folIows, Add to the old tripIe a data point
at whieh the greatest error size H occurs, Then discard one of the former points, in such a way that the
remaining three have errors of alternating sign, (A moments practice wil show that this is always
possible.) Return, with the new tripIe, to Steps 2 and 3,

To ilustrate, suppose we choose for the initial tripIe

(0,0) (1,0) (2,1)

consisting of the first three points. This is the triple of Problem 22,2, for which we have already found
the Chebyshev line to be y = h - ~ with h = -~, This completes Steps 1 and 2, Proceeding to Step 3 we

find the errors at all five data points to be -t t -t t ~. This makes H = h4 =~, This Chebyshev line is
an equal-error line on its own tripIe but it riisses the fourth data point by a larger amount, (See the
dashed line in Fig, 22-2.)

y

////e////////

x4 5 G

Fig.22-2
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Moving therefore to Step 4 we now include the fourth point and eliminate the first to obtain the
new.triple

(1,0) (2,1) (6,2)
on which the errors of the old Chebyshev line do have the required alternation of sign (L -L ~), With
this tripIe we return to Step 2 and find a new Chebyshev line. The computation begins with

ß1=6-2=4 ß2=6-1=5 ß3=2-1=1

h = _ (4)(0) - (5)(1) + (1)(2) ~4+ 5 + 1 10
so that the line must pass through the three points (1, -f,), (2, lõ), and (6, ~), This line is found to be
y = ~x - lo. Repeating Step 3 we find the five errors -lo, -f, --f, -f, --f; and since H = -f = Ihl, the job

is done,
The Chebyshev line for the new tripie is the min-max line for the entire point set. Its maximum

error is -f The new line is shown solid in Fig, 22-2, Notice that the Ih I value of our new line (-f) is larger
than that of the first line (l). Butover the entire point set the maximum error has been reduced from ~
to -f, and it is the min-max errot. This wil now be proved for the general case,

22.6. Prove that the condition Ih I = H in Step 3 of the exchange method wil be satisfied eventually,
so that the method wil stop, (Conceivably we could be making exchanges forever.)

Recall that after any particular exchange the old Chebyshev line has errors of size Ihl, Ihl, H on the
new tripIe, Also recall that Ih I oe H (or we would have stopped) and that the three errors alternate in
sign, The Chebyshev line for this new tripIe is then found, Call its errors on this new tripIe h*, -h*, h*,
Returning to the formúla for h in Problem 22.3, with the old Chèbyshev li ne playing the role of "any
other line," we have

ßihi - ß2h2 + ß3h3

ßi + ß2 + ß3

where hl1 h2, h3 are the numbers h, h, H with alternating sign. Because of this alternation of sign all
three terms in the numerator of this fraction have the same sigrì, so that

h*

ßi Ihl + ß21hl + ß3H
ßi + ß2 + ß3

if we assurne that the error H is at the third point, just to be specific. (It really makes no differencé in
which position it goes.) In any event, Ih*l? Ihl because H? Ihl, The new Chebyshev line has a greater
error size on its tripIe than the old one had' on its tripIe, This result now gives excellent service. If it
comes as a surprise, look at it this way. The old line gave excellent service (h = l in our example) on its
own tripIe, but poor service (H = ~) elsewhere. The new line gave good service (h = -f) on its own tripie,
and just as good service on the other points also,

We can now prove that the exchange method must come to a stop sometime. For there are only so
many tripies, And no tripIe is ever chosen twice, since as just proved the h values increase steadily. At
some stage the condition Ih I = H wil be satisfied.

Ih*1

22.7. Prove that the last Chebyshev line computed in the exchange method is the min-max line for
the entire set of N points.

Let h be the equal-error value of the last Chebyshev line on its own tripie, Then the maximum error
size on the entire point set is H = Ih i, or we would have proceeded by another exchange to stil another
tripIe and another line, Leth1, h2, . . , , hN be the errors for any other line, Then Ih I oe max Ih¡1 where h¡

is restricted to the three points of the last tripIe, because no line outperforms a Chebyshev line on its
own tripIe. But then certainly Ih I oe max Ih¡j for h¡ unrestricted, for including the rest of the N points can

only make the right side even bigger. Thus H = Ihl oe max Ih¡j and the maximum error of the last
Chebyshev line is the smallest maximum error of alL. In summary, the min-max li ne for the set of N
points is an equal-error line on a properly chosen tripIe,
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22.8. Apply the exchange method to find the min-max line for the following data:

Xi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y, 0 1 1 2 1 3 2 2 3 5 3 4 5 4 5 6

Xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Y, 6 5 7 6 8 7 7 8 7 9 11 10 12 11 13

The number of available tripIes is C(31, 3) = 4495, so that finding the correct one might seem
comparable to needle-hunting in haystacks. However, the exchange method wastes very little time on
inconsequential tripIes. Beginning with the very poor tripIe at X = (0, 1, 2) only three exchanges are
necessary to produce the min-max line y(x) = ,38x - ,29 which has coeffcients rounded off to two
places, The successive tripIes with hand H values were as folIows:

TripIe at x: = (0, 1, 2) (0, 1, 24) (1, 24, 30) (9,24,30)

h .250 .354 -1.759 -1.857

H 5.250 3,896 2.448 1.857

Note that in this example no unwanted point is ever brought into the tripIe, Thr~e points are needed,
three exchanges suffce. Note also the steady increase of Ih I, as forecast. The 31 point!', the min-max
line, and the final tripIe (dashed verticallines show the equal errors) appear in Fig, 22-3,

y

15

5

x

10 -

10 15 20 25 30

Fig.22.3

DISCRETE DATA, TUE MIN-MAX POLYNOMIAL
22.9. Extend the exchange method to find the min-max parabola for the data below,

BB
-2 -1 0 l 2

Yi 2 1 0 1 2

The data are of course drawn from the function Y = lxi but this simple function wil serve to
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ilustrate how all the essential ideas of the exchange method carry over from the straight-li ne problems
just treated to the discovery of a min-max polynomial. The proofs of the existence, uniqueness, and
equal-error properties of such a polynomial are extensions of Dur proofs for the min-max line and will
not be given. The algorithm now begins with the choice of an "initial quadrupIe" and we take the first
four points, at x = - 2, - 1, 0, 1. For this quadrupIe we seek an equal-error parabola, say

Pi(x) = a + bx + cx2

This me ans that we require p(x¡) - y¡ = ::h alternately, or

a-2b+4c-2= h

a - b + c - 1 =-h
a -0= h
a + b + c - 1 =-h

Solving these four equations, we find a = t b = 0, c = l, h = l so that Pi(x) = l + !x2. This completes the

equivalent of Steps 1 and 2, and we turn to Step 3 and compute the errors of our parabola at all five da ta
points. They are t -l, l, -l, l so that the maximum error on the entire set (H = l) equals the maximum

on our quadrupIe (Ihl = l). The algorithm is ended and our first parabola is the min-:max parabola. It is
shown in Fig. 22-4.

y

i-I
x

Fig.22-4

22.10. Find the min-max parabola for the seven points y = lxi, x = -3(1)3,

This adds two more points at the ends of our previous data supply. Suppose we choose the same
initial quadrupIe as before. Then we again have the equal-errör parabola Pi(x) of the preceding
problem, Its ,errors at the new data points are ~ so that now H = ~ while Ihl = l. Accordingly we
introduce om~ of the new points into the quadrupIe and abandon x = - 2. On the new quadrupIe the old
parabola has the errors -l, l, -l, ~ which do alternate in sign, Having made the exchange, a new

equal-enor para bola

P2(X) = a2 + b2x + C2X2

must be found, Proceeding as in the previous problem we so on obtain the equal error h2 = -l and the

parabola P2(X) = l(1 +x2). Its errors at the seven data points are l, -l, -l, l, -l, -l, l so that

H = Ihl = l and the algorithm stops, The parabola P2(X) is the min-max parabola, The fact that all
errors are of uniform size is a bonus, not characteristic of min-max polynomials generally, as the

straight-li ne problems just solved show,

CONTINUOUS DATA, THE WEIERSTRASS THEOREM

22.11. 'Prove that ktp~"J(k - nx) = 0 where P~J = G)xk(l- xt-k,
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The binomial theorem for integers n and k,

(p + qf = i (n)pkqn-k
k~O k

is an identity in p and q, Differentiating relative to p brings

n(p + qf-i = i (n)kpk-1qn-k
k~O k

Multiplying by p and then setting p = x, q = 1 - X, this becomes nx = t kp~1. Using the same p and q
in the binomial theorem itself shows that 1 = I: p~1 and so finally k=O

n

2: p~Wk - nx) = nx - nx = 0
k~O

n

22.U. Prove also that :¿ p~1Jk - nxf = nx(1~ x),
k=O

A second differentiation relative to p brings

n(n - l)(p + qf-2 = i (n)k(k - 1)pk-2qn-k
k~O k

Multiplying by p2 and then setting p = x, q = 1 - x, this becomes
n

n(n - 1)x2 = 2: k(k - 1)p~1
k~O

from which we find
n n
2: k2p~1 = n(n - 1)x2 + 2: kp~1 = n(n - 1)x2 + nxk=O k~O

Finally we compute
n

2: p~;(k - nx)2 = 2: ep~1- 2nx 2: kp~; + n2x2 2: p~1
k=O

= n(n - 1)x2 + nx - 2nx(nx) + n2x2 = nx(l - X)

22.13. Prove that if d ? 0 and 0 ~ x ~ 1, then

" ' (x) c: x(1 - x).. Pnk = nd2

where ¿' is the sum over those integers k for which I (k / n ) - x I ~ d, (This is a special case of
the famous Chebyshev inequality,)

Breaking the sum of the preceding problem into two parts

nx(l -x) = 2:/ p~1(k - nx? + 2:" p~1(k - nx)2

where I:" includes those integers komitted in I: /, But then

nx(l- x) ~ 2:/ p~1(k - nx)2

~ 2:' p~1n2d2

the first of these steps being possible since I:" is nonnegative and the second be.cause in I:' we find
Ik - nxl ~nd. Dividing througr by n2d2, we have the required result.

22.14. Derive these estimates for ¿' and ¿",

1,,' (x)c:_
.. Pnk = 4nd2

1,," (x)::1 ---.. Pnk = 4nd
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The function x(l - x) takes its maximum at x = l and so o;; x(l - x) ;; ~ for o;; x ;; 1. The result for
E' is thus an immediate consequence of the preceding problem, But then Eil = 1 - E' ¡; 1 - (1/4nd2),

n
22.15. Prove that if fex) is continuous for o~x ~ 1, then lim ¿ p~1f(k/n) = fex) uniformly as ntends to infinity, k=O .

This wil prove the Weierstrass theorem, by exhibiting a sequence of polynomials

Bn(x) = 'i p~1t(~)k=O n
whieh converges uniformly to f(x), These polynomials are called the Bernstein polynomials for f(x).
The proof begins with the choiee of an arbitrary positive number E. Then for Ix' - x I ~ d,

E
If(x') - f(x)1 ~2

and d is independent of x by the uniform continuity of f(x). Then with M denoting the maximum of
If(x)l, we have

IBn(x) - f(x)1 = l¿:p~1(f(~) - f(x) J I

;;¿:' p~1If(~) - f(x) 
I + ¿:"p~11t(~) - f(X)1

¿:' 1 ¿:"::2M p(X)+-E p(x)- nk 2 nk

with kIn in the Eil part playing the role of x'. The definition of Eil guarantees lx' - xl ~ d. Then

(2M) 1IBn(x) - f(x)l;; 4nd2 +2 E

1 1::-E+-E=E-2 2
for n suffciently large. This is the required result. Another interval than (0, 1) can be accommodated by
a simple change of argument,

22.16. Show that in the case of fex) = x2, Bn(x) = x2 + x(1 - x )/n so that Bernstein polynomials are
not the best approximations of given degree to f(x). (Surely the best quadratic approximation
to f(x) = x2 is x2 itself,)

Since the sum E ep~1 was found in Problem 22.2,

Bn(x) = 'i p~1t(~) = 'i p~1:2 = \ (n(n - 1)x2 + nx) = x2 + x(l - x)k=O n k=O n n n
as required, The uniform convergence for n tending to infinity is apparent, but dearly Bn(x) does not
duplicate x2, We now turn to a better dass of uniform approximation polynomials.

CONTINUOUS DATA, TUE CUEBYSUEV TUEORY

22.17. Prove that if y(x) is continuous for a ~ x ~ b, then there is a polynomial P(x) of degree n or
less such that max ip(x) - y(x)1 on the interval (a, b) is a minimum, In other words, no other
polynomial of this type produces a smaller maximum,

Let p(x) = ao + aiX +. . ,+ anxn by any polynomial of degree n or less. Then

M(ã) = max Ip(x) - y(x)1
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depends on the polynomial p(x) chosen, that is, it depends upon the coeffcient set (ao, a¡, . , . ,an)
which we shall call a asindicated, Since M(a) is a continuous function of a and nonnegative, it has a
greatest lower bound. Call this bound L. What has to be proved is that for some particular coeffcient set
A, the coeffcients of P(x), the lower bound L is actually attained, that is, M(A) = L. By way of
contrast, the function J(t) = 1ft for positive t has greatest lower bound zero, but there is no argument t
for which J(t) actually attains this bound. The infinite range of t is of course the factor which allows this
situation to occur. In our problem the coeffcient set a also has unlimited range, but we now show that
M(A) = L never!heless, To begin, let a¡ = Cb; for i = 0, 1, . . . , n in such a way that L: b¡ = 1. We may
also write a = Cb. Consider a second function

m(b) = max Ibo + b¡x + ' . , + bnxni

where max refers as usual to the maximumof the polynomial on the interval (a, b). This is a continuous
function on the unit sphere L: b¡ = 1. On such a set (closed and bounded) a continuous function does
assurne its minimum value. Call this minimum tJ. Plainly tJ ~ O. But the zero value is impossible since
only p(x) = 0 can produce this minimum and the condition on the b¡ temporarily excludes this
polynomial. Thus tJ :: 0, But then

m(a) = max lao + a1x + . , , + anxn I = max Ip(x)1 = Cm(b) ~ CtJ

Now returning to M(a) = max Ip(x) - y(x)l, and using the fact that the absolute value of a difference
exceeds the difference of absolute values, we find

M(a) ~ m(a) - max ly(x)1

~ CtJ - max ly(x)1

If we choose C::(L+1+maxly(x)l)ftJ=R, then at on ce M(a)~L+1. Recalling that L is the
greatest lower bound of M(a), we see that M(a) is relatively large for C:: Rand that its greatest lower
bound under the constraint C ~ R wil be this same number L. But this constraint is equivalent to
L: a¡ ~ R, so that now it is again a matter of a continuous function M(a) on a closed and bounded set (a
solid sphere, or ball). On such a set the greatest lower bound is actually assumed, say at a = A, Thus
M(A) is L, and P(x) is a min-max polynomial.

22.18. Let P(x) be a min-max polynomial approximation to y(x) on the interval (a, b), among all
polynomials of degree n or less. Let E = max ¡y(x) - P(x)¡, and asSurne y(x) is not itself a
polynomial of degree n or less, so that E :; 0, Show that there must be at least one argument
for which y(x) - P(x) = E, and similarly for -E, (We continue to assurne .r(x) continuous,)

Since y(x) - P(x) is continuous for a ~x ~ b, it must attain either ::E somewhere. We are to prove

E

a b

-E
I

Fig.22-5



CHAP.22) MIN-MAX POL YNOMIAL APPROXIMATION- 285

where d is positive, and so

that it must achieve both, Suppose that it did not equal E anywhere in (a, b). Then

max (y(x) - P(x)) = E - d

-E~y(x) - P(x)~ E - d

i (lJ 1-E+-d~y(x)- P(x)--d ~E--d2 2 . 2But this can be written as

which fiatly claims that P(x) - ld approximates y(x) with a maximum error of E - ld. This contradicts
the original assumption that P(x) itself is a min-max polynomial, with maximum error of E. Thus
y(x) - P(x) must equal E somewhere in (a, b), A very similar proof shows it must also equal -E.
Figure 22,5 illustrates the simple idea of this proof. The error y(x) - P(x) for the min-max polynomial
cannot behave as shown solid, because raising the curve by ld then brings a new error curve (shown
dashed) with a sm aller maximum absolute value of E - ld, and this is a contradiction.

22.19. Continuing the previous problem, show that, for n = i, approximation by linear polynomials,
there must be a third point at which the error I y (x) - P(x) I of a min-max P(x) assurnes its
maximum value E,

Let y(x) - P(x) = E(x) and divide (a, b) into subintervals small enough so that for xi' X 2 within any

subinterval,
1

IE(xi) - E(X2)1 ~2 E

Since E(x) is continuous for a~x~b, this can surely be done. In one subinterval, call it /1' we know
the error reaches E, say at x = x +. It follows that throughout this subinterval,

IE(x) - E(x+)1 = IE(x) - EI ~ lE

making E(x) ~ lE, Similarly, in one subinterval, call it 12, we find E(x _) = - E, and therefore
IE(x)1 ~ -lE, These two subintervals cannot therefore be adjacent and so we can choose a point U1

between them, Suppose that li is to the left of 12, (The argument is almost identical for the reverse
situation.) Then Ui - x has the same sign as E(x) in each of the two subintervals discussed. Let

R = max IUi -xl in (a, b).
Now suppose that there is no third point at whieh the error is :JE, Then in all but the two

subintervals just discussed we must have

max IE(x)l-: E

and since there are finitely many subintervals,

max (max IE(x)l) = E* -: E

Naturally E* ~ lE since these subintervals extend to the endpoints of /1 and /2 where IE(x)1 ~ lE.

Consider the following alteration of P(x), still a linear polynomial:

P*(x) = P(x) + E(U1 -x)

If we choose E sm all enough so that ER -: E - E* ~ lE, then P*(x) becomes a better approximation
than P(x), For,

Iy(x) - P*(x) = IE(x) - E(U1 -x)1

so that in /1 the error is reduced but is stil positive while in /2 it is increased but remains negative; in
both subintervals the error size has been reduced, Elsewhere, though the error size may grow, it cannot
exceed E* + ER -: E, and so P*(x) has a sm aller maximum error than P(x). This contradiction shows
that a third point with error :JE must exist. Figure 22-6 illustrates the simple idea behind this proof, The
error curve E(x) cannot behave like thesolid curve (only two :JE points) because adding the linear
correction term E(Ui - x) to P(x) then diminishes the error by this same amount, leading to a new error
curve (shown dashed) with smaller maximum absolute value.
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E

ba

-E

Fig.22.6

22.20. Show that for the P(x) of the previous problem there must be three points at ",hich errors of
size E and with alternating sign occur.

The proof of the previous problem is already suffcient, If, for example, the signs were +, +, -,
then choosing ÙI between the adjacent + and - our P*(x) is again better than P(x), The pattern
+, -, - is covered by exactly the same remark, Only the alternation of signs can avoid the

contradiction,

22.21. Show that in the general cåse of the min-max polynomial of degree n or less, there must be
n + 2 points of maximum error size with alternating sign,

The proof is ilustrated by treating the case n = 2. Let P(x) be a min-max polynomial of degree two
or less, By Problem 22.18 it must have at least two points of maximuIÍi error. The argument of Problems
22,19 and 22,20, with P(x) now quadratic instead of linear but with no otherchanges, then shows that a
third such point must exist and signs roust alternate, say +, -, + just to be definite, Now suppose that
no fourth position of maximum error occurs, We repeat the argument of Problem 22,19, choosing two
points U1 and U2 between the subintervals 11,12, and 13 in which the errors ::E occur, and using the

correction term E(U¡ - X)(U2 -- x), which agrees in sign with E(x) in these subintervals. No other

changes are necessary, The quadratic P*(x) wil have a smaller maximum error than P(x), and this
contradietion proves that the fourth ::E point must exist. The alternation of sign is established by the
same argument used in Problem 22,20, and the extension to higher values of n is entirely similar.

22.22. Prove that there is just one min-max polynomialfor each n,

Suppose there were two, P1(x) and P2(x). Then

-E ~y(x) - Pi (x) ~ E

Let P3(x) = l(p¡ + Pz). Then

-E ~y(x) - P2(x) ~ E

-E ~y(x) ~ P3(X)~ E

and P3 is also a min-max polynomiaL. By Problem 22,21 there must be a sequence of n + 2 points at
which y(x) - P3(x) is alternately ::E. Let P3(x+) = E. Then at x+ we have y - P3 = E, or

(y - PI) + (y - P2) = 2E

Since neither term on the left can exceed E, each must equal E. Thus p¡(x+) = P2(x_). Similarly
P1(x-) = P2(x-), The polynomials p¡ and P2 therefore coincide at the n + 2 points and so are identicaL.
This proves the uniqueness of the min-max polynomial for each n,

22.23. Prove that a polynomial p(x) of degree n or less, for which the error y(x) - p(x) takes
alternate extreme values of :le on a set of n + 2 points, must be the min-max polynomial.
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This wil show that only the min-max polynomial can have this equal-error feature, and it is useful
in finding and identifying such polynomials, We have

max Iy(x) - p(x)1 =e?;E = max Iy(x) - P(x)¡

P(x) being the unique min-max polynomiaL. Suppose e :; E, Then since

P-p= (y -p) + (P-y)
we see that, at the n + 2 extreme points of y - p, the quantities P - P and y - p have the same sign,
(The first term on the right equals e at these points and so dominates the second,) But the sign of y - p
alternates on this set, so the sign of P - p does likewise, This is n + 1 alternations in all and means n + 1
zeros for P - p. Since P - p is of degree n or less it must be identically zero, making p = P and E = e,
This contradiets our supposition of e:; E and leaves us with the only alternative, namely e = E. The
polynomial p(x) is thus the (unique) min-max polynomial P(x),

CONTINUOUS DATA, EXAMPLES OF MIN-MAXPOLYNOMIALS
22.24. Show that on the interval ( -1, 1) the min-max polynomial of degree n or less for y (x) = xn + i

can be found by expressing xn+i as a sum of Chebyshev polynomials and dropping the

Tn+i(x) term,

Let
xn+1 = ao1ò(x) + ' , , + an Tn(x) + an+i Tn+1(x) = p(x) + an+1 Tn+1(x)

Then the error is

E(x) =xn+I - p(x) = an+iTn+1(x)

and we see that this error has alternate extremes of i:an+1 at the n + 2 points where Tn+i = i:1. These
points are Xk = cos (kn/(n + 1)), with k = 0, 1, , , , , n + 1. Comparing coeffcients of xn+I on both sides
above, we also find that an+i = 2-n, (The leading coeffcient of Tn+1(x) is 2n. See Problems 21.42 and
21.43,) The result of Problem 22,23 now applies and shows that p(x) is the min-max polynomial, with
E = i-n, As ilustrations the sums in Problem 21.45 may be truncated to obtain

1 Tz
n= 1 x2=-1ò Error=i

2

3 ~n=2 x3 =- T¡ Error=-
4 4

1 '4n=3 x4 =8 (31ò + 4Tz) .Error=-
8

1 Tsn=4 x5 = 16 (LOT¡ + 5~) Error = 16

and so on. Note that in each case the min-max polynomial (of degree n or less) is actually of degree
n - 1.

22.25. Show that in any se ries of Chebyshev polynomials f ai T;(x) each partial sum Sn is the
i=O

min-max polynomial of degree n or less for the next sum Sn+i, (The interval is again taken to
be (-1,1),)

lust as in the previous problem, but with y(x) = Sn+i(X) and p(x) = Sn (x), we have

E(x) = Sn+I(X) - Sn (x) = an+ITn+i(x)

The result of Problem 22,23 again applies, Note also, however, that Sn_I(X) may not be the min-max
polynomial of degree n - 1 or less, since an T" + an+1Tn+1 is not necessarily an equal-ripple function. (It
was in the previous problem, however, since an was zero,)
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22.26. Use the result of Problem 22,24 to economize the polynomial y(x) = x - ix3 + liox5 to a cubic
polynomial, for the interval (-1,1),

This was actually accomplished in Problem 21.50, but we may now view the result in a new light.
Since 1 3 1 5 169 5 1

x -(ix + 120x = 192 Ti - 128 ~ + 1920 Ts

the truncation of the Ts term leaves us with the min-max polynomial of degree four or less for y(x),
namely

169 5
P(x) =-x -- (4x3 - 3x)192128

This is stil only approximately the min-max polynomial of the same degree for sin x. Further
truncation, of the ~ term, would not produce a min-max polynomial for y(x), not exactly anyway.

22.27. Find the min-max polynomial of degree one or less, on the interval (a, b), for a function y(x)
with y"(x) ? 0,

Let the polynomial be P(x) = Mx + B. We must find three points x i ~ X2 ~ X3 in (a, b) for which
E(x) = y(x) - P(x) attains its extreme values with alternate signs. This puts X2 in the interior of (a, b)
and requires E'(X2) to be zero, or y'(X2) = M, Since y";: 0, y' is strictly increasing and can equal M only
once, which means that X2 can be the only interior extreme point. Thus Xl = a and X3 = b, Finally, by the
equal-ripple property,

y(a) - P(a) = -(Y(X2) - P(X2)J = y(b) - P(b)

Solving, we have

M =y(b) - y(a) B =y(a) + Y(X2) _ (a +x2)(y(b) - y(a)J .b - a 2 2(b - a)
with X2 determined by y , (x2) = (y(b) - y(a )J/(b - a),

22.28. Apply the previous problem to y(x) = -sin x on the interval (0, :r /2),

We find M = -2/¡r first; and then from y'(X2) = M, X2 = arccos (2/¡r). Finally,

B = _! ~1 - 4 +.!arccos3.2 ¡r2 ¡r ¡r
and from P(x) = Mx + B we find . 2x IR 1 2

sm x = - + - 1 - - + - arccos-¡r 2 ¡r2 ¡r ¡r

the approximation being the min-max line,

22.29. Show that P(x) = x2 + l is the min-max cubic (or less) approximation to y (x) = Ix lover the
interval (-1,1).

The error is E(x) = Ixl- x2 - l and takes the extreme values -l, t -L L -l at x = - 1, -t 0, t 1.

These alternating errors of maximal size E = l at n + 2 = 5 points guarantee (by Problem 22,23) that
P(x) is the min-max polynomial of degree n = 3 or less, .

22.30. Use the function y (x) = eX on the interval (-1, 1) to ilustrate the exchange method for finding
a min-max line,

The method of Problem 22.27 would produce the min-max line, but for a simple first ilustration,
we momentarily ignore that method and proceèd by exchange, imitating the procedure of Problem 22.5.
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Since we are after a line, we need n + 2 = 3 points of niaxmuID.error :1£. Try x = - 1, 0, 1 for an initial
tripIe, The corresponding values of y(x) are about .368, 1, and 2,718, The equal-error li ne for this tripIe
is easily found to be

P1(X) = 1.75x + 1.272

with errors h = :1,272 on the tripIe, Off the tripIe, a computation of the error at intervals of ,1 discovers a
maximum error of size H = ,286 (and negative) at x = ,2. Accordingly we form a new tripie, exchanging
the old argument x = 0 for the new x = .2, This retains the alternation of error signs called for in Step 4
of the exchange method as presented earlier, and whieh we are now imitating, Ol1 the new tripIe y(x)
takes the values ,368, 1.221, and 2.718 approximately, The equal-error line is found to be

P2(X) = 1. 75x + 1. 264

with errors h = :1,278 on the tripIe. Off the tripIe, anticipating maximum errors near x = ,2, we check
this neighborhood at intervals of ,01 and find an error of ,279 at x = ,16. Since we are carrying only
three places, this is the best we can expect. A shift to the tripIe x = - 1, ,16; 1 would actually reproduce
P2(X),

Let us now see what the method of Problem 22,27 manages, With a = - 1 and b = 1 it at once
pro duces M=(2.718-,368)/2=1.175, Then the equation y'(x2)=eX2=1.175 leads to x2=.16, after
which the result B = 1.264 is direct. The line is shown in Fig, 22-7 below, with the vertical scale
compressed,

-1 .2

Fig.22.7

22.31. Use the exchange method to find the min-max quadratic polynomial for y(x) = eX over
(-1,1),

Recallng that truncation of aseries of Chebyshev polynomials often leads to nearly equal ripple
errors resembling the first omitted term, we take as our initial quadrupIe the four extreme points of
13(x), which are x = :11, :1!. The parabolawhieh misses the fourpoints

x -1 1 I
1-2 2

eX ,3679 ,6065 1.6487 2.7183

alternately by :1h proves to have its maximum error at x = ,56, The new quadrupIe (-1, -,5, .56, 1)
then leads to a second parabola with maximum error at x = -,44, The next quadrupIe is (-1, -,44,
,56,1) and proves to be our last, Hs equal-ripple parabola is, to five decimal places,

p(x) = ,55404x2 + 1.3018x + .98904

and its maximum error both inside and outside the .quadruple is H = ,04502,
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Supplementary Problems

DISCRETE DATA
22.32. Show that the least-squares line for the three data points of Problem 22,2 is y(x) = h - g, Show that its

errors at the data arguments are t ~l, g, The Chebyshev line was found to be y(x) = h - l with errors
of -l, l, -l, Verify that the Chebyshev line does have the sm aller maximum error and the least-squares
line the smaller sum of errors squared.

22.33. Apply the exchange method to the average golf scores in Problem 21.2, producing the min-max line.
Use this line to compute smoothed average scores. How do the results compare with those obtained by
least squares?

22.34. Apply the exchange method to the data of Problem 21.5, obtaining the min-max li ne and then the
corresponding exponential function P(x) = AeMx.

22.35. Obtain a formula y(x) = Mx + B for the Chebyshev li ne of an arbitrary tripIe (xi' Yi), (X2, Y2), (X3' Y3)'

Such a formula could be useful in programming the exchange method for machine computation.

22.36. Show that if the arguments Xi are not distinct, then the min-max line may not be uniquely determined.
For example, consider the three points (0,0), (0,1), and (1,0) and show that alliines between Y = ~ and

Y = ~ - x have H =~. (See Fig. 22-8.)
I iJ

(0,1)

---------- y = l
"-, ,

(0,0)1 -, '(1,0)
" ,y=l-x

x

Fig.22.8

22.37. Find the equal-erròr parabola for the four points (0,0), (n/6, !), (n/3, 0/2), and (n/2, 1) ofthe curveY = sinx, .
22.38. Find the min-max parabola for the five points Y = x3, X = o(l 1.

22.39. Use the exchange method to obtain the min-max parabola for the seven points Y =cosx, x =
0(n/12)n/2, What is the maximum error Ihl of this parabola? Compare its accuracy with that of the
Taylor parabola 1 - h2,

22.40. Extend the exchange method to obtain the min-max cubic polynomial for the seven points Y = sin x,
x = 0(n/12)n/2, What is the maximum error Ihl of this cubic? Compare its accuracy with that of the
Taylor cubic x - gX3.

CONTINUOUS DATA

22.41. Find the min-max polynomial of degree five or less for y(x) =x6 on the interval (-1,1). What is the
error?

22.42. What is the min-max polynomial of degree two or less for Y (x) = Ta + Ti + 1; + Ti and what is its error?
Show that Ta+ Ti is not, however, the min-max line for y(x), by showing that the error of this
approximation is not equal-ripple.

22.43. Find the min-max polynomial of degree five or less for y(x) = 1 - ~X2 + i4x4 - 7iox6 and wh at is its error?

(The interval is (-1, l).J
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22.44. Apply Problem 22.27 tofind the min-max line over (0, n12) for y(x) = -cosx.

22.45. Does the method of Problem 22,27 work for y(x) = lxi over (- 1; 1), or does the discontinuity in y'(x)
make the method inapplicable?

22.46. Use the exchange method to find the min-max line for y(x) = cos x over (0, nI2). Work to three
decimal places and compare with that found by another method in Problem 22.44.

22.47. Use the exchange method to find the min-max parabola for y(x) = cosx over (0, n12), (You may want
to use the extreme points of 1;(x), conyerted by a change of argument to the interval (0, nI2), as'an
initial quadrupIe, J

22.48. Find a polynomial of minimum degree which approximates y(x) = cosx over (0, n12) with maximum
error ,005, Naturally, roundoff error will limit the precision to whieh the polynomial can bedetermined,

22.49. Prove that the min-max polynomial approximation to f(x) = 0, among all polynomials of degreè n with
leading coeffcient 1, is 21~nT,(x). The interval of approximation is taken to be (-1,1), This is covered
by Problems 22.17 to 22.23, but carry out the details of the following historical argument. Let

p(x) =xn + aiXn~l +'" + an

be any polynomial of the type described, SinceT,(x) = cos (n arccosx), we have

max 121~nTn(x)1 = 21-n

Notice that this polynomial takes its extreme values of :l21-n alternateiy at the arguments Xk = cos knln,
where k = 0,1, . , . , n. Suppose that some polynomial p(x) were such that

max /p(x)1 .: 21-n

P(x) = p(x) - 21-nT,(x)and let

Then P(x) is of degree n - 1 or less and it does not vanish identically since this would require

max Ip(x)1 = 21-n, Consider the values P(Xk)' Since p(x) is dominated by 21-nT,(x) at these points, we

see that the P(Xk) have alternating signs, Being continuous, P(x) must therefore have n zeros between
the consecutive Xk' But this is impossible for a polynomial of degree n - 1 or less which does not vanish
identically, This proves that max Ip(x)1 ~2I-n.

22.50. Values of y(x) = e(t+2)14 are given in the table below. Find the min-max parabola for this data, Wh at is
the min-max error?

.x -2 -1 0 1 2

y(x) 1.0000 1.2840 1.6487 2.1170 2,7183

22.51. What is the minimum degree òf a polynomial approximation to eX on the interval (- 1, 1) with maximum
error .005 or less?

22.52. The Taylor series for In (1 + x) converges so. slowly that hundreds of terms would be needed for
five-place accuracy over the interval (0, 1). What is the maximum error of

p(x) = ,999902x - .497875x2 + ,317650x3 -. 193761x4 + .085569x5 - .018339x6

on this same interval?

22.53. Approximate y (x) = 1 - x + x2 - x3 + x4 - x5 + x6 by a polynomial o( minimum degree, with error not
exceeding ,005 in (0, 1),

22.54. Continue the previous problem to pro du ce a minimum degree approximation with error at most .1.



Chapter 23

Approximation by Rational Functions

COI:LOCATION

Rational functions are quotients of polynomials and so constitute a much richer class of functions
than polynomials, This greater supplyincreases the prospects for accurate approximation, Functions
with polës, for instance, can' hardly be expectedto respond weIl to efforts at polynomial

approximation, since polynomials do not have singularities, Such functions are a principal target of
rational approximation, But even with nonsingular functions there are occasions when rational
approximations may be preferred,

Two types of approximations wil be discussed, the procedures resembling those used for
polynomial approximation, Collocation at prescribed arguments is one basis for selecting a rational
approximation, as it is for polynomials, Continued fractions and reciprocaZ differences are the main

tools used, The continued fractions involved take the form

Y(X)=Yi+
p¡+

P2 - Yi + x -X4
P3 - p¡ + P4 - P2

which may be continued further if required, It is not too hard to see that this particular fraction
could be rearranged into the quotient oftwo quadratic polynomials, in other words, a rational
function, The P coeffcients are called reciprocal dierences, and are to be chosen in such a way that
collocation is achieved, For the present example we shall find that

X2-Xi X3-X2Pi=- P2-YI=Y2 - Yi X3 -Xi l2 -Xl

X -Xl

X -X2
X -X3

Y3 - Y¡ Yi - Yi

with similar expressions for P3 and P4' The term reciprocal difference is not unnatural.

MIN-MAX

Min-max rational approximations are also gaining an important place in applications, Their
theory, including the equal-error property and an exchange algorithm, paralleis that of the
polynomial case, For example, a rational function .

iR(x)--a+bx
can be found which miss es three specified data points (Xi, Yi) alternately by :fh, This R(x) wil be the
min-max rational function for the given points, in the sense that

max IR(xa - yd = h

wil be smaller than the corresponding itaxima when R(x) is replaced by other rational functions of
the same form, If more than three points are specified, then an exchange algorithm identifies the
min-max R(x), The analogy with the problem of the min-max polynomial is appareni,

PADÉ APPROXIMATIONS

These take the form
Pm (x)

Rmn(x) = Qn(x)

292
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with Pm and Qn polynomials of degree m and n, respectively, The normalization Qn(O) = 1 is
customary, To approximate a giyen function y(x), Padé suggested making y and Rmn agree in value
at some specified point, together with their first N derivatives, where N = m + n. This provides N + 1
conditions for determ,ining the remaining N + 1 coeffcients of Pm and Qn' The point in question is
usually taken to be x = 0, by a suitable translation of argument if necessary, The parallel with the
Taylor polynomial of y(x) at x = 0 is evident and in fact the Taylor polynomial is RNO' As it turns
out, more accuracy is achieved for a given N by choosing m = n + 1 or m = n, that is, by numerator
and denominator polynomials of more or less equal degree,

Solved Problems

TUE COLLOCATION RATIONAL FUNCTION

23.1. Find the rational function y(x) = I/(a + bx) given that y(I) = 1 and y(3) = 1,

Substitution requires a + b = 1 and a + 3b = 2, which force a = b = l, The required function is
y(x) = 2/(1 + x), This simple problem ilustrates the fact that finding a rational function by collocation is
equivalent to solving a set of linear equations for the unknown coeffcients,

23.2. Also find rational functions yz(x) = Mx + Band Y3(X) = c + d/x which have y(I) = 1 and
y(3) = 1,

The linear function Y2(X) = (5 -x)/4 may be found by inspection, For the other we need to satisfy
the coeffcient equations c + d = 1, 3c + d = ~ and this means that c = t d = t making Y3(X) =
(x+ 3)/4x, We now have three rational functions whieh pass through the three given points. Certainly
there are others, but in a sense these are the simplest, At x = 2 the three functions offer us the

interpolated values ~, t and i, Inside the interval (1,3) all "three resemble each other to some extent,
Outside they differ violently, (See Fig, 23-1.) The diversity of rational functions exceeds that of
polynomials and it is very helpful to have knowledge of the type of rational function required,

----~"
I"- i 2 3 4 5 X

\
\
\
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¡

\
\

\
\

\
i

Fig.23.1
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23.3. Suppose it is known that y(x) is of the form y(x) = (a + bx2)/(c + dx2), Determine y(x) by the
requirements y(O) = 1, y(I) = i, y(2) = ~,

Substitution brings the linear system

a =c
2

a + b =3"(c + d)
5

a + 4b = "9 (c + 4d)

Since only the ratio of the two polynomials is involved one coeffcient may be taken to be. 1, unless it
later proves to be 0, Try d = 1. Then one discovers that a = b = c = t and y(x) = (1 + x2)/(1 + 2x2),
Note that the rational function Y2(X) = 10/ (10 + 6x - x2) also includes these three points, and so does

Y3(X) = (x + 3)/(3(x + 1)).

CONTINUED FRACTIONS AND RECIPROCAL DIFFERENCES

23.4. Evaluate the continued fraction

y=I+ x-I
-3+~

-3

x
at x = 0, 1, and 2

Direct computation shows y(O) = 1, y(l) =~, and y(2) =~, These are again the values of the

previous problem, The point here is that the structure of a continued fraction of this sort makes these
values equal to the successive "convergents" of the fraction, that is, the parts obtained by truncating the
fraction before the x and x-I terms and" of course, at the end. One finds easily that the fraction also-
rearranges into our YJ(x),

23.5. Develop the connection between rational functions and continued fractions in the case

() ao + aiX + a2x2y x - -
- bo + bix + b2x2

We follow another historieal path, Let the five data points (Xi' yJ for i = 1, , . , , 5 be given, For
collocation at these points,

ao - boY + aix - bixy + a2x2 - b2x2y = 0

for each Xi, y¡ pair. The determinant equation

1 y X xy x2 x2y

1 YI XI X1Y1 x~ X~Y1

1 Y2 X2 XZY2 xi x2y2 21=0
1 Y3 X3 X3Y3 x~ X~Y3

1 Y4 X4 X4Y4 x¡ X¡Y4

1 Ys Xs XsYs x~ x~Ys

clearly has the required features. The second row is now reduced to 1,0,0,0,0,0 by these operations:

Multiply column 1 by Y1 and subtract from column 2,

Multiply column 3 by Y1 and subtract from column 4,

Multiply column 5 by Y1 and subtract from column 6.

Multiply column 3 by Xl and subtract from column 5.

Multiply column 1 by Xl and subtract from column 3.
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At this point the determinant has been replaced by the following substitute:

1 Y -Y1 X-Xi x(y - Yi) x(x -Xl) x2(y - Y1)

1 0 0 0 0 0

1 Y2-Y1 X2-X¡ X2(Y2 - Y1) X2(X2 -Xl) X~(Y2 - Yi)

1 Y3 - Yi X3-Xi X3(Y3 - Y1) X3(X3 -Xl) X~(Y3 - Y1)

1 Y4-Y1 X4-Xi X4(Y4 - Y1) X4(X4 -Xl) X¡(Y4 - Y1)

1 YS-Y1 XS-Xi xs(Ys - Y1) xs(xs -xi) x~(ys - Y1)

Expand this determinant by its second row and then

Divide row 1 by Y - Y1'

Divide row i by Yì - Yi, for i = 2,3,4,5,

Introducing the symbol Pi(XX¡) = X - Xi , the equation may now be written as
Y-Yi

1 Pi(XX1) X XPi(XX1) x2

1 Pi(X2Xi) X2 X2P1(X2X1) x~

1 Pi(X3X1) X3 X3P1(X3Xi) x~ i =0

1 Pi(X4Xi) X4 X4P1(X4X1) x¡

1 P1(XSX1) XS XSPi(XSX1) x~

The operation is now repeated, to make the secorid row 1,0,0,0,0:

Multiply column 1 by P1(X2X¡) and subtract from column 2.

Multiply column 3 by P¡(X2Xi) and subtract from column 4.

Multiply column 3 by X2 and subtract from column 5,

Multiply column 1 by X2 and subtract from column 3,

The determinant then has this form:

1 P¡(XXI) - P¡(X2X¡) X -X2 X(P1(XX1) - P1(X2X1)) x(x - xz)

1 0 0 0 0

1 P¡(X3X¡) - Pi(XZX¡) X3 -Xz X(P¡(X3Xi) - P1(X2Xi)) X3(X3 -xz)

1 P¡(X4X¡) - P¡(X2Xi) X4 -X2 x(P¡(X4Xi) - P1(XZX1)) X4(X4 - xz)

1 p¡(xsx,) - Pi(X2X¡) Xs -X2 X(P1(XSXi) - P¡(X2Xi)) xs(xs - X2)

Expand by the second row, and then

Divide row 1 by p¡(xx,) - P¡(X2X¡),

Divide row i by P¡(Xi+'X¡) - P,(X2X,), for i = 2,3,4,

An additional step is tradition al at this point in order to assure a symmetry property of the P quantites
to be defined. (See Problem 23,6,)

Multiply column 1 by Y, and add to column 2,

Multiply column 3 by Y, and add to ccìlumn 4.
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Introducing the symbol P2(XXiX2)
( ~ - X2 ( ) + Yi, the equation has now been reduced toPi XXI - p¡ X2Xi

1

1

1

1

P2(XX¡X2)

P2(X3XiX2)

P2(X4XiX2)

P2(XSXiX2)

x XP2(XX ¡X2)

X3 X3P2(X3XiX2)

X4 X4P2(X4X¡X2)

Xs XSP2(XSXiX2)

=0

Another similar reduction pro duces

1 P3(XXiX2X3) x

1 P3(X4XiX2X3) x41 = 0

1 P3(XSXiX2X3) Xs

where P3(XXiX2X3)
X -X3

P2(XXiX2) - P2(X3XiX2) + Pi(XiX2)

Finally, the last reduction manages

11 P4(XXiX2X3X4) 1=01 P4(XSX ¡X2X3X4)

where
X -X4

P4(XX1X2X3X4) = ( ) ( ) + P2(X ¡X2X3)
P3 XX¡X2X3 - P3 X4X2X3X1

We deduce that P4(XXiX2X3X4) = P4(XSXiX2X3X4)' The various p;'s just introduced are called reciprocal

differences of order i, and the equality of these fourth-order reciprocal differences is equivalent to the

determinant equation with which we beganand which identifies the rational function we are seeking,
The definitions of reciprocal differences now lead in a natural way to a continued fraction, We find

successively

X-XiX-Xi -Y + X-X2+--¡Y = Yi P1(XXi) Pi(X2Xi) + P2(XXiX2) _ Yi

X-Xi
X -X2

X-Xl
X -X2

X -X3

where, in the last denominator, the equality of certain fourth differences, which was the culmination of
our extensive determinant reduction, has finally been used. This is what makes the above continued
fraction the required rational function. (Behind all these computations there has been the assumption
that the data points do actually belong to such a rational function, and that the algebraic procedure will
not break down at some point. See the problems for exceptional examples.)

23.6. Prove that reciprocal differences are symmetric,

For first-order differences it is at once clear that Pi(X¡X2) = p¡(x2x¡). For second-order differences
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one verifies first that

+y¡
X3 -Xl X2 -Xl

X3 -X2 X3-X¡ X2-Xi
+ Y2 = . + Y3X3-X2 X1-X2 X2-X3 X¡-X3

Y3 - Y¡ Y2 - Y1 Y3 - Y2 Y¡- Y2 Y2 - Y3 Y1 - Y3

from which it follows that in P2(X1X2X3) the Xi may be permuted in any way, For higher-order differences
the proof is similar.

23.7. Apply reciprocal differences to recover the function y(x) = 1/(1 + x2) from the x, y data in the
first two columns of Table 23,1.

Various reciprocal ditferences also appear in this table, For example, the entry 40 is obtained from
the looped entries as follows:

P3(X2X3X4XS)
4- 1

(-fs) - (-lö) + (- 10) = 40

Xs -X2
+ P¡(X3X4)

P2(X3X4XS) - P2(X2X3X4)

From the definition given in Problem 23.5 this third difference should be

X2 -Xs
P3(X2X3X4XS) = ( ) ( ) + P1(X3X4)

P2 X2X3X4 - P2 XSX3X4

but by the symmetry property this is the same as what we have. The other differences are found in the
same way,

Table 23.1 I-Ix i y

.. .0 1

-2
-1

0

¡

0

CD ï
io

@
-3

l 8 40
0

2 S

@¡

140
3 ïõ

170
- 7

¡
-46i.@ 17

442

J

-9
i

5 26L 1

The continued fraction is constructed from the top diagonal

X -0

x-I-2+ x -2-1~1+ . x -30-(-2)+-
0- (- 1)

Y = 1 +

and easily rearranges to the original y(x) = 1/(1 +x2). This test case merely ilustrates the continuedfractions algorithm. .
By substituting successively the arguments x = 0, 1, 2, 3, 4 into this continued fraction It is easy to

see that as the fraction becomes longer it absorbs the (x, y) data pairs one by one, This further implies
that truncating the fraction wil produce a rational collocation function for an initial segment of the data,
The same remarks hold for the general case of Problem 23.5. It should also be pointed out that the zeros
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in the last column of the table cause the fraction to terminate without an x - X4 term, but that the
fraction in hand absorbs the (xs, xs) data pair anyway,

23.8. Use a rational approximation to interpolate for tan 1.565 from the data provided in Table
23,2,

The table also includes reciprocal differences through fourth order.

Table 23.2

x taßx

1.3 24.498
.0012558

1.54 32.461 -.033
.0006403 2,7279

1.5 48,078 -,022 -.4167
,0002245 1.7145

1.6 92,631 -,0045
'.0000086

1.7 1255,8

The interpolation then proceeds as folIows:

tan 1,565 = 24.498 +
1.65 -1.3

1.65 -1.4,0012558 + 1.65 1.5
-24,531 + 1.565 -1.6

2.7266 + _ ,3837

whieh works out to 172,552, This result is almost perfect, which is remarkable considering how terribly
elose we are to the pole of the tangent function at x = Te12. Newton's backward formula, using the same
data, produces the value 433, so it is easy to see that our rational approximation is an easy winner, It is
interesting to notiee the results obtained by stopping at the earlier differences, truncating the fraction at
its successive "convergents," Those results are

52.37 17236 172.552

so that stopping at third and fourth differences we find identical values. This convergence is reassuring,

suggesting implicitly that more data pairs anQ continuation of the fraction are unnecessary and that even
the final data pair has served only as acheck or safeguard,

23.9. It is possible that more than one rational function of the form in Problem 23,5 may include
the given points, Which one wil the continued fraction algorithm produce?

As the continued fraction grows it represents successively functions of the forms

ao + a1x
ao+ a1x

bo+ b1x

ao + a¡x + a2x2

bo+ b1x

ao + a¡x + a2x2

bo + b1x + b2x2

Our algorithm chooses the simplest form (left to right) consistent with the data. See Problems 23.4,
23,18, and 23,19 for examples,

23.10. Given that y(x) has a simple pole at x = 0 and is of tlleform used in Problem 23,5, determine
it from these (x, y) points: (1,30), (2,10), (3,5), (4,3),
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Such a function may be sought directly starting with

() 1 + a1x + a2x2Y x -
- b1x + b2x2

It mayaIso be found by this slight variation of the continued fractions algorithm, The table of reciprocal
differences

x Y

1 30
i-20

2 10 10-3
i !!

\ -5 5

3 5 5 0-3
1

1-2
4 3 -3

0
0 00

leads to the continued fraction

y=30+ x -- 1

1 x-2--+
20 100 x - 3--+-

3 33 x - 4
20 + .i

whieh collapses to y(x) = 60/(x(x + 1)J.

MIN-MAX RATIONAL FUNCTIONS

23.11. How can a rational function R(x) = ll(a + bx) which misses the three points (x¡, Yi), (X2' Y2),
and (X3, Y3) alternately by :lh be found?

The three conditions

Yi-~
a + bx. = h, -h, hi

for i = 1, 2, 3

can be rewritten as

a(Y1 - h) + b(Y1 - h)xi - 1 = 0

a(Y2 + h) + b(Y2 + h)xi - 1 = 0

a(Y3 -h) + b(Y3 - h)X3 - 1 = 0

Eliminating a and b, we find that h is determined by the quadratic equation

Yi -h (Yi-h)x¡ -1
Y2 + h (Yi + h )X2 - 1 I = 0

Y3-h (y3-h)X3 -1

Choosing the root with sm aller absolute value, we substitute back and obtain a and b. (It is not hard to
show that real roots will always exist.)

23.12. Apply the procedure of Problem 23,11 to these three points: (0, ,83), (1,1.06), (2,1.25),

The quadratic equation becomes 4h2 - 4. 12h - ,130 = 0 and the required root is h = -.03, The
coeffcients a and b then satisfy ,86a - 1 = 0, 1.03a + 1.03b - 1 = 0 and are a = 1.16, b = -,19.
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23.13. Extending the previous problem, apply an exchange method to find a min-max rational
function of the form R = l/(a + bx) for these points: (0, ,83), (1,1.06), (2,1.25), (4,4.15),

Our problem will be a elose parallel to earlier exchange methods. Let the tri pIe of the previous

problem serve as initial tripIe, The equal-error rational function for this tripIe was found to be
Ri(x) = 1/(1. 16 - .19x). At the four data points its errors may be computed to be - ,03, .03, - ,03, 1.65
and we see that Ri(x) is very poor at'x = 4. For a new tripIe we choose the last three points, to retain
alternating error signs. The new quadratic equation is

6h2 - 21.24h + 1.47'= 0

making h = .07, The new equations for a and bare

a + b = 1.010 a + 2b = ,758 a + 4b = ,245

making a = 1.265 and b = -,255, The errors at the four data points are now ,04, .07, -.07, .07; and
since no error exceeds the ,07 of our present tripIe we stop, accepting

1
R2(x) = 1.265 - .255x

as the min-max approximation, This is the typieal development of an exchange algorithm. Our result is
of course accurate only to a point, but the data themselves are given to only two pI aces so a greater

struggle seems unwarranted, It is interesting to notice that the computation is quite sensitive, Rounding
the third-digit 5s in our R2(x), for instance, can change R2( 4) by almost half a unit, This sensitivity is due
to the pole near x = 5, Both Ri(x) and R2(x) are shown in Fig, 23-2,

x

Fig.23.2

23.14. The data points of the preceding problem were chosen by adding random "noise" of up to 5
percent to values of y(x) = 4/(5 - x), Use R2(x) to compute smoothed values and compare
with the correct values and the original data,

The required values are as folIows, with entries at x = 3 added:

Original "noisy" data ,83 1.06 1.25 - 4.15

Values of R2(x) .79 .99 1.32 2,00 4.08

Correct values of y(x) .80 1.00 1.3 2,00 4,00

Only the error at x = 4 is sizable and this has been reduced by almost half, The infiuence of the pole
at x = 5 is evident, Approximation by me ans of polynomials would be far less successfuI.
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23.15. Derive conditions on the coeffcients such that the Padé rational function

with

Pm (x)
Rmn(x) = Qn(x)

Pm(x) = ao + aiX + azxz + . , , + amxm

Qn(x) = 1 + bix + bzx2 + ' , ,+ bnxn

wil satisfy R~~(O) = y(k)(O) k=O, 1"", N

for N = m + n, assuming that y(x) has the series representation

y(x) = Co + CiX + czxz + ' , ,

We have

y(x) - Rmn(x)
(~C¡XZ)( ~ bzXz) - r azxz

Ë b¡xz
o

and wil have achieved the required goal if the numerator on the right has no terms of lower degree than
XN+1, For this we need

ao = boco a1 = bOC1 + bicO à2 = bOC2 + b1C1 + b2Co

and in general
¡

a¡ = L b¡c¡_¡ j = 0, 1, . , , , N
i=O

subject to the constraints bo = 1 and

a¡ =0 if Î?m
b¡=O ifi?n

23.16. Apply the preceding problem to y (x) = eX with m = n = 2,

For this function we have Co = 1, Cl = 1, C2 = l, C3 = t C4 = f¡, leading to these equàtions:

ao= 1 a1 = 1 +b¡
1

a2=Z+bl +b2

1 1 1O=-+-b +-b
24 6 ¡ 2 2

1 1
0=6+Zb¡ + b2

Their solution is ao = 1, ai = t a2 = -b, b1 = -l, and b2 = -b Substituting back we have finally

R (x) = 12 + 6x + x222 12 - 6x +x2

for the Padé approximation. On the interval (-1,1) its absolute error ranges from zero at the center to
,004 at x = 1. It is interesting to note that the approximation reflects a basic property of the exponential
function, namely that replacing x by -x produces the reciprocal.

23.17. For y(x) = eX it is clear that

1 2 1 3
R40 = 1 + x + - x + - x +,.,2 6

but use the method of Problem 23,15 to find Roix),
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The appropriate equations include ao = 1 and then the triangular system

0= 1 + b1

1
O=Z+ b1 + b2

1 1
0=6+Zb1 +b2+b3

1 1 1
0=24 +6b1 +Zb2+b3+b4

. leading to the approximation
1R()- 2131404 X-I _ x+ lx - ¡;x + ï4X

of which the denominator is a five-term approximation to the reciprocal of y(x). Presumably this could
have been anticipated.

Over (- 1,1) R04 is closer to eX on the left half and farther from it on the right, relative to R40, It is
inferior all the way to R22 and this is gene rally true of Padé approximations, Those with m and n equal
or nearly equal are the most accurate,

Supplementary Problems

23.18. Find directly, as in Problem 23.1, a function y(x) = l/(a + bx) such that y(l) = 3 and y(3) = 1. Wil our
method of continued fractions yield this function?

23.19. Find directly a function y(x) = l/(a + bx + cx2) such that y(O) = 1, y(l) = t and y(10) = l, Will our

method of continued fractions yield this function?

23.20. Use the continued fractions method to find a rational function having the following values:

EB
o 1 2 3 4

-1 o 3
3

4
3

15
i7

23.21. Use the continued fractions method to find a rational function having the following values:

EB
0 1 9 19

0 i 8.1 18.05'2

23.22. Find a rational function with these values:

EB
0 1 +00

i 2
1'2 "3

23.23. Find a rational function with these values:

EB
0 1 2 4 00

-2 :100 2 6
13

(The symbol :100 refers to a pole at which the function changes sign,)
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23.24. Find a rational function with the values given below. Interpolate for y(1.5), Where are the "poles" of
this function?

EB
o ::1 ::2

i
2 1

1-2

23.25. Find the min-max function

1R(x)=a+bx

for y (x) = x2 - 1 on the interval (- 1, 1).

23.26. Use an exchange method to find the min-max approximation R(x) = l/(a + bx) to y(x) = eX on the
interval (0,3),

23.27. Develop an exchange method for finding the min-max approximation R(x) = (a + bx)/(l + dx) for a set
of points (x¡, y¡) where i = 1, . . . , N. Apply it to the following data:

E8
o

.38

1 2 3

,20

4 5

I
.30 ,16 .12 ,10

Use R(x) to smooth the y values. How elose do you come to y(x) = l/(x + 3) which was the parent
function of this data, with random errors added?

23.28. Find a rational function which ineludes these points:

EB
-1 o 1

2

2 3

00 4 4 7

23.29. Find' a rational function which ineludes these points:

-00 o

o

3

1 2

I

x -2 -1

y 8 00

23.30. Find a rational function which ineludes the following points. Does the function have any real poles?

B -2 -1 o 1 2 3

2 2 4
'3

8
7

14
TI

23.31. Interpolate for y(1.5) in the table below, using a rational approximation function.

x 1 2 3 4

y 57.298677 28.653706 19.107321 14.335588
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23.32. Find a rational function, in the form of a cubic polynomial over a quadratic, including these points:

E8
0 1 2 3 4 5

12 0 -4 -6 6 4

23.33. Work Problem 23,16 with m = 3, n = 1.

23.34. Work Problem 23,16 with m = 1, n = 3.



Chapter 24

Trigonometrie Approximation

DISCRETE DATA

The sine and cosine functions share many of the desirable features of polynomials, They are
easily computed, by rapidly convergent series. Their successive derivatives are again sines and
cosines, the same then holding for integrals, They also have orthogonality properties, and of course
periodicity, which polynomials do not have, The use of these familiar trigonometric functions in
approximation theory is therefore understandable,

A trigonometric sum which collocates with a given data function at 2L + 1 prescribed arguments
may be obtained in the form 1 ~(. 2.r, 2.r )

y(x)=2-ao+ LJ akcos-2L kx+bksin-2L kxk=l + 1 + 1
a slightly different form being used if thenumber of collocation arguments is even. An orthogònality
property of these sines and eosines,

~, 2.r. . 2.r kx t 0
LJ sin- xsin- =x=O N + 1) N + 1 (N+ 1)/2
N ,2.r, 2.r
2: sin-jxcos-kx=Ox=O N + 1 N + 1

r" 0

N 2.r 2.r
2: cosN-jxcos-1kx= (N + 1)/2x=O + 1 N + N+1

ifj-:k
jf j = k-:O

ifj-:k
if j = k -: 0, N + 1
if j = k = 0, N + 1

allows the coeffcients to be easily determined as

2 2L 2.r
ak = 2£ + 1 ~o y (x) cos 2L + 1 kx

2 2L 2.r
bk = 2L + 1 x.r/(x) sin2L + 1 kx

These coeffcients provide the unique collocation function of the form specified, For an even number
of collocation arguments, say 2L, the corresponding formula is

1 L-l (.r .r ) 1
y(x) = ïao + ~1 ak cosLkx + bk sin L kx + ï aL cos.rx

1 2L-l .rwith ak=-L 2: y(x)cos-kx k=O, 1"", Lx=O L
1 2L-l .rbk = - 2: y(x) sin - kx k = 1, , , , , L - 1L x=O L

k =0,1"", L

k = 1, 2"", L

Least-squares approximations for the same discrete data, using the same type of trigonometric
sum, are obtained simply by truncation of the collocation sum, This is a famous and convenient
result. As observed in Problem 21.8, it is true of other representations in terms of orthogonal
functions, What is minimized here, in the case of 2L + 1 arguments, is

2L

S = 2: (y(x) - TM(x)f
x=O

305
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where TM(x) is the abbreviated sum (M being less than L)

1 M (2n 2n)
TM(x)=-2Ao+ ¿ Akcos--kx+Bksin-2L 1kxk=l 2L + 1 +

The result just stated me ans that to minimize S we should choose Ak = ab Bk = bk. The minimum
value of S can be expressed as

_2L+1 i: (a~+bÜ
Smin - 2 k=M+l

For M = L this would be zero, wh ich is hardly a surprise since then we have once again the
collocation sumo

Periodicity is an obvious feature of trigonometric sums, if a data function y(x) is not basically
periodic, it may stil be useful to construct a trigonometric approximation, provided we are

concerned only with a finite interval. The given y(x) may then be imagined extended outside this
interval in a way which makes it periodic,

Odd and even functions are commonly used as extensions, An odd function has the property
y(-.i)= -y(x), The classic example is y(x)=sinx, For an odd function of period P=2L, the
coeffcients of our trigonometric sum simplify to

4 L-l 2nbk=- ¿ y(x)sin-kxP x=l P
An even function has the property y( - x) = y(x), The classic example is y(x) = cosx, For an even
function of period P = 2L, the coeffcients become

ak =0

2 4 L-l 2n
ak = p (y(O) + y(L) cos kn) + p X:rl y(x) cosp kx

These simplifications explain the popularity of odd and even functions,

bk =0

CONTINUOUS DATA
Fourier series replace finite trigonometric sums when the data supply is continuous, much of the

detail being analogous, For y(x) defined over (0,2n), the se ries has the form

1 x
2 a'o + ~l (a'k COS kt + ßk sin kt)

A second orthogonality property of sines and cosines,

fir sinjt sin kt dt = r~

r2ir
Jo sinjt cos kt dt = 0

ifj=lk
ifj=k=lO

2ir ro
L cosjtcosktdt= no 2n

ffj=lk
ffj=k=lO
ffj=k=O

allows easy identification of the Fourier coeffcients as

1 L2ir
a'k = - y(t) cos kt dt

n 0

1 L2ir
ßk = - y(t) sin kt dt

n 0

Since the se ries has period 2n, we must limit its use to the given interval (0,2n) unless y(x) also
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happens to have this same period, Nonperiodic functions may be accommodated over a finite
interval, if we imagine them extended as periodic, Again, odd and even extensions are the most
common and in such cases the Fourier coeffcients simplify much as above,

Fourier coeffcients are related to col!ocation coeffcients, Taking the example of an odd number
of arguments we have, for example,

1 (1 1 2L-l :T J
aj=i zy(O)+Zy(2L)+ X~l y(x)cosijx

which is thetrapezoidal rule approximation to

1 i2L :T
aj=i 0 y(x)cosijxdx

in which a change of argument has been used to bring out the analogy,
Least-squares approximations for the case of continuous data are obtained by truncation of the

Fourier series, This wil minimize the integral

(2n:1=)0 (y(t) - TM(t)f dt

TM(t) = ~ Ao + ~l (Ak êos kt + Bk sin kt)

In other words, to minimize I we should choose Ak = ab Bk = ßk' The minimum value of I can beexpressed as oe
Imin = :T ¿: ( a~ + ßÜ

k=M+l

where

Convergence in the mean occurs under very mild assumptions on y(t), This means that, for M
tending to infinity, Imin has limit zero,

APPLICATIONS

The two major applications of trigonometric approximation in numerical analysis are

1. Data smoothing. Since least-squares approximations are so conveniently available by
truncation, this application seems natural, the smoothing effect of the least-squares principle
being similar to that observed for the case of polynomials,

2, Approximate differentiation. Here too the least-squares aspect of trigonometric approxima-
tion looms in the background, Sometimes the results of applying a formula such as1 .

y(x) = - (-2y(x - 2) - y(x -1) + y(x + 1) + 2y(x + 2))10 '
derived earlier from a least-squares parabola, are further smoothed by the use of a
trigonometrie sum, The danger of oversmoothing, removing essential features of the target
function, should be kept in mind,

COMPLEX FORMS
All the foregoing can also be represented in complex form, Trigonometric sums become

¡

¿: cjeijx
j=-'¡

where i is the imaginary unit. Because of the Euler formula

eix = cosx + i sinx
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this is the equivalent of
a !
20 + j~ (aj cosjx + bj sirijx)

aj = Cj + Cj bj = i(cj - Cj)with

The coeffcients aj, bj, Cj may be real or complex, The Fourier series becomes
x

f(x) = 2: lje/jXj=-x

with the Fourier coeffcients
1 izn:

lj = 2ir 0 f(x)e-/jx dx

The finite sum
1 N-l 00

ft = - 2: f(xn)e-IJXnN n=O

where Xn = 2irn / N for n = 0 to N - 1, is an obvious approximation to lj and is also the appropriate

coeffcient in the trigonometrie sum whieh interpolates fex) at the data points xn'
!

y(x) = 2: fte/jx
j=-!

The ft are essentially the elements of what is called a discrete Fourier transform, Given a vector V
with components Vo to VN-l1 the discrete Fourier transform of V may be defined as the vector VT
having components N-l

V T = 2: vnwi;
n=O

for j = 0 to j = N -1 and WN an Nth root of 1.

WN = e-Zn:ilN

These various relationships wil be explored in the problems,
What this me ans is that it is possible to compute approximations to the Fourier coeffcients /¡ by

using discrete transforms, The use of Fast Fourier Transforms (FFT) has made such computations
effcient even for rather large values of N. These coeffcients are of interest in many applications,

since they give the relative weights of the component terms in a complex periodic process,

Solved Problems

TRIGONOMETRIC SUMS BY COLLOCATION
24.1. Prove the orthogonality conditions

~, 2ir, , 2ir kx r 0
x~o sllN+ 1JXSllN+ 1 =1(N+1)/2
~, 2n, 2ir
LJ Sll N-1 JX cos N-1 kx = 0x=o + +

1 0

N 2ir 2ir
2: cos-jxcos-kx= (N+1)/2x=O N + 1 N + 1 N+1

for j + k "2 N.

if j * k or j = k = 0
ifj=k*O

ilj*k
ilj=k*O
ilj=k=O
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The proofs are by elementary trigonometry, As an example,2:n 2:n 1( 2:n 2:n J
sin N + 1 jx sin N + 1 kx = Z cos N + 1 (j - k)x - cos N + 1 (j + k)x

and each cosine sums to zero since the angles involved are symmetrically spaced between 0 and 2:n,
except when j = k =1 0, in which case the first sum of cosines is (N + 1) /2, The other two parts are
proved in similar fashion,

24.2. For collocation at an odd number of arguments x = 0, 1, , , , , N = 2L, the trigonometric sum
may take the form 1 L( 2.: ,2.:)

-2ao+ ¿ akcos-kx+bksin-2 kxk=l 2L + 1 L + 1
Use Problem 24,1 to determine the coeffcients ak and bk,

To obtain aj multiply by cos2 2:n jx and sum, We find
L+1

2 2L 2:n
aj = 2L + 1 ~/(x) cos2L + 1 jx j =0,1".., L

since àll other terms on the right are zero, The factor ! in y(x) makes this result true also for j = O. To

obtain bj we multiply y(x) by sin2:: 1 jx and sum, getting

2 2L 2:n
bj = 2L + 1 ~o y (x) sin 2L + 1 jx j = 1,2" , . ,L

Thus only one such expression can represent a given y(x), the coeffcients being uniquely determined by
the values of y(x) at x = 0, 1, . . . , 2L. Notice that this function wil have period N + 1.

24.3. Verify that, with the coeffcients of Problem 24,2, the trigonometric sum does equal y (x) for

x = 0, 1, , . , ,2L. This wil prove the existence of a unique sum of this type wh ich collocates
with y(x) for these arguments,

Callng the sum T(x) for the moment and letting x* be any one of the 2L + 1 arguments,
substitution of our formulas for the coeffcients leads to

2 2L ( 1 L (2:n 2:n 2:n 2:n) JT(x*)=-LY(x) -+L cos2L' 1kxcos2-L 1kx*+sin2-L kxsin-2L 1kx*2L + 1 x=O 2 k=I + + + 1 +
2 2L (1 L 2:n J

=- LY(X) -+ L cos-k(x -x*)2L + 1 x=O 2 k=l 2L + 1
in which the order of summation has been altered, The last sum is now written as

L 2:n 1 L 2:n 1 2L 2:n
L cos-k(x-x*)=- L cos-k(x-x*)+- L cos-k(x-x*)k=I 2L + 1 2 k=1 2L + 1 2 k=L+l 2L + 1

which is possible because of the symmetry property2:n 2:n .cos-k(x -x*) = cos-(2L + 1 - k)(x -x"')2L + 1 2L + 1
of the cosine function. Filing in the k = 0 term, we now find

1 2L (2L 2:n JT(x*) =-2L L y(x) LCOS2- 1 k(x -x*)+ 1 x=O k=O L +
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But the term in brackets is zero by the orthogonality conditions unless x = x*, when it becomes 2L + 1.
Thus T(x*) = y(x*), which was to be proved.

24.4. Suppose y(x) is known to have the period 3. Find a trigonometrie sum which includes the

following data points and use it to interpolate for y(!) and y(~),

LJ 000
1

B1

Using the formulas of Problem 24,2, we find

2. 4 2 (2n 4n) 2aO=3(0+1+1)=3 aI=3 cos3+cos3 =-3
2 (. 2n . 4n)

b =- sin-+sin- =0¡ 3 3 3

24.5. For an even number of x arguments (N + 1 = 2L) the collocation sum is1 L-l (n 1í ) 1 .
y(x) = iao + t:i ak cosL kx + bk sin L kx + iaL cos 1íX

with collocation at x = 0, 1, , , , , N, The coeffcients are found by an argument almost
identical with that of Problems 24,1 and 24,2 to be

1 2L-l 1í
aj=- :¿ y(x)cos-Ljx j=O, 1"." L

L x=o

1 2L-l 1íbj=-:¿ y(x)sin-jx j=1,.."L-1L x=o L
Once again the function y(x) is seen to have the period N + 1. Apply these formulas to the
data below, and then compute the maximum of y(x),

LJ 000 1 1

3

o

1 2

We find L = 2 and then ao = !(2) = 1, a¡ = !( - 1) = - t a2 = !( - 1 + 1) = 0, b1 = !(1) = l. The
trigonometric sum is therefore 1 1 1 1 . 1

y(x) =---cos-nx +-sin-nx2 2 2 2 2
The maximum of y(x) is then found by standard procedures to be yG) =!(1 + V2).

TRIGONOMETRIC SUMS BY LEAST SQUARES, DISCRETE DATA
24.6. Determine the coeffcients Ak and Bk so that the sum of squares

2L

S = :¿ (y(x) - Tm(X)J2 = minimum
x=o

where Tm(x) is the trigonometric sum

1 M ( 21í . 21í )
Tm(x)=iAo+ t:i Akcos2L+1kx+Bks1l2L+1kx

and M~L.
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Since by Problem 24.3 we have1 L ( 2n . 2n )
y(x) =Zao + (;1 ak cos2L + 1 kx + bk sin2L + 1 kx

the difference is 1 M ( 2n . 2n J
y(x) - Tm,(x) =-2 (ao -Ao) + ¿ (ak -Ak) cos-2 kx + (bk - Bk) sin-2 kxk~I L + 1 L + 1

~ ( 2n ,2n J+ LJ . akcos2-L kx+bksin-2 1kxk=M+I + 1 L +
Squaring, summing over the arguments x, and using the orthogonality conditions,2L 2L + 1 2L + 1 M 2L + 1 L
S = ~) (y(x) - Tm(x)f = -¡(ao - AO)2 + -- (;1 ((ak - Ak)2 + (bk - Bk)2J + -- k~lt+i (a¡ + bD

Only the first two terms depend upon the Ak and Bk. and since these terms are nonnegative the
minimum sum can be achieved in only one way, by making these terms zero. Thus for aminimum,

Ak =ak Bk =bk

and we have the important result that truncation of the collocation sum T(x) at k = M produces the
least-squares trigonometric sum TM (x ). (This is actually another special case of the general result found
in Problem 21.8,) We also find L 2)- 2L + 1 ¿ (a¡ + bk

Sm;n - 2 k~M+I

Since an almost identical computation shows that
2L 2L 2L + 1 2L + 1 L
~o (y(x)f= x:ro (T(x)f =-¡a6 +-- (;1 (a¡ + bD

this mayaIso be expressed in the form

~ ( 2J 2L + 1 2 2L + 1 ~ (2 2Sm;n = ':0 y(X) - -¡ao - -- (:1 ak + bk)

As M increases this sum steadily decreases, reaching zero for M = L, since then the least-squares and
collocation sums are identical. A somewhat similar result holds for the case of an even number of x
arguments,

24.7. Apply Problem 24,6 with M = 0 to the data of Problem 24.4,

Truncation leads to Ta(x) = ~.

ODD OR EVEN PERIODIC FUNCTIONS

24.8. Suppose y(x) has the period P = 2L, that is, y(x + P) = y(x) for all x, Show that the formulas
for aj and bj in Problem 24.5 may be written as

2 L 2:raj=-p ¿ y(x)cos-jx j=O, 1,.,., L
x=-L+l P
2 L 2nbj=- ¿ y(x)sin-jx j=l,.",L-lp x=-L+l P

Since the sine and cosine also have period P, it makes no difference whether the arguments

x = 0, . . . , 2L - 1 or the arguments - L + 1, . . . , L are used, Any such set of P consecutive arguments
will lead to the same coeffcients.

24.9. Suppose y(x) has the period P = 2L and is also an odd function, that is, y( -x) = -y(x).
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Prove that
4 L-l 211

bj = P ~l y(x) sin ¡;Jx

By periodicity, y(O) = y(P) = y( - P). But since y(x) is an odd function, y( - P) = -y(P) also, This
implies y(O)=O, In the same way we find y(L)=y(-L)=-y(L)=O, Then in the sum for a¡ each
remaining term at positive x cancels its mate at negative x, so that all a¡ wil be 0, In the sum for b¡ the
terms for x and -x are identicaland so we find b¡ by doubling the sum over positive x,

aj =0

24.10. Find a trigonometric sum T(x) for the function of Problem 24,5, assuming it extended to an
odd function of period P = 6,

By the previous problem all a¡ = 0, and since L = 3,

2(.:r .2:r) 2b1=3 sin3"+sin3 =0

making T(x) = (2/0) sin (:rx/3),

2(.2:r ,4:r)
b2=3 sin3+sin3 =0

24.11. if y(x) has the period P = 2L and is an even function, that is, y( - x) = y(x), show that the
formulas of Problem 24,8 become

2 4 L-l 211
aj = -P (y(O) + y(L) cosj11) + -P 2: y(x) cos- jxx=l P
bj=O

j = 0,1"", L

The terms for :!x in the formula for b¡ cancel in pairs. In the a¡ formula the terms forx = 0 and
x = L may be separated as above, after which. the remaining terms come in matching pairs for :!x,

24.U. Find a T(x) for the function of Problem 24,5 assuming it extended to an even function of

period 6, (This wil make three representations of the data by trigonometrie sums, but in
different forms, See Problems 24.5 and 24,10,)

All b¡ will be zero, and with L = 3 we ttnd ao = t ai = 0, a2 = - t a3 = 0 making T(x) =

~(1 - cos ~:rx),

CONTNUOUS DATA. THE FOURIER SERIES
24.13. Prove the orthogonality conditions¡2n r 0

o sinjt sin kt dt = l11

f2no sinjt cos kt dt = 0¡2n 1 0
cos jt cos kt dt = 11o 211

where j, k = 0, 1, ' , , to infinity,

The proofs are elementary calculus, For example,

sinjt sin kt = Hcos (j - k)t - cos (j + k)tl

ifj#:k
ifj=k#:O

~j#:k
~j=k#:O
~j=k=O

and each cosine integrates to zero since the interval of integration is aperiod of the cosine, except when
j = k #; 0, in which case the first integral becomes !(2:r) , The other two parts are proved in similar
fashion.
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24.14. Derive the coeffcient formulas

1 ¡2n
ai = - y(t) cosjtdt

:n 0

1 ¡2n
ßi = - y(t) sinjt dt

:n 0

1 oe
y(t) = 2 ao + ~l (ak cos kt + ßk sin kt)of the Fourier series

These are called the Fourier coeffcients, As a matter of fact all such coeffcients in sums or
series of orthogonal functions are frequently called Fourier coeffcients,

The proof follows a familiar path, Multiply y(t) by cosjt and integrate over (0,2ir). All terms but
one on the right are zero and the formula for (X¡ emerges, The factor l in the (xo term makes the result

true also for j = 0, To obtain ß¡ we multiply by sinjt and integrate, Here we are assuming that the series
will converge to y(t) and that term-by-term integration is valid, This is proved, under very mild
assumptions about the smoothness of y(t), in the theory of Fourier series, Clearly y(t) must also have
the period 2ir,

24.15. Obtain the Fourier series for y(t) = Itl, -:n ~ t ~:n,

Let y(t) be extended to an even function of period 2ir. (See solid curve in Fig, 24-1.) The limits of
integration in our coeffcient formulas may be shifted to (-ir, ir) and we see that all ß¡ = O. Also (xo = ir;
and for j;:O

2L'"
(X¡ = - . t cos jt dt

ir 0

2(cosjir - 1)

ir/

Thus
ir 4 ( cos 3t cos 5t )y(t) =2-~ cost+32+si+'"

;;

Fig,24.1

24.16. Obtain the Fourier series for y(t) = t, -:n -: t -::n,

We extend y(t) to an odd function of period 2ir. (See Fig, 24-2), Again shifting to limits (-ir, ir) we
find all (X¡ = 0, and

Thus

2L'" 2(-1)¡-Iß¡ = - t sin jt dt = .ir 0 J
( . sin 2t sin 3t sin 4t )y(t)=2 sint--+---+."2 3 4

Notice that the cosine series of Problem 24.15 converges more rapidly than the sine series. This is
related to the fact that the y(t) of that problem is continuous, while this one is not. The smoother y(t) is,
the more rapid the convergence, Notice also that at the points of discontinuity our sine series converges
to zero, which is the average of the left and right extreme values (ir and -ir) of y(t).
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Fig.24-2

24.17. Find the Fourier series for y(t) = rt((n - t)),
1t n + t ,

O~t~n
-n~t~O'

Extending the function to' an odd function of period 2TC, we have the result shown in Fig, 24-3,
Notiee that this function has no corners, At t = 0 its derivative is TC from both sides, while both Y'(TC)

and y'( -TC) are - TC so that even the extended periodic function has no corners, This extra smoothness
wil affect the Fourier coeffcients. Using limits (-TC, TC) we again find all aj = 0, and

2L" " 2L"TC-2t. 41"" 4(1-COSjTC)
ßj=- t(TC-t)sin)tdt=- --cos)tdt=-- sin)tdt= '3

TC 0 TC 0) TC) o TC)

8 ( . sin 3t sin 5t )y(t)=~ sint+T+T+'"The series is therefore

The coeffcients diminish as reciprocal cubes, which makes fOT very satisfactory convergence, The extra
smoothness of the function has proved useful.

Fig.24-3

24.18. Show that for the Bernoull function

Fn(x) = Bn(x) o 0: x 0: 1 F,(x:f m) = F,(x) m an integer

Bn(x) being a Bernoulli polynomial, the Fourier series is

F. ( ) = (_1)(n/2)+1 I (~J ~ cos 2nkxn x n, (2nt 1=1 kn

F. ( ) = (- )(n+1)/2 '(~J ~ sin 2nkxn x 1 n, (2nt 1=1 knwhen n is even, and

when n is odd, This result was used in Problem 17.28 of the chapter on sums and series,
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Since Bi (x) = X - t the series for F; (x) may be found directly froni the coeffcient formulas to be

F;(x) = _ ~ ein :.ix + sin;.ix + sin :.ix + ' , ,)

Integrating, and recallng that

B~(x) = nBn_l(x)
fBn(X)dX=O

F ( ) _ 2 '2! (COS 2.ix cos 4.ix cos 6.ix ",)2 X - (2.i)2 1 + 22 + 32 +

for n:;O

we so on find '

The next integration makes

F( ) = 2, 3! (Sin 2.ix sin 4.ix sin 6.ix ".)3 x (2.i)3 1 + 23 + 33 +
and an induction may be used to complete a formal proof, (Here it is useful to know that integration of
a Fourier se ries term by term always produces the Fourier series of the integrated function. The
analogous statement for differentiation is not generally true. For details see a theoretical treatment of
Fourier series.

24.19. How are the collocation coeffcients of Problem 24,5, or of Problem 24,2, related to the
Fourier coeffcients of Problem 24,14?

There. are many ways of making the compariso~s, One of the most interesting is to notice that in
Problem 24,5, assumingy(x) to have the period P=2L, we may rewritea¡ as

1 (1 1 2L- I ,.i J
a¡ = - - y(O) + - y(2L) + L y(x) cos L- jxL 2 2x~1

and this is the trapezoid al rule approximation to the Fourier coeffcient

1l2" 1L2L.i
IX¡=; 0 y(t)cosjtdt=L 0 y(x)cosLjxdx

Similar results hold for b¡ and ß¡ and for the coeffcients in Problem 24.2. Since the trapezoidal rule
converges to the integral for L becoming infinite, we see that the collocation coeffcients converge upon
the Fourier coeffcients. (Here we may fix the period at 2.i for convenience,) For an analogy with

Chebyshev polynomials see Problems 21.53 to 21.55.

LEAST SQUARES, CONTINUOUS DATA

~.20. Determine the coeffcients Ak and Bk so that the integral

(2n:1= Jo (y(t) - TM(t))2 dt

M
wil be a minimum where TM(t) = lAo + ¿ (Ak COS kt + Bk sin kt),

k=l

More or less as in Problem 24,6, we first find1 M x
y(t) - TM(t) =z(lXo-Ao) + (;1 ((lXk -Ak) coskt + (ßk - Bk) sinkt) + k~:r+1 (lXk coskt + ßk sin kt)

and then square, integrate, and use the orthogonality conditions to get.i M x
I=-(lXo-Af+.i L ((lXk-Akf+(ßk-Bkf)+.i L (1x~+ßD2 k~1 k~M+1
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For a minimum we choose all Ak = æb Bk = ßk so that
x

Imin = ir L (æ~ + ßD
k~M+i

Again we have the important result that truncation of the Fourier series at k = M produces the
least-squares sum TM(t). (Once again this is a special ca se of Problem 21.8.) The minimum integral may
be rewritten as

12" 1 MImin = fy(tWdt--iræ6-ir ¿ (æ~+ß~)o 2 k~i
As M increases, this diminishes; and it is proved in the theory of Fourier se ries that Imin tends to zero for
M becoming infinite. This is called convergence in the mean,

24.21. Find the least-squares sum with M = 1 for the function y(t) of Problem 24,15,

Truncation brings Ti(t) = ir/2 - (4/ir) cos t. This function is shown dashed in Fig. 24-1. Notice that
it smooths the corners of y(t),

SMOOTHING BY FOURIER ANALYSIS
24.22. What is the basis of the Fourier analysis method for smoothing data?

If we think of given numerical data as consisting of the true values of a function with random errors
superposed, the true functions being relatively smooth and the superposed errors quite unsmooth, then
the examples in Problems 24,15 to 24,17 suggest a way of partially separating functions from error, Since
the true function is smooth, its Fourier coeffcients will decrease quickly. But the unsmoothness of the
error suggests that its Fourier coeffcients may decrease very slowly, if at all. The combined series wil
consist almost entirely of error, therefore, beyond a certain place, If we simply truncate the series at the
right place, then we are discarding mostly error. There wil stil be error contributions in the terms

retained, Since tTuncation produces a least-squares approximation, we mayaIso view this method as
least-squares smoothing. '

24.23. Apply the method of the previous problem to the following data:

x 0 1 2 3 4 5 6 7 8 9 10

y 0 4.3 8.5 10,5 16,0 19,0 21. 24,9 25,9 26,3 27.8

x 11 12 13 14 15 16 17 18 19 20

y 30,0 30.4 30,6 26.8 25.7 21.8 18.4 12,7 7,1 0

Assuming the function to be truly zero at both ends, we may suppose it extendedto an odd function
of period P = 40, Such a function will even have a continuous first derivative, which helps to speed
convergence of Fourier series, Using the formulas of Problem 24,9, we now compute the bj.

j 1 2 3 4 5 6 7 8 9 10

bj 30,04 -3,58 1.5 -.13 -.14 -.43 .46 ,24 -.19 ,04

j 11 12 13 14 15 16 17 18 19 20

bj .34 ,19 ,20 -.12 -.36 -.18 -,05 -.37 ,27



CHAP, 24) TRIGONOMETRIC APPROXIMATION 317

The rapid decrease is apparent and we may take all bj beyond the first three or four to be largely error
effects, If four terms are used, we have the trigonometric sum

. :rx . 2:rx . 3:rx . 4:rxT(x) = 30,04sin 20 -3,58sinW+ 1.5 sinW- .13sinW

The values of this sum may ¡Je compared with the original data, which were actually values of
y(x)=x(400-x2)/100 contaminated by artificially introduced random errors, (See Table 24.1), The
RMS error of the given data was 1.06 and of the smoothed data ,80,

Table 24.1

x Given CoITect Smoothed x Given Correct Smoothed

1 4,3 4,0 4,1 11 30,0 30,7 29,5

2 8.5 7,9 8.1 12 30.4 30,7 29,8

3 10,5 11.7 11.9 13 30,6 30,0 29,3

4 16,0 15.6 15.5 14 26,8 28,6 28,0

5 . 19,0 18,7 18,6 15 25,7 26,2 25,8

6 21. 22.7 21.4 16 21.8 23,0 22.4

7 24,9 24.6 23,8 17 18.4 18,9 18,0

8 25,9 26,9 25,8 18 12,7 13,7 12,6

9 26,3 28.7 27.4 19 7,1 7.4 6,5

10 27,8 30.0 28,7 20

24.24. Approximate thederivative y'(x) = (400 - 3x2)/l00 ofthe function in the preceding problem
on the basis of the same given data,

First we shall apply the formula

1
y'(x) = 10 (-2y(x - 2) - y(x - 1) + y(x - 1) + 2y(x + 2))

derived earlier from the least-squares parabola for the five arguments x - 2, . , . , x + 2, With similar
formulas for the four end arguments, the results form the second column of Table 24,2, Using this local
least-squares parabola already amounts to local smoothing of the original x, y data. We now attempt
further overall smoothing by the Fourier method. Since the derivative of an odd function is even, the
formula of Problem 24.11 is appropriate.1 1 19 :r

aj = 20 (y'(O) + y'(20) cosj:r) + - 2: y'(x) cos -0 jx10 x=1 2
These coeffcients may be computed to be

j 0 1 2 3 4 5 6 7 8 9 10

aj 0 4.81 -1.05 .71 -.05 ,05 -,20 ,33 .15 .00 ,06

j 11 12 13 14 15 16 17 18 19 20

aj .06 .06 -.03 ,11 .06 .14 -,04 .16 -.09 ,10

Again the sharp drop is noticeable. Neglecting all terms beyond j = 4, we have

:rx 2:rx 3:rx 4:rx
y'(x) = 4.81 cos 20 - 1.05 COSW + .71 cosW - .05 cosW
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Computing this for x = 0, . , . , 20 produces the third column of Table 24,2, The last column gives the
correct values. The RMS error in column 2, after local smoothing by a least-squares parabola, is ,54,
while the RMS error in column 3, after additional Fourier smoothing, is .39.

Table 24.2

x Local Fourier Correct x Local Fourier Correct

0 5,3 4.4 4,0 11 1. .5 .4

1 4,1 4.4 4,0 12 -.1 -.1 -,3
2 3,8 4,1 3,9 13 -1.2 -.9 -1.
3 3,7 3,8 3,7 14 -2,2 -1.8 -1.9
4 3.4 3.4 3,5 15 -2,9 -2.9 -2,8
5 3.4 3,0 3,2 16 -3,6 -4,0 -3,7
6 2,6 2,'5 2,9 17 -4,6 -5.0 -4,7
7 1.9 2.1 2.5 18 -5,5 -5.8 -5,7
8 1.5 1.8 2.1 19 -7,1 -6,4 -6,8
9 1.2 1.4 1.6 20 -6.4 -6,6 -8,0

10 1.3 1.0 1.0

COMPLEX FORMS
24.25. Prove the following orthogonality property of the functions éx, eikx for j and k integers, The

overbar denotes a complex conjugate,

L2n~ "kx t 0. e'Jxe, dx =o 21C
if k=1j
if k = j

The proof is elementary, the integral reducing at once to

L2n 1 12né(k-j) dx = ei(k-j)xo i(k - j) 0
for k =1 j, But this is equal to one at both limits, hence zero, For k = j, the left side above is
clearly 21C,

24.26. Derive the formula for Fourier coeffcients in complex form,

The proof takes a familiar path, The Fourier series is
~

f(x) = L heiix
j=_::

Multiplying by eikx and integrating brings

L2'" ~o f(x)eikx dx = i~~heikxeiix dx

and since all terms on the right vanish by orthogonality except the one for j = k, the required result is
found,

1 L2'"

j¡=- f(x)e-ikxdx
2JX 0
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24.27. Show that the functions eijXn, eikxn are orthogonal in the following sense,
N-l_ iN
L eijxneikxn =n=O 0 if k = j

if k*j
Here as before Xn = 2:nn/ N.

We wil find a geometric sum with ratio r = ei(k-j)27CIN,

N-l N-I
2: eijXneikxn = 2: ei(k-j)xn = ei(k-j)xO(l + r + r2 + ' , , + rN-I)n=O n=O

For j = k we have r = 1 and the sum is N. Otherwise the sum of the powers of r is (1 - rN)/(l - r) bya

familiar formula. But rN is e27Ci(k-j) which is 1, making the numerator zero and establishing the
orthogonality.

24.28. Show that if N = 2/ + 1 then the trigonometrie sum
!

L djeijx
j=-!

must have coeffcients dj = n if it is to collocate with the function f(x) at Xn"= 2:nn/N.

Assurne that collocation occurs, multiply by eikxn and sum,

N-l N-1 I I N-1
2: f(Xn)eikXn = 2: eikxn 2: d/jXn = 2: dj 2: eikxneijXnn=O n=O j=-I j=-I n=O

Again all terms on the right are zero except øne, for j = k, and we have
N-1

2: f(xn)eikxn = dk(N) = ftN
n=O

24.29. How are the coeffcients ft related to discrete Fouriertransforms?

Let V be the vector with components f(xo), ., , , f(XN-i), For N = 21 + 1 this makes V (21 + 1)-
dimensional, as is the vector of coeffcients n for the trigonometric sum

/

2: neijX
j~-/

in which 1 N-l __
ft = - 2: f(xn)e-IIXn

N n~O

for j = - I to j = I. Comparing with
N-l N-l

vT = 2: vnwtJ = 2: f(Xn)e-ijxn
n=O n=O

where Xn = 2:rn/ N, and j = 0 to j = N - 1, the match is conspicuous, We do have one problem: the
ranges of validity do not coincide. But we may deduce that where the ranges overlap, from j = 0 to j = I,

vr=Nn j = 0, . . , , I

Now we observe that
N-I N-1

VT+N = 2: f(xn)e-i(j+N)xn = 2: f(xn)e-ijXnn=O n=O
for j + N = 0, . . . , N - 1 or j = - 1, . . ., - N. Once again we have a match, this time for j = - 1 to
j = -I.

Vj+N= Nft j = -I, . . , , - 1
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Apart from the factor l/N the com¡Jonents vJ do, therefore, match the coeffcients tt, though in a

slightly scrambled order, Taking the vJ in their natural order vl; to vi; it is easy to verify that the order
of the coeffcients wil be this.

n;,.;, ,fi f~i,'" ,f~l

24.30. Work through the details of the preceding problem for the simple example V = (1, 0, -1),

Here N = 3 and I = 1. 2 2
3/¡ = L f(Xn)e-iiXn = L f(xn)w!; = 1 - W'jn=O n=O

This makes 3f~1 = 1 - W3 3f; =0 3f~ = 1 - W~

and we have the three coeffcients directly, Turning to the transform,
2

vJ = L f(xn)w~n = 1 - w'j
n=O

we find vl; = 0 vr = 1 - w~ vr = 1 - W3

and the correspondence discovered in Problem 24.29 is confirmed,

24.31. What is the central idea behind the Fast Fourier Transform?

When N is the product of integers, the numbers tt prove to be closely interdependent, This
interdependence can be exploited to substantially reduce the amount of computing required to generatethese numbers, .

24.32. Develop the FFT for the simplest case, when N is the product of two integers t1 and t2,

Let I = I1 + t1Iz and n = n2 + t2ni' Then for I¡, n1 = 0 to t1 - 1, and I2, n2 = 0 to t2 - 1 both I and n
run their required ranges 0 to N - 1. Now

w(ji+1ih)(ni+tini) = ú/l/ini+iini+tihni

since t1t2 = N and w~= 1. The transform can then be written as a double sum
'~1/~1

vJ = ¿ ¿ VnúJ~t2ni(J/ft2+tihn2

"2=0 "1=0

This can also be arranged in a two-step algorithm,

'~i
FiU1, n2) = 2. vnwWini

nl=O

'2-1
vJ = FiUi, Iz) = L FiU1, n2)witni+tihni

"2=0

24.33. What is the gain in computing effciency if the FFT of Problem 24,32 is used? In other words,
just how fast is the Fast Fourier Transform?

To compute Fi there are ti terms to be processed; to com¡Jte Fi there are t2, The total is t1 + t2,
This must be done for each U1, n2) and Uii I2) pair, or Npairs, The final count is thus N(t1 + t2) terms
processed, The original form of the transform

N-1
vJ = L vnol!J

n=O

processed N terms for each I, a total of N2 terms, The gain in effciency, if measured by this standard, is
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thus
ti + t2

N

and depends very much upon N. For a small data set, say N = 12 = 3 X 4, the FFT wil need about li the
computing time of a direct approach, This is hardly significant but points out the direction of things to
come,

24.34. Run the FFl of Problem 24,32 for the following vector:

LJ 0
GJ 0 1

3

o

4 5

3
1

1

2

-1 -1 o

The small scale of the problem, N = 6, makes it easy to see all the detaiL. Here N = tit2 = 2 x 3 so we
first find the F¡ values from

1

F, (1' n) = '" V W3j¡n¡.1 i, 2 L. n 6
ni=O

n = n2 + 3n1

and they prove to be the following, with w = W6'

F¡(O, 0) = Vo + V3 = 0

F¡(O, l)=vi +V4=0

F¡(O, 2) =v2+ Vs = 0

F¡(1, 0) = Vo - V3 = 0

F¡(l, 1) = Vi - V4 = 2

F¡(1, 2) = V2 - Vs = 2

Then
2

VJ = F;(ji, I2) = :¿ F¡(ji, n2)oJ¡n2+I¡hn2
n2=ü

leading to, since I = I1 + 2I2

V6 = F;(O, 0) = Vo + VI + V2 + V3 + V4 + Vs = 0

vi = F;(l, 0) = F¡(1, 0) + F¡(1, l)w + F¡(1, 2)w2 = 2w + 2w2 = 20 i

vi = F;(O, 1) = F¡(O, 0) + F¡(O, 1)w2 + F;(O, 2)w4 = 0

vj = F;(1, 1) = F¡(1, 0) + F¡(1, 1)w3 + F¡(1, 2)w6 = 0

and similarly
vI = F;(O, 2) = 0

vr ,; F;(1, 2) = -20 i

Note that Nt1 terms were involved in computing the F¡ values and Nt2 terms in getting F;, a total of
12 + 18 = 30 terms, The direct computation would have used 36 and would confirm the results just
found, Also note the order of processing I1, Iz pairs, In programming language, the Iz loop is extern al tothe I1 loop, '

24.35. Extend the FFl of Problem 24,32 to the case N = t1t2t3.

The details wil suggest the way to generalization for still longer products. Let

I = I¡ + tiI2 + tit2I3

and observe that of the nine possible power terms in

n = n3 + t3n2 + t3t2n¡

W ljl + tih+ ttt2Ì3)(n3 + 13ni+l3c2n i)

three wil contain the product tit2t3 and may be neglected since w~ = 1. The remaining six may be
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grouped as follows in the transform,Irl (iri ('1-1 ) J
vJ = ¿ ¿ ¿ Vnwìt3tini W)Si+tih)t37li W~1+tih+tit2h)n3

"3=0 n2=0 n1=0

with ni appearing only in the inner sum and n2 not appearing in the outer. As before, this tripIe sum can
be expressed as an algorithm, this time having three steps,

11-1

F,()' n n) = " V WÍ¡13'Zn¡1 1, 2, 3 L. n N
n1=0

(2-1

F()" )" n)=" F,()" n n )W(jI+lih)13nZ2 1, 2, 3 L. 1 l' 2, 3 N
n2=0

t3-1

V T = F (). ). )") = " F (). )" n )W(ji +lih+li'zh)n3J 3 l' 2, 3 £. 2 ¡, 2, 3 N
n3=0

This is the required FFT,

24.36. Estimate the saving in computing time if this algorithm is used,

At each of the three steps the number of tripIes, such as (j1, n2, n3), that must be processed is
t1t2t3 = N. In the sums we find the number of terms to be t1, t2, t3 in turn. This makes a totalof
N(ti + t2 + t3) terms altogether. The transform as defined stil uses N2 terms, so the effciency of the FF
may be estimated as

ti + t2 + t3

N

If, for instance, N = 1000 = 10 x 10 x 10, then only 3 percent of the original 1,000,000 terms are needed,

24.37. Run the FFT algorithm of Problem 24,35 manually for this input vector.

EB
o 1 2 3 4

-1

5 6 7

1 1 + i i-I -1 -i -i 1 - i

We have N = 8 = 2 x 2 x 2, making j = j1 + 2j2 + 4h and n = n3 + 2n2 + 4n1' The formula for Fi
is then

and we have

I
17(' )_ " 4j¡nl1'1 Ji, n2, n3 - L. VnWB

ni=O

Fi(O, 0, 0) = Va + V4 = 0

F;(O, 0, 1) = VI + Vs = 0

F;(O, 1, 0) = V2 + V6 = 0

F;(O, 1, 1)=v3+v7=0

F;(1, 0, 0) = Va + V4W4 = 2

F;(1, 0, 1) = VI + vsw4 = 2 + 2i

F;(1, 1,0) = V2 +V6W4 = 2i

F;(1, 1, 1) = V3 + V7W4 = 2i - 2

with WB abbreviated to w, Notice the Nti = 8 x 2 terms used, Next we use

1

F;(j¡, j2' n3) = ¿ F;(j1' n2, n3)W2(j¡+2h)ni
n2=0

to compute

F;(O, 0, 0) = 0

F2(0, 0, 1) = 0"

F;(O, 1, 0) = 0

F;(O, 1, 1) = 0

F;(1, 0, 0) = F;(1, 0, 0) + F;(1, 1, 0)w2 = 4

F;(1, 0, 1) = F;(1, 0, 1) + F;(1, 1, 1)w2 = 4 + 4i

F;(1, 1,0) = F;(1, 0, 0) + F;(1, 1, 0)w6 = 0

F;(1, 1, 1) = F;(1, 0, 1) + F;(1, 1, 1)w6 = 0
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and finally 1

Vr = F;(j1, j2, ù) =¿: F;(j¡, j2, n3)W;n3
n3=O

to get the transform

Vr = F;(O, 0, 0) = F;(Q, 0, 0) + F;(O, 0, 1) = 0

vi = F;(1, 0, 0) = F;(1, 0, 0) + F;(1, 0, l)w = 4 + 4\Í

vi = F;(O, 1, 0) = F;(O, 1, 0) + F;(O, 1, 1)w2 = 0

vI = F;(1, 1, 0) = F;(1, 1, 0) + F;(1, 1, 1)w3 = 0

vr = F;(O, 0, 1) = F;(O, 0, 0) + F;(O,O, 1)w4 = 0

vr = F;(1, 0, 1) = F;(1, 0,0) + F;(1, 0, 1)w5 = 4 - 4\Í

v¿ = F;(O, 1, 1) = F;(O, 1,0) + F;(O, 1, 1)w6 = 0

vJ = F;(1, 1, 1) = F;(1, 1,0) + F;(1, 1, 1)w7 = 0

A total of N(ti + t2 + t3) = 48 terms have been processed, only a slight saving from N2 = 64 because of
the problem's small scale.

24.38. The inverse discrete transform may be defined by

1 N-l . 1 N-l .
U¡;T =- 2: U/O-1k=- 2: uje'kx¡

N j=O N j=O

Show that this definition does give an inverse relationship by inserting Uj = v T and discovering
that U¡;T = Vk' That is, the components of the original vector V are regained,

It may be useful to first rewrite the result of Problem 24.31 using

oJn = e-i;xn

to obtain

N-l
¿: w;llw -kn = r Nn=O lo

if k = j
if k:fj

for j, kin the interval (0, N - 1). Now

1 N-l . 1 N-I N-I . . 1 N-I N-1 .
- ¿: VrW-;k=- ¿: ¿: vnw;nw-;k=- ¿: Vn ¿: w(n-k);N ;=0 N ;=0 n=O N n=O j=O

and the last sum being zero, unless n takes the value k, we so on have the anticipated Vk'

24.39. Invert the transform found in Problem 24,37,

The FIT could be used, but in view of the large number of zero components this is a good chance
to proceed directly.

7

8u¡;T = ¿: Vr = 8
;=0

U¡;T = 1 = Vo

7

8u;T = ¿: Vr w-j = (4 + 4\Í)w-1 + (4 - 4\Í)w-5
j=O

=8(1+i) U;T = 1 + i = V2

7

8UiT = ¿: Vr W -2i= (4 + 4\Í)w-2 + (4 - 4\Í)w-io
j=O

=8i -T .U2 = 1 = V3

The remaining components may be verified as Problem 24.63,
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Supplementary Problems
24.40. Apply the method of Problem 24.2 to the data below,

EB
o

o

1 2 3 4

1 2 1 o

24.41. Derive the coeffcient formulas of Problem 24,5,

24.42. Apply the method of Problem 24,5 to the following data:

o 1 2 3

2

4

BEB o 1 2 1

24.43. Use the result of Problem 24.6 to obtain least-squares sums To(x) and T;(x) for the data of Problem

24,40,

24.44. Imitate the argument of Problem 24,6 to obtain a somewhat similar result for the case of an even
number of x arguments,

24.45. Apply the preceding problem to the data of Problem 24.42.

24.46. Extend the data of Problem 24.40 to an odd function of period 8. Find a sum of sines to represent this
function,

24.47. Extend the data of Problem 24.40 to an even function of period 8, Find a sum of cosines to represent
this function,

ø
24.48. Showthat the Fourier series for y(x) = Isin xl, the "fully rectified" sine wave, is

y(~) =~ (!_ cos2x _ cos4x _ cos6x _" ,)Jl 2 1,3 3,5 5,7

24.49. Show that the Fourier series for y(x) = x2 for x between -Jl arid Jl, and of period 2Jl, is

( )=Jl2 -4 ~ (-lY-Icoskxyx 3 1:1 e
Use the result to evaluate the series f (_1)k-1/e and f 1/k2.k=1 k=l

24.56. Use the Fourier series of Problem 24,15 to evaluate ¿ 1/(2k - I?
k=I

24.51. Use the Fourier series of Problem 24.16 to show that Jl/4 = 1 - l + l - ~ + ' , , ,

24.52. Use the series of Problem 24,17 to evaluate 1 - 1/33 + 1/53 - 1/73 + ' , , ,

24.53. What is the four-term least-squares trigonometric approximation to the function of Problem 24.48?
What is the two-term least-squares approximation?

24.54. Apply Fourier smoothing to the following data, assuming that the end values are actually zero and
extending the function as an odd function, Also try other methods of smoothing, or combinations of
methods, Compare results with the correct values y(x) = x(l - x) from which the given data were
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obtained by the addition of random errors of up to 20 percent, The arguments are x = 0(,05)1.

.00, .06, .10, .11, ,14, ,22, .22, .27, ,28, ,21, ,22, .27, ,21, .20, .19, .21, ,19, ,12, .08, .04, 00

24.55. Verify the coeffcient relationships

a¡ = c¡ + c_¡ b¡ = i(c¡ - Ci)

given in the introductory section, and the inverse relations

C.- a¡ - iboi _--2
c _ a¡ + ib_¡ _--

2

Deduce that if the a¡, b¡ are real, then c¡ and c¡ must be complex conjugates, Recalling that for the
collocation trigonometric polynomial, we have c¡ = l¡, and assuming a¡, b¡, and f(x) all real, show that

2 N-1
a¡ = 2 ReU/) = N ~o f(xn) cos jXn

2 N-l
b¡ = -2 Im(f/) = N ~o f(xn) sinjxn

24.56. Proceed as in Problem 24,30 using V = (1, - 1, 0),

24..57. Proceed as in Problem 24.34 using this vector V:

LJ 0
EJ 0

1 2 3

o 1 1

4

1

5

o

24.58. Proceed as in Problem 24,37 using thisvector V:

EB
o

1

1 2

o

3 4 5 6

o B1 + i 1 - i o 1 + i

24.59. Confirm the result of Problem 24,58 by applying the original transform
N-I

vJ = :¿ vnwfJ
n=O

24.60. Using elementary calculus showthat if tit2 = N, then the minimum of t1 + t2 occurs for t1 = t2. Extend
this result to the case tit2t3 = N. What is the implication for the.FFT?

24.61. Invert the transform found in Problem 24.30,

24.62. Apply the FFT of Problem 24.32 to invert the output of Problem 24.34.

E8
o

o

1

2Y3i

2

o

3 4

-2~;1o o

24.63. Complete the inversion begun in Problem 24.39.

24.64. Make the same inversion using an FFT,



Chapter 25

Nonlinear Algebra

ROOTS OF EQUATIONS

The problem treated in this chapter is the ancient problem of finding roots of equations or of
systems of equations, The long list of.available methods shows the long history of this problem and
its continuing importance, Which method to use depends upon wh ether one needs all the roots of a
particular equation or only a few, whether the roots are real or complex, simple or multiple, whether
one has a ready first approximation or not, and so on,

1, The iterative method solves x = F(x) by the recursion

Xn = F(xn-i)

and converges to a root if IF'(x)1 ~ L, 1. The error en = r - Xn, where r is the exact root,
has the property

en = F'(r)en_i

so that each iteration re duces the error by a factor near F'(r), If per) is near 1 this is slow
convergence,

2, The t: 2 process can accelerate convergence under some circumstances, It consists of the
approximation

(t:Xn+1)2
t:2xn

which may be derived from the error property given above,
3, The Newtoa method obtains successive approximations

r =Xn+2

f(xn-i)
Xn = Xn-i -f'( )

Xn-i

to a root of f(x) = 0 and is unquestionably a very popular algorithm, If f'(x) is complicated,
the previous iterative method may be preferable, but Newton's method converges much
more rapidly and usually gets the nod, The error en here satisfies

f"(r) 2
en = - 2f'(r) en-i

This is known as quadratic convergence, each error roughly proportional ta the square of
the previous error. The numoer of correct digits almost doubles with each iteration,

The square root iteratio'n

Xn =2! (xn-i +.i)
Xn-i

is a special case of Newton's method, corresponding to fex) = x2 - Q, It converges

quadratically to the positive square root of Q, for Q :; 0,
The more general root-finding formula

X~-i - Q
p-i

PXn-i

is also a special case of Newton's method, It produces a pth root of Q,

Xn =Xn-i

4, Interpolation methods use two or more approximations, usually some too small and some

, 326
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too large, to obtain improved approximations to a root by use of collocation polynomials,
The most ancient of these is based on linear interpolation between two previous
approximations, It is called regula falsi and solves f(x) = 0 by the iteration

(xn-i - xn-i)f(xn-i)
Xn =Xn-l.

f(xn-i) - f(xn-i)
The rate of convergence is between those of the previous two methods, A method biised on
quadratic interpolation between three previous approximations xo, Xi, Xi uses the formula

2C
X3 = Xi - B:i VJ- 4AC

the expressions for A, B, C being given in Problem 25,18,
5, Bemoull's method produces the dominant root of areal polynomial equation

aoxn + aixn-i + ' , , + an = 0

provided a single dominant root exists, by cpmputing a solution sequence of the difference
equation

aOXk + aiXk-i + . , , + anXk-n = 0

and taking lim (Xk+i/Xk)' The initial values Ln+i = , , , = X-i = 0, Xo = 1 are usually used, If
a complex conjugate pair of roots is dominant, then the solution sequence is stil computed,
but the formulas i

i Xk - Xk+iXk-i 2 Xk+iXk-i - Xk-iXkr i -rcosØ i
Xk-i - XkXk-i Xk-i - XkXk-i

serve to determine the roots as ri, ri = r( cos ø :i i sin ø ),

6, Deßation refers to the process of removing a known root from a polynomial equation,

leading to a new equation of lower degree, Coupled with Bernoull's method, this permits
the discovery of next-dominant roots one after another. In practiee it is found that èontinued
deflation determines the sm aller roots with diminishing accuracy, However, using the results
obtained at each step as starting appróximations for Newton's method often leads to
accurate computation of all the roots,

7, The quotient-difterence algorithm extends Bernoull's method and may produce all roots of
a polynomial equation, including complex conjugate pairs, simultaneously, It involves
computing a table of quotients and differences (resembling a difference table) from which
the roots are then deduced, The details are somewhat complicated and may be found in
Problems 25.25 to 25.32,

8. Sturm sequences offer another historieal approach to the real roots of an equation, again
producing them more or less simultaneously, A Sturm sequence

fo(x),!i (x), , , , , fn(x)

meets five conditions as listed in Problem 25,33, These conditions assure that the number
of real zeros of fox) in the interval (a, b) is precisely the difference between the number of
sign changes in the sequence fo(a), fia), . , . ,fn(a) and the corresponding number in
fo(b), fib), , , , ,fn(b), By choosing various intervals (a, b) the real zeros can therefore be
located, When fo(x) is a polynomial, a suitable Sturm sequence may be found by using the
Euclidean algorithm. Lettingfi(x) = f~(x), the rest of the sequence is defined by

fox) = fix)Li(x) - fi(x)

fix) = fi(x )Li(x) - Jz(x)

fn-i(x) = fn-i(x)Ln-i(x) - fn(x)
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Like the. deflation and quotient-difference methods, Sturm sequences can be used to obtain
good starting approximations for Newton iterations, which then produce highly accurate
roots at great speed,

SYSTEMS OF EQUATIONS AND OPTIMIZATION PROBLEMS

Systems of equations respond to generalizations of many of the previous methods and to other
algorithms as weIl, We choose three,

1. The iteràtive method, for example, solves the pair of equations

x=F(x,y) Y = G(x, y)

by the formulas xn = F(xn_¡, Yn-i) Yn = G(xn-¡, Yn-i)

assuming convergence of both the Xn and Yn sequences, Newton's,method solves

f(x, y) = 0

through the sequences defined by

g(x,y)=O

xn = Xn-i + hn-i Yn = Yn-i + kn-i

with hn-i and kn-i determined by

fAxn-¡, Yn-i)hn-i + l'(xn-¡, Yn-i)kn-i = - f(xn-¡, Yn-i)

gAxn-¡, Yn-i)hn-i + gy(xn-¡, Yn-i)kn-i = - g(xn-¡, Yn-i)

More generally , the system

F(x) = 0

in which F, x, and 0 are vectors of n dimensions, may respond to the iteration

x(n) = G(x(n-i))

obtained by arearrangement of the original system, with a suitable initial vector x(O), O~ the
Newton approach can be expressed in a compact vector-matrix form beginning with the
Taylor se ries

F(x(n-i) + h) = F(x(n-i)) +J(x(n-i))h +, , ,

ignoring. the high er-order terms and setting the left side to the zero vector, The result is a
linear system for h

J(x(n-i))h = - F(x(n-i))

h = - ri(x(n-i))F(x(n-i))which can even be written

The matrix J is called the Jacobian of Fand has the elements

af¡J..=-I) a
Xj

where f¡ and Xj are components of Fand x, With an accurate initial approximation, and a
co operative F, the error decreases quadratically in the sense

iix - x(n)ii ~ c Iix - x(n-i)112

. but it must be pointed out that this quadratic convergence can be elusive, Finding

suffciently accurate first approximations is not always easy with systems of equations and
Newton approximations sometimes wander about. In some cases it has been found that the
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shortened step
x(n) = x(n-l) + kn k.: 1

does better, with k chosen to assure that the norm of F decreases,

¡!F(x(n))ii.: I¡F(x(n-I))11

In this way each step improves the situation, The deviee has been called the damped
Newton method,

2, Optiation methods are based upon the idea that the system F = 0, or f¡ = 0 for
i = 1, , , , , n, is solved whenever the function

S = ff + f~ + ' , . + f~

is minimized, since the minimum clearly occurs when all the f¡ are zero, Direct methods for
seeking this minimum, or descent methods, have been developed, For example, the
two-dimensional problem (with a familiar change of notation)

fex, y) = 0 g(x,y)=O
is equivalent to minimizing this sum

Sex, y) = ¡i + g2

Beginning at an initial approximation (xo, Yo), we select the next approximation in the form

Xl = Xo - tSxo Yi = Yo - tSyO

where Sxo and SyO are the components of the gradient vector of S at (xo, Yo), Thus progress is
in the direction of steepest descent and the algorithm is known as the steepest descent
algorithm, The number t may be chosen to minimize S in this direction, though alternatives
haye been proposèd, Similar steps then follow, The method is often used to provide initial
approximations to the Newton method,

The above equivalence is, of course, often exploited in the opposite way, To optimize a
function f(XI, , , , , xn), one looks for places where the gradient of f is zero

grad (f) = (fi, f2, , , , , in) = (0, 0, , , , ,0)

Here f¡ denotes the partial derivative Qf f relative to Xi' The optimization is then attempted
through the solution of the system of n nonlinear equations.

3, Bairstow's method pro duces complex roots of areal polynomial equation p(x) = 0 by

applying the Newton method to a related system, More specifically, division of p(x) by a
quadratic polynomial suggests the identity

p(x) = (x2 - ux - v)q(x) + rex)

where r(x) is a linear remainder

rex) = bn-I(U, V)(X - U) + bn(u, v)

The quadratic divisor wil be a factor of p (x) if we can choose U and v so that

bn_i(u, v) = 0 bn(u, v) = 0

This is the system to wh ich Newton's method is now applied, Once u and v are known, a
complex pair of roots may be found by solving

X2~UX -v =0
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Solved Problenis
,

THE ITERATIVE METHOD
25.1. Prove that if r is a root of fex) = 0 and if this equåtion is rewritten in the form x = F(x) in

such a way that 1F'(x)1 ~ L 0: 1 in an interval I centered at x = r, then the .sequence
Xn = F(xn-i) with Xo arbitrary but in the interval I has limxn = r,

First we find

JF(x) - F(y)J = IF'(~)(x ~ y)l;; L Ix - yl

provided both x and y are cIose to r, Actually it is this Lipschitz condition rather than the more
restrictive condition on F'(x) whieh we need, Now

IXn - rl = IF(xn-1) - F(r)l;; L IXn-1 - rl

so that, since L.: 1, each approximation is at least as good as its predecessor. This guarantees that all
our approximations are in the Interval I, so that nothing interrupts the algorithm, Applying the last
inequality n times, we have

IXn -rl;;U Ixo-rl

and since L.: 1, ¡im Xn = r.

The convergence is ilustrated in Fig, 25-1. Note that choosing F(xn_i) as the next Xn amounts to
following one of the horizontalline segments over to the line y = x, Notice also that in Fig, 25-2 the case
1F'(x)1 :;1 leads to divergence,

y

y == F(J')
X

y == F(x)

x

:X3 Xi 2"0 X2 2"4

Fig.25.1 Fig.25-2

25.2. In the year 1225 Leonardo of Pisa studied the equation

fex) = x3 + 2x2 + 10x - 20 = 0

and produced x = 1.368,808,107, Nobody knows by what method Leonardo found this value
but it is 'a remarkable result for his time, Apply the method of Problem 25,1 to obtain this
result,

The equation can be put into the form x = F(x) in many ways. We take x = F(x) = 20/(x2 + 2x + 10)
which suggests the iteration

20'
Xn = 2

X~-l + 2xn-1 + 10

With Xo = 1 we find Xi = ~ = 1.538461538, Continuing the iteration produces the sequence of Table 25,1.
Sure enough, on the twenty-fourth round Leonardo's value appears,
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Table 25.1

n Xn n Xn

1 1.538461538 13 1.68817874
2 1.295019157 14 1.68803773
3 1.401825309 15 1.68810031
4 1.54209390 16 1.68807254
5 1,375298092 17 1.688Q8486
6 1.365929788 18 1,368807940

7 1.370086003 19 1.68808181
8 1.68241023 20 ~. 1.68808075

9 1.69059812 21 1.68808122
10 1.68696391 22 1.68808101
11 1.368857688 23 1.68808110
12 1.368786102 24 1.68808107

25.3. Why is the convergence of the algorithm of the ptevious problem so slow?

The rate of convergence may be estimated from the relation

e" = r - Xn = F(r) - F(Xn-i) = Fi(g)(r - Xn-I) = FI(g)en_1

which compares the nth error en with the preceding error. As n increases we may take F'(r) as an
approximation to Fi(g), assuming the existence of this derivative, Then en = F'(r)en_1. In our example,

F'(r) = _ 40(r + 1) . = -.44
(r2+2r + 1W

making each error about -.44 times the one before it, This suggests that two or threeiterations will be
required for each new correct decimal place, and this is wh at the algorithm has actually achieved,

25.4. Apply the idea of extrapolation to the limit to accelerate the previous algorithm,

This idea may be used whenever information abotit the character of the error in an algorithm is
available. Here we have the approximation en =F'(r)en_1. Without knowledge of F'(r) we may stil
write

r - Xn+i = F'(r)(r - xn)

r - Xn+2 = F'(r)(r - Xn+1)

Dividing we find
r-Xn+1= r-Xn
r -Xn+2 r -Xn+i

and solving for the root (Xn+2 - Xn+i)2 (Lln+1)2r =Xn+2 - Xn+2 - 2Xn+2 - 2xn+I + Xn ¿l Xn
This is often called the Aitken ¿l2 process.

25.5. Apply extrapolation to the limit to the computation of Problem 25,2,

Using XIO, XII' and X12, the formula produces

r = 1.68786102 - (.000071586)2 .368808107
_ . 000232877 1

which is once again Leonardo's value. With this extrapolation, only half the iterations are needed. Using
it earlier might have made still further economies by stimulating the convergence.
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25.6. lJsing extrapolation to the limitsystematically after each three iterations is what is known as
Stelfensen's method, Apply this to Leonardo's equation,

The first three approximations xo, Xl' and X2 may be borrowed from Problem 25.2. Aitken's
formula is now used to produce X3:

(X2 - X 1)2 = 1.70813882X3=X2- X2-2xi +xo

The original iteration is now resumed as in Problem 25.2 to produce X4 and Xs:

X4 = F(x3) = 1.67918090

Aitken's formula then yields X6:

Xs = F(x4) = 1.69203162

(Xs - X4? _ 1.68808169
X6 = Xs - Xs - 2x4 + X3

The next cycle brings the iterates

X7 = 1.68808080 Xg = 1.68808120

from which Aitken's formula manages X9 = 1.368808108.

25.7. Show that other rearrangements of Leonardo's equation may not produce convergent

sequences.

As an example we may take x = (20 - 2x2 - x3) 1 10 which suggests the iteration

20 - 2x~-i - x;'-i
Xn =

10

Again starting with Xo = 1, we are led to the sequence

Xi = 1.70

X2 = .93

x3=1.75

X4= ,85

Xs = 1.79

X6= .79
x7=1.83

Xg= .72

and so on, It seeiÌs clear that alternate approximations are headed in opposite directions, Comparing
with Problem 25,1 we find that here F'(r) = ( - 4r - 3r2)/1O': -1, confirming the èomputational
evidence,

TUE NEWTON METUOn

25.8. Derive the Newton iterative formula Xn = Xn-l - :,~Xn-i~ for solving ¡er) = 0,
Xn-l

Beginning with Taylor's formula

f(r) = f(xn-i) + (r - Xn-i)f'(X,,-i) + ~ (r - Xn_i)2f"(ç)

we retain the linear part, recall that f(r) = 0, and define Xn by putting it in place of the remaining r to

obtain
0= f(xn-í) + (xn - x,,-i)f'(Xn-1)

. . f(xn-i)WhlCh rearranges at once into r=Xn =Xn-i -f-;( )'
Xn-1

25.9. What is the geometric interpretation of Newton's formula?

It amounts to using the tangent line to y = f(x) at Xn-i in pI ace of the curve. In Fig, 25-3 it can be
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Fig..25-3

seen that this leads to

f(xn-1) - 0 = f'(xn-I)

Xn-1 -Xn

which is once again Newton's formula. Similar steps follow, as suggested by the arrow,

25.10. Apply Newton's formula to Leonardo's equation,

With f(x) = x3 + 2x2 + lOx - 20 we find f' (x) = 3x2 + 4x + 10, and the iterative formula becomes

X~-I + 2x~-I + lOxn_1 - 20

3X~_1 + 4xn-1 + 10
Xn =xn_i

Once more choosing Xo = 1, we obtain the results in Table 25,2,

Table 25.2

n 1 2 3 4

Xn 1.411764706 1. 369336471 1.68808189 1.68808108

The speed of convergence is remarkable, In four iterations we have essentially Leonardo's value, In
fact, computation shows that

f(1.368808107) = -.000000016

f(1.368808108) = -.000000005
which suggests that the Newton result is the winner by a nose,

25.11. Explain the rapid convergence of Newton's iteration by showing that the convergence is

"quadratie, "

Recallng the equations of Problem 25.8 whieh led to the Newton formula,

1f(r) = f(xn-i) + (r - xn-I)f(Xn_l) + Z (r - xn-1n"(;)

0= f(xn-i) + (xn -xn-i)f'(Xn_i)

we subtract to obtain 0 = (r - xn)f'(xn_i) + ~ (r - Xn_i)2f"(ç)

or, letting en = r - Xn, 0 = enf'(xn-i) + ~ e~-if"( ç)

Assuming convergence, we replace both Xn_i and ç by the root rand have

f"(r) 2-en-ien = - 2f'(r)
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Each error is therefore roughly proportional to the square of the previous error, This means that the
number of correct decimal places roughly doubles with each approximation and is what is called
quadratic convergence, It may be compared with the slower, linear convergence in Problem 25.3, where
each error was roughly proportional to the previous error, Since the error of Olir present X3 is ab out
,00000008, and (f"(r)J(2t(r)) is about .3, we see that if we had been able to carry more decimal places
in our computation the error of X4 might have been about two units in the fifteenth place! This superb
speed suggests that the Newton algorithm deserves a reasonably accurate first approximation to trigger
it, and that its natural role is the conversion of such a reasonable approximation into an excellent one,
In fact, other algorithms to be presented are better suited than Newton's for the "global" problem of
obtaining first approximations to all the roots. Such methods usually converge very slowly, however, and
it seems only natural to use them only as a source of reasonable first approximations, the Newton

method then providing the polish. Such procedures are very popular and will be mentioned again as we
proceed. It mayaIso be noted that occasionally, given an inadequate first,approximation, the Newton
algorithm wil converge at quadratic speed, but not to the root expected! Recalling the tangent line

geometry behind the algorithm, it is easy to diagrama curve for which this happens, simply putting the
first approximation neat a maximum or minimum point,

25.12. Show that the formula for determining square roots,

Xn =2~ (Xn-l +~)
Xn-l

is a special case of Newton's iteration,

With fex) = x2 - Q, it is clear that making fex) = 0 amounts to finding a square root of Q, Since
t(x) = 2x, the Newton formula becomes

X~-l- Q
Xn = Xn-1 - 2xn-i

-21 (xn-i +~)Xn-1

25.13. Apply the square root iteration with Q = 2,

Choosing Xo = 1, we find the results in Table 25.3, Notice once again the quadratie nature of the

convergence, Each result has roughly twiee as many correct digits as the one before it. Figure 25-4
ilustrates the action. Since thi' first approximation was on the concave side of y = x2 - 2, the next is on
the other side of the root, After this the sequence is monotone, remaining ón the convex side of the
curve as tangent lines usually do.

Table 25.3

n Xn

1 1.5

2 1.416666667
3 1.414215686
4 1.414213 562

5 1.414213 562

-1

Fig.25-4
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25.14. Derive the iteration Xn = Xn-l - X~-lp=P for finding a pth root of Q,
PXn-1

With f(x) =xP - Q and f'(x) = pxP-I, the result is at once a special case of Newton's method,

25.15. Apply the precedingproblem to find a cube root of 2,

With Q = 2 and p = 3, the iteration simplifies to Xn = -32 (xn-1 + +),
Xn-I

Choosing Xo = 1, we find XI = ~ and then

X2 = 1. 263888889 X3 = '1.259933493 X4 = 1.259921049 X5 = 1.259921049

The quadratic convergence is conspicuous,

INTERPOLATION METHODS

25.16. This ancient method uses two previous approximations and constructs the next approximation
by making a linear interpolation between them, Derive the reguZa faZsi (see Fig, 25-5),

(a - b)f(a)c=a- f(a)-f(b)

The linear function

y = f(a) +f(a) - f(b) (x - a)a -b
clearly has y = f (x) at a and b, It vanishes at the argument c given in the regula falsi, This zero serves as
our next approximation to the root of f(x) =0, so effectively we have replaced the curve y = f(x) by a

linear collocation polynomial in the neighborhood of the root, It wil also be noticed in Fig, 25-5 that the
two given approximations a and b are on opposite sides of the exact root, Thus f(a) and f(b) have

opposite signs, This opposition of signs is assumed when using regula falsi, Accordingly, having found c,
to reapply regula falsi we use this c as either the new a or the new b, whiehever choiee preserves the
opposition of signs, In Fig, 25-5, c would become the new a, In this way a sequence of approximations
xo, Xl' X2, ' , . may be generated, Xo and XI being the original a and b. .

a

Fig.25.5

25.17. Apply reguZa faZsi to Leonardo's equation,

Choosing Xo = 1 and x i = 1.5, the formula produces

X2 = 1. _ ,5(2.875)
9.875 = 1.5

X3 = 1.5 _ (-.15)( -.3946)
-3,2696 = 1.68

and so on. The rate of convergence can be shown to be better than the rate in Problem 25,2 but not so
good as that of Newton's method,

25.18. A natural next step is to use a quadratic interpolation polynomial rather than a linear one,
Assuming three approximations xo, Xl' X2 are in hand, derive a formula for a new

approximation X3 whieh is a root of such a quadratie,
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It is not hard to verify that the quadratic through the three points (xo, Yo), (xi, Y1), (x2, Y2), where

Y = f(x), can be written as

x -x
p(x)=~(Ah2+Bh + C)X2 -Xo

where h =x -X2 and A, B, C are

A = (xi - XO)Y2 + (xo - X2)YI + (X2 - Xi)YO

(x2 - Xi)(X1 - XO)2

B = (Xl - xo)(2x2 - Xl - XO)Y2 - (X2 - XO)2yl + (X2 - Xi)2yo

(X2 - X1)(Xi - xo? .
X2 -XoC=-Y2
Xi -Xo

Solving p(x) = 0 for h we find

h- 2C
- B:iýB-4AC

this form of the quadratic formula being chosen to avoid loss of significant digits during subtraction.
Here the sign which makes the denominator larger in absolute value should be chosen. Then

X3 =X2 + h

becomes the next approximation and the process may be repeated with all subscripts advanced by one,
The method just described is wh at is known as Muller's method and has been found to converge to

both real and complex roots, For the latter it is necessary, of course, to run the algorithm in complex
arithmetic, but even with real roots, complex arithmetic is the wiser choiee since tiaces of imaginary

parts occasionally enter.

BERNOULLI'S METHOD

25.19. Prove that if the polynomial of degree n

p(x) = aoxn + aixn-i + ' , . + an

has a single dominant zero, say ri, then it may be found by computing a solution sequence for
the difference equation of order n

aOxk + aixk-i + ' , . + anXk-n = 0

and taking lim (Xk+i/xk)'

This difference equation has p(x) = 0 for its characteristic equation and its solution can therefore be
written as

Xk = c1r7 + c2r~ + ' , , + cnr~

If we choose initial values so that Ci '* 0, then

Xk+1 1 + (c2/c1)(r2/rl)k+I + ' , , + (cn/ci)(rn/rl)k+I
-; = r1 1 + (C2/c1)(r2/ri)k + ' , . + (cn/c1)(rn/r1)k

and since r1 is the dominant root,

lim~=O
ri

i = 2,3, , . . , n

making lim (Xk+i/Xk) = ri as claimed, It can be shown using complex variable theory that the imtial
values X-n+1 = , , , = X-i = 0, Xo = 1 wil guarantee Ci '* O.
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25.20. Apply the Bernoull method to the equation x4 ~ 5x3 + 9x2 - 7x + 2 = 0,

The associated difference equation is

Xk - 5Xk_1 + 9Xk-2 - 7Xk-3 + 2xk-4 = 0

and if we take the initial values X-3 = L2 = Li = 0 and Xo = 1, then the succeeding Xk are given in Table
25.4, The ratio Xk+i/Xk is also given, The convergence to , = 2 is slow, the rate of convergence of
Bernoull's method being linear. Frequently the method is used to generate a good starting
approximation for Newton's or Steffensen's iteration, both of which are quadratic.

Table 25.4

k Xk Xk+i/Xk k Xk Xk+i/Xk

1 5 3,2000 9 4,017 2,0164
2 16 2,6250 10 8,100 2.0096

3 42 2,3571 11 16,278 2,0056

4 99 2,2121 12 32,647 2,0032

5 219 2.1279 13 65,399 2,0018

6 466 2,0773 14 130,918 2,0010

7 968 2,0465 15 261,972 2,0006

8 1,981 2,0278 16 524,097

25.21. Modify the Bernoulli method for the case in which a pair of complex conjugate roots are
dominant,

Let '1 and '2 be complex conjugate roots. Then Ir;l': Iril for i = 3, ' , , ,n, since the ri, r2 pair is
dominant, Using real starting values, the solution of the difference equation may be written as

Xk = cir~ + c2r~ + ' . , + cn'~

where Cl and C2 are also complex conjugate, Let ri = ,e;'" = "2' Cl = ae;fi = e2 with r:; 0, a:; 0, and
0.: ep .: :J so that r1 is the root in the upper half plane, Then

Xk = 2ark cos (kep + 8) + c3r~ + ' , , + cnr~

k ( C3 (r3)k Cn ('n)kJ
= 2ar cos (kep + 8) + 2a -; +'" + 2a -;

All terms except the first have limit zero;and so for large k, Xk = 2ark cos (kep + 8). We now use this

result to determine rand ep, First we observe that

Xk+1 - 2r cos ep Xk + r2xk_1 = 0

as may be seen by substituting for Xk from the previous equation and using the identities for cosines of
sums and differences. Reducing the subscripts, we also have

Xk - 2r cos ep Xk-1 + r2xk_2 = 0

Now solving these two simultaneously,

2 x¡ - Xk+iXk-1, 2
Xk-I - XkXk-2

_ 2r cos ep _ Xk+IXk-2 - Xk iXk
x2k-I -XkXk-2

The necessary ingredients for determining 'i and '2 are now in hand,

25.22. ApplyBernoull's method to Leonardo's equation,

The associated difference equation is Xk = - 2xk-1 - 1Oxk-2 + 20Xk_3 and the solution sequence for
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initial values X-2 = X-I = 0, Xo = 1 appears in Table 25.5, Some approximations to r2 and -2r cos il also
appear. The fluctuating :I signs are an indication that dominant complex roots are present, This may be
seen by recalling the form of the Xk as given in Problem 25.21, namely Xk = 2ark cos (kil + e). As k
increases, the value of the cosine will vary between :I 1 in a somewhat irregular way which depends on
the value of il.

Table 25.5

k Xk k Xk ,. -2r cos ep

1 -2 7 -2,608 14.6026 3.3642

2 -6 8 -32,464 14.6076 3.3696

3 52 9 147,488 14,6135 3,3692

4 -84 10 -22,496 14,6110 3,3686

5 -472 11 -2,079,168 14,6110 3,3688

6 2,824 12 7,333,056

From the last approximations we find

r cos il = - 1.6844 r sin il = :I Vr2 - (, cos il?= :13.4313

making the dominant pair of roots '1'2 = - 1.6844:1 3.4313i. Since Leonardo's equation is cubie, these
roots could also be found by using the real root found earlier to reduce to a quadratic equation. The
Bernoulli method was not really needed in this case. The results found may be checked by computing
the sum ( - 2) and product (20) of all the roots.

DEFLATION

25.23. Use the' simple equation x4 - lOx3 + 35x2 - 50x + 24 = 0 to ilustrate the idea of deflation,

The dominant root of this equation is exactly 4, Applying the factor theorem we remove the factor
x - 4 by division,

1 -10
4

-6

35

-24
11

-50
44

-6

24

-24
o

li
1

The quotient is the cubic x3 - 6x2 + 11x - 6 and we say that the original quartic polynomial has been
deflated to this cubic, The dominant root of the cubic is exactly 3, Removing this factor,

1 -6
3

-3

11

-9
2

-6
6

o

Ll

1

we achieve a second deflation, to the quadratic x2 - 3x + 2 which may then be solved for the remaining
roots 2 and 1. Or the quadratic may be deflated to the linear function x - 1. The idea of deflation is that,
one root having been found, the original equation may be exchanged for one of lower degret,
Theoretically, a method for finding the dominant root of anequation, such as Bernoull's method,
could be used to find all the roots one after another, by successive deflations which remove each

dominant root as it is found, and assuming no two roots' are of equal size, Actually there are error
problems which limit the use of this procedure, aS the next problem suggests.

25.24. Show that if the dominant root is not known exactly, then the method of deflation may yield
the next root with stil less accuracy, and suggest a procedure for obtaining this second root to
the same accuracy as the first.



CHAP, 25) NONLINEAR ALGEBRA 339

Suppose, for simplicity, that the dominant root of the previous equation has been found correct to
only two places to be 4.005, Deflation brings

1 -10
4.005

-5,995

35

-24,01
10,99

-50
44,015

-5,985

24

-23.97
.03

14,005

1

and the cubic x3 - 5,995x2 + lO,99x - 5.985. The dominant zero of this cubic (correct to two places) is
2,98. As far as the original quartic equation is concerned, this is incorrect in the last place, The natural
procedure at this point is to use the 2,98 as the initial approximation for a Newton iteration, which
would rapidly produce a root of the original equation correct to two places, A second deflation could
then be made, In practice it is found that thè smaller "roots" require subståntial correction and that for
polynomials of even moderate degree the result obtained by deflation may not be good enough to
guarantee convergence of the Newton iteration to the desired root, Similar remarks hold when complex
conjugate roots a :ì bi are removed through division by the quadratic factor x2 - 2ax + a2 + b2,

TUE QUOTIENT-DIFFERENCE ALGORITUM

25.25. What isa quotient-difference scheme?

Given a poly no mi al aoxn + a1Xn-I + ' , , + an and the associated difference equation

aOXk + a1xk-I + ' , , + anXk-n = 0

consider the solution sequence for which X-n+I = ' , , = X-I = 0 and Xo = 1. Let ql = Xk+1/Xk and dZ = O.

Then define

j+I = (d~+i) jqk d~ qk+1 d~ = qL1 - q~ + d~-,\

where j = 1, 2, . . . ,n - 1 and k = 0,1,2, ' . , , These various quotients (q) and differences (d) may be
displayed as in Table 25.6, The definitions are easily remembered by observing the rhombus-shaped
parts of the table, In a rhombus centered irf a (q) column the sum of the SW pair equals the sum of the
NE pair. In a rhombus centered in a (d) column the corresponding products are equal. These are the
rhombus mies.

Table 25.6

q¿
0 d¿

ql q6

0 d: d6

qi qi qÖ

0 di di dÖ

qj q~ qi qci

0 dj d~ di

qà q~ q~ q1

0 dà d~ d~

q~ q¡ q~ qi

25.26. Compute the quotient-difference scheme forthe polynomial x2 - X - 1 associated with the
Fibonacci sequence.

The results appear in Table 25.7.
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Table 25.7

k Xk dt ql dl q¡ d7

0 1 0

1.0000

1 1 0 1.0000

2:0000 -1.0000
2 2 0 -.5000 -,0001

1.000 -.5001
3 3 0 ,1667 -.0001

1.6667 -.6669
4 5 0 -,0667 .0005

1.6000 -,5997
5 8 0 .0250 ,0007

1.6250 -.6240
6 13 0 -.0096 -,0082

1.6154 -.6226
7 21 0 ,0037

1.6190

8 34 0

25.27. What is the first convergence theorem associated with the quotient-difference scheme?

Suppose no two zeros of the given polynomial have the same absolute value. Then

limq~= rj j = 1, 2, , . . , n

for k tending to infinity, where ri, r2, , . . , rn are in the order of diminishing absolute value, For j = 1 this
is Bernoulli's result for the dominant root, For the other values of j the proof requires complex function
theory and wil be omitted, It has also been assumed here that none of the denominators involved in the
scheme is zero, The convergence of the q's to the roots implies the convergence of the ds to zero, This
may be seen as follows, By the first of the defining equations of Problem 25,25,

dj j+Ik+I =!l~ rl+1.: 1
d~ q~+1 1j

The d~ therefore converge geometrically to zero, The beginning of this convergence, in the present
problem, is evident already in Table 25,7, except in the last column which will be discussed shortly, In
this table the (q) columns should, by the convergence theorem, be approaching the roots (1:: V5)/2
whieh are approximately 1.61803 and - ,61803, Clearly we are closer to the first than to the second.

25.28. How can a quotient-difference scheme produce a pair of complex conjugate roots?

The presence of such roots may be indicated by (d) columns which do not converge to zero.
Suppose the column of d~ entries does not. Then one forms the polynomial

p¡ = x2 - A¡x + B¡

where for k tending to infinity,

A¡ = lim (q~+1 + q~+I) I, ¡ ¡+1B¡= imqkqk

The polynomial wil have the rootsr¡ and r¡+l which will be complex conjugates. Essentially, a quadratic
factor of the original polynomial wil have been found, Here we have assuried that the columns of d~-i
and d~+1 entries do converge to zero. If they do not, then more than two roots have equal absolute vah.ie
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and a more complicated procedure is needed, The details, and also the proofs of convergence claims just
made, are given in National Bureau of Standards Applied Mathematics Series, vol. 49,

25.29. What is the row-by-row method of generating a quotient~difference scheme and what are its
advantages?

The column-by-column method first introduced in Problem 25,25 is very sensitive to roundoff error,
This is the explanation of the fact that the final column of Table 25,7 is not converging to zero as a (d)
column should but instead shows the typical start of an error explosion, The following row-by-row
method is less sensitive to error, Fietitious entries are supplied to fill out the top two rows of a
quotient-difference scheme as folIows, starting with the d% column and ending with dZ, Both of these
boundary columns are to consist of zeros for all values of k, This amounts to forcing proper behavior of
these boundary differences in an effort to control roundoff error effects,

I 0

-a1/ao o o o

~a2/a1 a3/a2 a4/a3

The rhombus mIes are then applied, fillng each new row in its turn, It can be shown that the same
scheme found in Problem 25,25 wil be developed by this method, assuming no errors in either
procedure, In the presence of error the row-by-row method is more stable, Note that in this method it is
not necessary to compute the Xk'

25.30. Apply the row:by-row method to the polynomial of the Fibonacci sequence, x2 - x - 1.

The top rows are filed as suggested in the previous problem. The othersare computed by the
rhombus rules, Table 25,8 exhibits the results, The improved behavior in the last (q) column is
app¡:rent,

Table 25.8

k d q d q d

1 0
1 0 1 0

2 -1
2 0 -,5000 0

1.000 -.5000
3 0 ,1667 0

1.6667 -.6667
4 0 -,0667 0

1.6000 -.6000
5 0 ,0250 0

1.6250 -.6250
6 0 -,0096 0

1.6154 -,6154
7 0 .0037 0

1.6191 -,6191
8 0 0

25.31. Apply the quotient-difference algorithm to find all the roots of

x4 - lOx3 + 3Sx2 - SOx + 24 = 0

The roots of this equation are exactly 1, 2, 3, lind 4. No advance information about the roots is,
however, required by this algorithm, so the equation serVes as a simple test case, The quotient-
difference scheme, generated by the method of Problem 25,29, appears as Table 25,9, Clearly the
convergence is slow, but the expected pattern is emerging, The (d) columns seem headed for zero and
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Table 25.9

k d q d q d q d q d

10 . 0 0 0
1 0 -3.5000 - 1.4286 -.4800 0

6.5000 2.0714 ,9486 .4800
2 0 - 1.154 -,6542 -.2429 0

5,3846 2.5326 1.599 ,7229
3 0 -.5246 -.3513 -,1291 0

4,8600 2.7059 1.821 .8520
. 4 0 -.2921 -.2054 -.0695 0

4,5679 2.7926 1.7180 ,9215
5 0 -.1786 -.1264 -.0373 0

4,3893 2,8448 1.8071 ,9588
6 0 -,1158 -.0803 -,0198 0

4,2735 2,8803 1.8676 .9786
7 0 -.0780 -.0521 -,0104 0

4,1955 2,9062 1.9093 ,9890
8 0 -,0540 -,0342 -.0054 0

4.1415 2.9260 1.9381 .9944

the (q) columns for 4,3,2,1 in that order. Probably it would be wise to switch at this point to Newton's

method, which very quickly converts reasonable first approximations such as we now have into accurate
results, The quotient-difference algorithm is often used for exactly this purpose, to prime the Newton
iteration.

25.32. Apply the quotient-difference algorithm to Leonardo's equation,

Again using the row-by-row method,we generate the scheme displayed in Table 25,10,

Table 25.10

k d q d q d q d

-2 0 0

1 0 5 -2 0

3 -7 2

2 0 -11.6667 ,5714 0

-8.6667 5,2381 1.4286

3 0 7.0513 .1558 0

-1.6154 -1.6574 1.728
4 0 7,2346 -.1196 0

5,6192 -9.0116 1.924
5 0 - 11.6022 .0185 0

-5,9830 2.6091 1.139
6 0 5,0596 ,0097 0

-,9234 -2.4408 1.642

The convergence being slow, suppose we stop here. The second (d) column hardly seems headed
for zero, suggesting that Ti and T2 are complex, as we already know anyway, The next (d) column does
appear to be tending to zero, suggesting areal root which we know to be near 1.369, The Newton
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method would quickly produce an accurate root from the initial estimate of 1.3642 we now have here,
Returning to the complex pair, we apply the procedure of Problem 25,28. From the first two (q)
columns we compute

5,6192 - 9,0116 = -3.3924

-5.9830 + 2,6091 = -3,3739

-.9234 - 2,4408 = -3.3642

(- 1.6154)(-9.0116) = 14,5573

(5,6192)(2,6091) = 14.6611

(-5,9830)( -2.4408) = 14.6033

sO that Ai = -3,3642 and Bi = 14,6033. The complex roots are therefore approximately given by

x2 + 3,3642x + 14,6033 = 0 which makes them r1, r2 = - 1.682:t 3.431i.
Newton's method using complex arithmetic could be used to improve these values, but an

alternative procedure known as Bairstow's method will be presented shortly, Once again in thisproblem
we have used the quotient-difference algorithm to provide respectable estimates of all the roots, A
method which can do this 'should not be expected to converge rapidly, and the switch to a quadratically
convergent algorithm at some appropriate point is a natural step,

STURM SEQUENCES

25.33. Define a Sturm sequence,

A sequence of functions fox), fi (x), ' . . ,In (x) which satisfy on an interval (a, b) of the realline the
conditions:

1. Each /;(x) is continuous,
2, The sign of In (x ) is constant,
3, If /;(r) = 0 then I;-i(r) and t+i(r) * 0,
4, If /;(r) = 0 then I;-i(r) and li+i(r) have opposite signs.
5. If lo(r) = 0 then for h suffciently small

fo(r - h) = _ 1
sign fir - h) sign lo(r + h)

fi(r+h)=1
is called a Sturm sequence.

25.34. Prove that the number of roots of the function fox) on the interval (a, b) is the difference
between the number of changes of sign in the sequences foa), fia)"" ,fn(a) and

fob),f¡(b), . , , ,fn(b),
As x increases from a to b the number of sign changes in the Sturm sequence can only be affected

by one or more of the functions having a zero, since all are continuous, Actually only a zero of fo(x) can
affect it, For, suppose /;(r) = 0 with i * 0, n, then by properties 1, 3, and 4 the following sign patterns
are possible for sm all h:

h-i h h+i

r-h + :t -
r + 0 -
r+h + :t -

h-1 h h+i

r-h - :t +
r - 0 +
r+h - :t +

or

In all cases there is one sign change, so that moving across such a root does not affect the number of sign
changes. By condition 2 the functionln(x) cannot have a zero, so we come finally to/o(x). By condition 5
we lose one sign change, between 10 and 11, as we move across the root r. This proves the theorem, One
sees that the five conditions have been designed with this root-counting feature in mind,
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25.35. If fo(x) is a polynomial of degree n with no multiple roots, how can a Sturm sequence for
enumerating its roots be constructed?

Let !i (x) = f h(x) and then apply the Euclidean algorithm to construct the rest of the sequence as
folIows:

fo(x) = fix )L1 (x) - fz(x)

fi (x) = fzx )Li(x) - h(x)

fn-2(X) = fn-i(x)Ln-1(x) - f,(x)

where t(x) is of degree n - i and the L¡(x) are linear.
The sequencefo(x),f1(X),.., ,fn(x) wil be a Sturm sequence. To prove this we note first that all

t(x) are continuous, since fo and!i surely are, Condition 2 follows since fn is a constant. Two consecutive
t(x) cannot vanish simultaneously since then all would vanish including fo and!i and this would imply a

multiple root. This proves condition 3. Condition 4 is a direct consequence of.our defining equations and
5 is satisfied since !i = f h,

If the method were applied to a polynomial having multiple roots, then the sirrultaneous vanishing
of all the t(x) would give evidence of them, Deflation of the poly no mi al to remove multiplicities allows
the method to be applied to find the simple roots.

25.36. Apply the method of Sturm sequences to locate all real roots of

x4 - 2,4x3 + i.03x2 + ,6x - ,32 = 0

Denoting this polynomial fox), we first compute its derivative. Since we are concerned only with
the signs of the various tex), it is often convenient to use a positive multiplier to normalize the leading
coeffcient. Accordingly we multiply f h(x) by l and take

!i(x) =x3 - 1.8x2 + ,515x +,15

The next step is to divide fo by !i. One finds the linear quotient Li (x) = x - .6 which is of no immediate
interest, and a remainder of - .565x2 + .759x - ,23. A common error at this point is to forget that we
want the negative of this remainder. Also normalizing, we have

fz(x) = x2 - l.434x + .4071

Dividing!i by fz brings a linear quotient L2(x) = X - .4566 and a remainder whose negative, after

normalizing, is
f3(X) =x - .6645

Finally, dividingfz by h we find the remainder to be -.0440. Taking the negative and normalizing, we
may choose

. Ux)= 1

We now have our Sturm sequence and are ready to search out the roots, It is a simple matter to confirm
the signs displayed in Table 25,11. They show that there is one root in the interval ( - 1, 0), one in (1,2),

Table 25.11

fo !i !i .h A Changes

-00 + - + - + 4

- 1 + - + - + 4

0 - + + - + 3

1 - - + + + 1

2 + + + + + 0
00 + +. + + + 0

¡¡
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and two roots in" (0, 1), Choosing more points within these intervals, all roots" may be more precisely
pinpointed, As with the quotient-difference algorithm, however, it is wise to shift at a certain point to a
more rapidly convergent process such as Newton's. A method which provides first estimates of the
locations of all real roots, as the Sturm method does, is uneconomical for the precise determination of
any one root, In this example the roots prove to be -,5, ,5, ,8, and 1.6,

25.37. Show that Newton's method wil produce all the roots of the equation in the previous problem
provided suffciently good initial approximations are obtained,

Figure 25-6 below exhibits the qualitative behavior of this polynomial. Clearly any first
approximation xo"' -,5 wil lead to a sequence which converges upon this root, since such an Xo is
alreadyon the convex side of the curve, Similarly any Xo? 1.6 wil bring convergence to the largest root,
Roots that are elose together ordinarily require accurate starting approximations. The simplicity of the
roots in this example may be ignored in order to see how a more obscure pair might be separated. From
the diagram it is apparent that an Xo slightly below .5 wil bring convergence to ,5, while an Xo slightly
above ,8 wil bring convergence to ,8, since in both cases we start on the convex side, Notice that
starting with Xo =",65, whieh is midway between two roots, means following an almost horizontal tangent
line. Actually it leads to Xl = 5, after whieh convergence to the root at 1.6 would occur, This sort of
thing can occurin a Newton iteration,

-1

-,5

Fig.25.6

SYSTEMS OF EQUATIONS, NEWTON'S METHOD

25.38. Derive the formulas for solving fex, y) = 0, g(x, y) = 0,

Xn = Xn-i + hn-i

Yn = Yn-i + kn-i
where hand k satisfy

fxCxn-i, Yn-i)hn-i + t(xn-i, Yn-i)kn-i = - f(xn-i, Yn-i)

gx(xn-i, Yn-i)hn-i + gy(xn-i, Yn-i)kn-i = - g(xn-i, Yn-i)

These formulas are known as the Newton method for solving two simultaneous equations,

Approximate fand g by the linear parts of their Taylor series for the neighborhood of (xn-i. Yn-i):

fex, y) =f(xn-i. Yn-i) + (x -xn-i)fx(xn-i, Yn-1) + (y - Yn-i)J;(Xn-i. Yn-i)

g(x, y) =g(xn-i, Yn-I) + (x -xn-1)gx(xn-i, Yn-i) + (y - Yn-i)gAxn-i, Yn-i)

This assurnes that the derivatives involved exist. With (x, y) denoting an exact solution, both left sides
vanish, Defining x = Xn and Y = Y¡, as the numbers which make the right sides vanish, we have at on ce the
equations required. This idea of replacing a Taylor series by its linear part is what led to the Newton
method for solving a single equation in Problem 25,8,
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25.39. Find the intersection points of the circle x2 + y2 = 2 with the hyperbola x2 - y2 = 1.

Thispartieular problem can easily be solved by elimination, Addition brings 2x2 = 3 ánd
x = :I 1.2247, Subtraction brings 2y2 = 1 and y = :1,7071. Knowing the correct intersections makes the
problem a simple test case for Newton's method. Take Xo = 1, Yo = 1. The formulas for determining h
and kare

2xn-1hn-1 + 2Yn-1kn-1 = 2 - X~-l - y~-l

2xn-1hn-1 - 2Yn-1kn-1 = 1 - X~-l + Y~-l

and with n = 1 become 2ho + 2ko = 0, 2ho - 2ko = 1. Theii ho = - ko = t making

Xi =xo+ ho = 1.25 Yi = Yo + ko = .75

The next iteration brings 2,5h1 + 1.5k1 = - ,125, 2,5h1 - 1.5ki = 0 making h1 = - ,025, ki = - ,04167
artd

X2 = Xl + h1 =1.2250 Y2 = Y1 + k1 = ,7083

A third iteration manages 2045h2 + 1. 4167k2 = - .0024, 2045h2 - 1. 4167k2 = ,0011 making h2 = - ,0003,

k2 = - ,0012 and

X3 = x2 + h2 = 1.2247 Y3 = Y2 + k2 = ,7071

The convergence to the correct results is evident. It can be proved that for suffciently good initial
approximations the convergence of Newton's method is quadratie. The idea of the method can easily be
extended to any number of simultaneous equations,

25.40. Other iterative methods mayaiso be generalized for simultaneous equations, For example, if
our basic equations fex, y) = 0, g(x, y) = ° are rewritten as

x = F(x, y) y = G(x, y)

then under suitable assumptions on Fand G, the iteration

Xn = F(xn-i. Yn-i) Yn = G(xn-i. Yn-i)

wil converge forsuffciently accurate initial approximations, Apply this method to the
equations x = sin (x + y), Y = cos (x - y),

These equations are already in the required form, Starting with the uninspired initial approxirra-
tions Xo = Yo = 0, we obtain the results given below, Convergence for such poor starting approximations
is by no mèans the rule. Often one must labor long to find a convergent rearrangement of given

equations and good first approximations,

n 0 1 2 3 4 5 6 7

Xn 0 0 ,84 .984 ,932 ,936 ,935 .935

Yn 0 1 ,55 ,958 1.000 ,998 ,998 ,998

DESCENT METHÒDS AND ()PTIMIZATION

25.41. What is the idea of a steepest descent algorithm?

A variety of minimization methods involves a function Sex, y) defined in such a way that its
minimum value occurs precisely where fex, y) = 0 and g(x, y) = O. The problem of solving these two
equations simultaneously may then be replaced by the problem üf minimizing Sex, y), Für example,

Sex, y) = (f(x, y)f+ (g(x, y)f

surely achieves its minimum of zero wherever f = g = 0, This is one popular choice of Sex, y), The
question of how to find such a minimum remains. The methodof steepest descent begins with an initial
approximation (xo, Yo). At this point the function Sex, y) decreases most rapidly in the directiün of the
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vector
- gradient S (x, y) IxoYO = I - Sx, - Sy) IxoYO

Denoting this by - grad So = ( - Sxo, -Syo) for short, a new approximation (xi, Y1) is now obtained in the

form
Xl =Xo - tSxö Y1 = Yo- tSyO

with t chos,en so that S(xi, Y1) is a minimum, In other words, we proceed from (xo, Yo) in the direction
- grad So until S starts to increase again, This conipletes one step and another is begun at (Xl. Y1) in the
new direction -grad Si' The process continues until, hopefully, the minimum point is found.

The process has been compared to a skier's return from a mountain to the bottom of the valley in a
heavy fog, Unable to see his goal, he starts down in the direction of steepest descent and proceeds until
his path begins to climb again, Then choosing a new direction of steepest descent, he makes a second
ron of the same sort. In a bowl-shaped valley ringed by mountains it is clear that this method wil bring
hirn gradually nearer and nearer to horne. Figure 25-7 ilustrates the action, The dashed lines are
contour or levellines, on whieh S(x, y) is constant, The gradient direction is orthogonal to the contour
direction at each point, so we always leave a contour line at right angles, Proceeding to the minimum of
S(x, y) along this line means going to a point of tangency with a lower contour line. Actually it requires
infinitely many steps 'of this sort to re ach the minimum and a somewhat uneconomical zigzag path is
fol1owed,

------- "//' /----" \
/' ,/,/ ,/--~" \ \/ /,/ ~~ \ \ \

/' / / / -.." I i/ //// )11)1/ ((/11 I
I \ - // / I /I \ '_--_/',//'/

\ \ ,----- /' /'\ /' /'
.. '----------.. -------

Fig.25.7

25.42. Apply a method of steepest descent to solve the equation of Problem 25.40:

x = sin (x + y) y = cos (x - y)

Here we have

S = ¡z +g2 = (x - sin (x + y)f + (y - cos (x - y)f

making

~Sx = (x - sin (x + y)J(l -cos (x + y)) + (y - cos (x - y)J(sin (x - y))

~ Sy = (x - sin (x + y)J - cos (x + y)) + (y - cos (x - y)Jl - sin (x - y))

Suppose we choose Xo = Yo = ,5, Then - grad So = (,3, ,6), Since a multiplicative constant can be
absorbed in the parameter t, we may take

x1=,5+t Y1=,5+2t

The minimum of S(.5 + t, ,5 + 2t) is now to be found. Either by direct search or by setting S'(t) to zero,
we soon discover the minimum near t = ,3, making Xl = ,8 and Y1 = 1.1. The value of S(xi, Y1) is about
,04, so we proceed to a second step, Since - grad Si = (,5, - ,25), we make our first right angle turn,
choose

x2=,8+2t Y2 = 1.1 - t
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and seek the minimum of S(x2, Y2)' This proves to be ne ar t = ,07, making X2 = .94 and Y2 = 1.03,

Continuing in this way we obtain the successive approximations listed below. The slow convergence
toward the result of Problem 25.40 may be noted, Slow convergence is typical of this method, which is
often used to provide good starting approximations for the Newton algorithm.

Xn .5 ,8 ,94 .928 .936 ,934

Yn ,5 1. 1.03 ' 1.006 1.002 .998

Sn ,36 ,04 ,0017 ,00013 ,000025 ,000002

The progress of the descent is suggested by path A in Fig, 25-8, .

/ /11// /
/ !¡//---

1// /~1.;' ----1 / / i I, I I / 1- '\_-- /111111,\',)/

-- _-_. II! AI \ \ v /// -- ----- \(1 i \ \ ,_///.- "1\ \/ / ~--- "B l \ \ \ \ \ "--_// / /./ -~ \ I \"'" ..I///' / '''''~----
/ I //-, / I // "" "" "'.. --
! i / /1/ C' ) /. / ~ /' .. ~ '" "" .. ~ ----
11 I \~-:~;;=-// / -.. "' .. "" "'.... "'",i \_ -- / / / ~"" ' "'1.. -- ~ ,,'-\ ,,'-- ../ / ./ ./.. -- '" '" .. ~" -- .-/./ / / -- "', \ '" ~-~ / / I / "\ '\ '"/ / / / \ \ \ \ "

Fig.25.8

25.43. Show that a steepest descent method may not converge to the required results,

Using the equations of the previous problem, suppose we choose the initial approximations
Xo = Yo = 0, Then - grad So = (0, 2), so we take Xi = 0 and Y1 = t. The minimum of S(O, t) proves to be at
t = .55 = Yi with S(Xi, Yi) =,73, Computing the new gradient, we find - grad SI = ( - .2,0), This points
us westward, away from the anticipated solution ne ar x == Y =1. Succeeding steps find us traveling the
path labeled B in Fig. 25-8. Our diffculty here is typical of minimization methods, There is a secondary
valley near x = -.75, Y = .25. Our first step has left us just to the west of the pass or saddle point
between these two valleys. The direction of descent at (0, ,55) is therefore westward and the descent
into the secondary valley continues, Often a considerable amount of experimentation is necessary before
a successful trail is found.

25.44. Generalize the idea of descent methods for the solution of optimization problems or of

nonlinear systems,

The two principal questions are in what direction to proceed and how far to go. The formula

x(n) = x(n-1) + tun-i

keeps all options open, with x(n-l) the current approximation, Un-I a unit vector in the next direction of
search, and t the measure of how far to go. For steepest descent, Un-I is the negative gradient vector. A
wide variety of options have been proposed. Ideally perhaps one ought to follow a curve which is an
orthogonal trajectory of the contour surfaces, on which f is constant, where f is the function being

optimized. However, this leads to differential equations, Using steepest descent steps of equal length is
equivalent to applying Euler's method for solving the differential equations, Even Newton's method
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might be viewed as adescent method, with tun-i equal to - ¡-I(x(n-I))F(x(n-I)) in the notation used in
the introduction,

QUADRATIC FACTORS. BAIRSTOW'S METHOD

25.45. Develop a recursion for the coeffcients bk in

q(x) = boxn-Z + ' , , + bn-z rex) = bn-i(x - u) + bn
when q(x) and rex) are defined by

p(x) = aoxn +. , ,+ an = (XZ - ux - v)q(x) + rex)

Multiplying out on the right and comparing the powers of x, we have

bo= ao

b1 =a1 + ubo

bk = ak + ubk_1 + vbk-i k=2"", n

If we artificially set b_1 = b_2 = 0, the last recursion holds for k = 0, 1, , , , n, The bk depend of course
upon the numbers u and v,

25.46. How may the recursion of the previous problem be used to calcùlate p(x) for a complex
argument x =a + bi? (Assurne the ak are reaL.)

With u = 2a and v = - a2 - b2, we have x2 - ux - v = 0 so that

p(x) = bn_1(x - 2a) + bn

The advantage of this procedure is that the bk are found by real arithmetic, so that no complex
arithmetie occurs until the final step. In particular, if bn-1 = bn = 0 then we have p(x) = 0, The complex
conjugates a :f bi are then zeros of p(x),

25.47. Develop Bairstow's method for using the Newton iteration to solve the simultaneous
equations bn-i(u, v)=O, bn(u, v)=O.

To use Newton's iteration, as described in Problem 25,38, we need the partial derivatives of bn-1
and bn relative to u and v, First taking derivatives relative to u, and letting Ck = abk+i/ au, we find

C-2 = C-1 = 0, Co = bo, Ci = 1:1 + UCo, and then

Ck = bk + UCk-1 + VCk-2

The last result is actually valid for k = 0, 1, . , , , n - 1. Thus the Ck are computed from the bk just as the
bk were obtained from the ak' The two results we need are

abn-i~=Cn-2 abn

au = Cn-1

Similarly taking derivatives relative to v and letting dk = abk+2/ av we find d-2 = d_1 = 0, then

d1 = b1 + udo, after which
dk = bk + udk-i + vdk-2

The latter holds for k = 0, 1, . . , , n - 2, Since the Ck and dk therefore satisfy the same recursion with the
same initial conditions, we have proved Ck = dk for k = 0, 1, . , , , n - 2, In particular,

abn-i
av = Cn-3

abn

a:= Cn-2

and we are ready for Newton's iteration,
Suppose we have approximate roots a:f bi of p(x) = 0, and the associated quadratic factor

x2 - ux - v of p(x). This means we have approximate roots of bn-i = bn = 0 and are seeking improved



350 NONLINEAR . ALGEBRA (CHAP. 25

approximations u + h, v + k, The corrections hand kare determined by

Cn-2h + Cn-3k = - bn-i

Cn¿lh + cn-2k = - bn

These are the central equations of Newton's iteration, Solving for hand k,

h
bnCn-3 - bn-1cn-2

C~-2 - Cn-1Cn-3
k = bn-icn-1 - bnCn-22. c

Cn-2 - Cn-1Cn-3

25.48. Apply Bairstow's method to determine the complex roots of Leonardo's equation correct to
nine places,

We have already found excellent initial approximations by the quotient-difference algorithm (see
Problem 25,32): Uo = - 3,3642, Vo = - 14,6033, Our recursion now produces the föllowing bk and Ck:

k 0 1 2 3

ak 1 2 10 -20

bk 1 -1.642 -.01386 -.03155

Ck 1 -4,7284 1.2901

The formulas of Problem 25.47 then produce h = - ,004608, k = - ,007930 making

U1 = Uo + h = - 3,368808 VI = Vo + k = - 14,611230

Repeating the process, we next find new bk and Ck:

k 0 1 2 3

ak 1 2 10 -20

bk 1 -1.68808 ,000021341 - ,000103380

Ck 1 -4,737616 1.348910341

These bring h = -.000000108

U2 = -3,368808108

k = - .000021852

V2 = - 14.611251852

Repeating the cycle once more finds b2 = b3 = h = k = 0 to ni ne places, The required roots are now

XI' X2 = ~ U :1 i ~ - V - ~U2 = - 1.684404054 :13.431331350i

These may be further checked by coinputing the sum and product of all three roots and comparing with
the coeffcients óf 2 and 20 in Leonardo's equation.

Supplementary Problems

25.49. Apply the method of Problem 25,1 to the equation x = e-X to find a root near x = .5. Show that starting
with Xo = .5, the approximations XIO and Xii agree to three places at ,567.

25.50. Apply the Aitken acceleration to earlier approximations computed in the previous problem. When does
it produce three-place accuracy?
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25.51. Rewrite the equation x3 = x2 + x+ 1 as x = 1 + I/x + 1/x2, and then use an iteration of the sort in

Problem 25,1 to find a positive root.

25.52. Apply Newton's method to the equation of Problem 25.49, How many iterations are needed for
three-place accuracy? For six-place accuracy?

25.53. Apply Newton's method to the equation of Problem 25,51.

25.54. Find the square root of 3 to six places,

25.55. Find the fifth root of 3 to six places.

25.56. Show that Newton's method applied to f(x) = I/x - Q = 0 leads to the iteration Xn = xn-i(2 - Qxn-1) for
producing reciprocals without division. Apply this iteration with Q = e = 2,7182818, starting with Xo = ,3
and again starting with Xo = 1. One of these initial approximations is not elose enough to the correct
result to produce a convergent sequence,

25.57. Apply regula falsi to the equation of Problem 25.49, starting with the approximations 0 and 1.

25.58. Apply the method of Problem 25,18 (quadratic interpolation) to the equation of Problem 25.49.

25.59. Apply the quadratic interpolation method to Leonardo's equation,

25.60. Use Bernoulli's method to find the dominant (real) root of the Fibonacci equation x2 - x-I = 0,

25.61. Apply Bernoulli's method to the equation of Problem 25,31.

25.62. Apply Bernoulli's method to find a dominant pair of complex conjugate roots of

4x4 + 4x3 + 3x2 - x-I = 0

25.63. Use the quotient-difference method to find all the roots of the equation of Problem 25.36,

25.64. Use the quotient-difference method to locate all the roots of the equation of Problem 25,62,

25.65. Use a Sturm sequence to show that 36x6 + 36x5 + 23x4 - 13x3 - 12x2 + x + 1 = 0 has only four real roots
and to locate these four. Then apply Newton's method to pinpoint them,

25.66. Use a Sturm sequence to show that 288x5 - 720x4 + 694x3 - 321x2 + 71x - 6 = 0 has five elosely packed
real roots. Apply Newton's method to determine these roots to six places,

25.67. Use the iterative method to find a solution of

near (.5, ,5),
x = .7 sin x + .2 cos y y=,7cosx-.2siny

25.68. Apply Newton's method to the system of the preceding problem.

25.69. Apply Newton's method to the system x = x2 + y2, Y = x2 - y2 to find a solution neàr (,8, .4),

25.70. Apply the method of steepest descent to the system of the previous problem.

25.71. Apply the method of steepest descent to the system of Problem 25.67,

25.72. Given that 1 is an exact root of x3 - 2x2 - 5x + 6 = 0, find the other two roots by deflation to a quadratic
equation,
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25.73. Find all the roots of x4 + 2x3 + 7x2 ~ 11 = 0 correct to sIX places using a deflation method supported by
the Newton aI1d Bairstow iterations.

25.74. Apply the Bairstow method to x4 - 3x3 + 20x2 + 44x + 54 = 0 to find a quadratic factor elose to
x2+2x +2,

25.75. Find the largest root of x4 - 2,0379x3 - 15.4245x2 + 15, 6696x + 35.4936 = 0,

25.76. Find two roots near x = 1 of 2x4 + 16x3 + x2 -74x + 56 = 0,

25.77. Find any real roots of x3 = x + 4,

25.78. Find a small positive root of Xl.S632 = 5.2171x - 2,.1167,

25.79. Find a root near x = 2 of x = 2 sin x,

25.80. Find a complex pair of roots with negative real part for x4 - 3x3 + 20x2 + 44x +' 54 = O.

25.81. Find a solution of the system

x = sinx coshy y = cos x sinh y

near x = 7, y = 3,

25.82. Solve the system x4 + y4 - 67 = 0, x3 - 3xy2 + 35 = 0 near x =2, y = 3.

25.83. Find the minimum for positive x of y = (tanx)/x2,

25.84. Where does the curve y = e-x logx have an inflection point?

x2 x3 x4
25.85. Find the smallest positive root of 1 - x + (2!)2 - (3!)2 + (4!)2 - , , , = 0,

25.86. Find the maximum value of y(x) near x = 1, given that sin (xy) = y - x.

25.87. Find to twelve digits a root ne ar 2 of x4 - x = 10,

25.88. Find the smallest real root of e-x = sÌn x.

25.89. Split the fourth-degree polynomial x4 + 5x3 + 3x2 - 5x - 9 into quadratic factors,

25.90. Find a root near 1.5 of x = ! + sin x,

25.91. Find all the roots of 2x3 - 13x2 - 22x + 3 = O.

25.92. Find a root near 1.5 of x6 = x4 + x3 + 1.

25.93. Find two roots near x = 2 of x4 - 5x3 - 12x2 + 76x - 79 = O.

25.94. Show that the second-degree term is removed from the general cubic equation

x3 + ax2 + bx + c = 0

by the translation x = y - a/3. See also the following problem.
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25.95. In 1545 Cardano published this formula for solving the cubic equation x3 + bx + c = 0, (Note the
absence of a second-degree term,)

x = ( ~~+ ~(~r + (~)T/3 - (~+ ~(~r + (~)T/3

Apply it to find at least the real root x = 1 of

x3 + 3x - 4 = 0

Can it also manage the real root x = 4 of x3 - 15x - 4 = O?



Chapter 26

Linear Systems
SOLUTION OF LINEAR SYSTEMS

This may very weIl be the principal problem of numerical analysis, Much of applied mathematics
reduces to a set of linear equations, or a linear system,

Ax=b
with the matrix A and vector b given and the vector x to be determined, An extensive set of
algorithms have been developed for doing this, several of whieh wil be presented, The variety of
algorithms available indicates that the apparently elementary character of the problem is deceptive,
There are numerous pitfalls,

Gaussian elimination is one of the oldest algorithms and stil oiie of the most popular. It involves
replacing equations by combinations of equations in such a way that a triangular system is obtained,

UiiXi + Ul2X2 + ' , , + UlnXn = Cl

U22X2 + ' , , + U2nXn = C2

Unnxn = Cn

After this, the components of the vector x are easily found, one after the other, by a process called
back-substitution, The last equation determines xn, which is then substituted in the next-to-last
equation to get Xn-¡, and so on,

The Gauss algorithm also yields a factorization of the matrix A, in the form A = LU, where U is
the upper triangular matrix shown above and L is a lower tri angle with 1s on the diagonaL. The

algorithm can be used to prove the fundamental theorem of algebra, which deals with the question of
whether or not a solution exists, The theorem guarantees a unique solution ofAx = b precisely when
the corresponding homogeneous system Ax = 0 has only the solution x = 0, Both systems, as weIl as
the coeffcient matrix A, are then called nonsingular. When Ax = 0 has solutions other than x = 0,
both systems and the matrix A are singular. In this case Ax = b wil have either no solution at all or
else an infinity of solutions, Singular systems occur in eigenvalue problems, if the methods of this
chapter are applied inadvertently to a singular system, there is the curious possibility that
unavoidable roundoff errors wil alter it to an "almost identical" nonsingular system, A computed
"solution" may then be produced where none actually exists,

Factorization methods convert A into products of the form LU or LDU, where L is zero above
the main diagonal, U is zero below it, and D has only diagonal elements different horn zero, The

matrix L is called lower tri angular and U is upper tri angular. if L or U has all diagonal elements

equal to 1, it is called unit tri angular. The methods of Doolittle, Crout, Cholesky, and, as already
mentioned, Gauss produce factorizations, When A has been factored in this way, the solution is
easily accessible, Since

Ax = LUx = L(Ux) = Ly = b

we first solve Ly = b for y and then Ux = y for x, The first of these tri angular systems responds to
forward-substitution, and the second to back-substitution.

Iterative methods generaté sequences of successive approximations to the solution vector x, The
classic of this type is the Gauss-Seidel method, which reshapes the system Ax = b in the form

Xl ='"

X2=" ,

x ='"n

354
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by solving the ith equation for Xi' An initial approximation to all the Xi allows each component to be
corrected in its turn and when the cycle is eomplete to begin another cycle, A number of
convergence theorems have been proved, The method is often used for sparse matriees A, in which
many elements are zero,

Iterative refinement of an approximate solution XCI) using the residual vector r, defined by

r= b -AxCI)

is often a useful algorithm, Let e be the error

e =x -XCI)

and observe that Ae = Ax - AxCI) = b - (b - r) = r
Solving Ae = r yields an approximation to e, say eCl), from which

x(2) = XCI) + eCI)

manages a new approximation to the true solution x, The routine can be continued as long as it
seems productive,

There are a wide variety of more elaborate iterative methods.
The error in a computed solution xCc) occurs for a combination of reasons. The input information

may be imperfect, that is, the elements of A and b may eontain error. There wil alm ost surely be
roundoff errors made during the course of the solution algorithm, probably milions of them in a
large-scale problem, When a convergent iterative proc:ess is terminated, it is unlikely that the
approximation in hand is the true solution, Estimates of the eventual error due to such sources can
be made, and they are important, though often rather conservative, Backward error analysis is a
useful tool in investigating the internal roundoff problem,

The character oJ the coeffcient matrix A strongly infiuences error behavior. Nearly singular
systems are extremely sensitive to even small errors in A and band tointernalroundoffs. The
condition of A can be described numerically using the idea of a matrix norm, a high condition

number meaning a nearly singular matrix and relatively poar error control. Such matrices are also
called il-conditioned, Sometimes poor condition wil make itself known by erratie behavior of the
algorithm, Unfortunately, this is not always true,

MATRIX INVERSION

Knowing the inverse of A would, of course, allow the system Ax = b to be solved as a
by-product, since

X =A-Ib
but this is usually an uneconomical route to the solution of a linear system, Complete knowledge of
the elements of A -1 is required only in a few types of applications,notably statistieal analysis, The
methods just diseussed for solving Ax = b can be adapted to find inverses, Elimination, factorization,
iteration, and an exchange method wil be ilustrated in the problems,

EIGENV ALUE PROBLEMS

Eigenvalue problems require that we determine numbers À such that the linear system Ax = Àx
will have solutions other than X = 0, These numbers are called eigenvalues. The corresponding

solutions, or eigenvectors, are also of interest. Three general methods of approach wil be presented,

L The characteristic polynomial of a matrix A has as its zeros the eigenvalues of A, A direct
procedure, resembling Gaussian elimination, for finding this polynomial wil be included, To
find its zeros, the methods of Chapter 25 may be used, With an eigenvalue in hand,
substitution into Ax = Àx yields a singular system, The value of some component of X may
be specified and the reduced system solved by our methods for linear systems,
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2, The power method generates the vectors

x(p) =A(p)y

with Y a somewhat arbitrary initial. vector, and produces the dominant eigenvalue with its
eigenvector. For large values of p it proves that x(p) 1S close to an eigenvector correspondingto X(p)T Ax(p)

Â=
X(p)TX(p)

a formula known as the Rayleigh quotient. Modifications lead to the absolutely smallest and
certain next-dominant eigenvectors,

An interesting variation uses t~è idea of shifting the eigenvalues to speed up the
convergence of the power method, The inverse power method and inverse iteration are
developments of this idea.

3, Reduction to canonieal forms (simplified forms such as diagonal, tripie diagonal, triangular ,
Hessenberg) is possible in many. ways, When done by similarity transformations, the
eigenvalues are not changed, The Jacobi method subjects a real, symmetrie matrix to
rotations based upon the submatrix

(COS ep . -sin epJ'sin ep cos ep

and leads to an almost diagonal form, The Givens method uses similarrotations and
achieves a tripie diagonal form in a finite number of steps, The QR method produces, under
certain circumstances, a triangular matrix, The underlying idea of all these procedures is
that eigenvalues of the canonieal forms are found more easily,

COMPLEX SYSTEMS

Many of the methods used for real systems can be taken over for complex if a computer capable
of complex arithmetic is available, If not, complex systems may be exchanged for equivalent, and
larger, real systems, Thus, comparing real and imaginary parts of

(A + iB)(x + iy) = a + ib

leads to
(; -:J(;J = (:J

to whiehour real algorithms apply, The inversion problem

(A + iB)( C + iD) = I

responds to similar treatment, Eigenvalues can also be approached in this way,

Solved Problems
GAUSSIAN ELIMINATION

26.1. Solve by Gaussian elimination, i i
Xl +ïX2+3x3= ii i i

ïXi +3X2+;¡X3=Oi i i
3Xi +;¡X2+SX3=O
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position:
xi+x2=2

lO-5Xi + X2 = 1

Exact subtraction would now bring
(1 - lO-5)X2 = 1 - 2(10-5)

which the same restrictions would round to X2 = 1. This time the back-substitution manages

Xl + 1 =2

and Xl = 1. Pivoting has made the difference between nonsense and a perfect result, Experience with
many less dramaticsystems has shown that pivoting is an important part of the elimination algorithm,
The technique described is called partial pivoting, since the search for largest coeffcient is limited to the
immediate column, The value of a broader search, into other columns, and leading to column
interchanges, is a matter of debate,

The example in hand may be used to ilustrate a further point, Multiply the first equation by lO5to
obtain

XI + lO5X2 = 105

Xl + x2=2
and make pivoting unnecessary, The usual subtraction manages

(1 - 105)x2 = 2 - 105

when done exactly, but becomes

after rounding. SO X2 = 1. But then

- lO5X2 = - 105

Xl = 105 - 105 = 0

and we have the earlier "solution." The point is, even pivoting may not help when very large coeffcients
occur elsewhere, One way out of the diffculty might be to interchange columns, but an alternative is to
normalize each equation, making the absolutely largest coeffcient in each about the same, A popular
way to do this is dividing each equation by its coeffcient of greatest size. The "norm" of each equation
wil then be 1. In our example we would, of course, return to the original system, The lesson appears to
be that the combination of normalization and partial pivoting has a good chance of yielding a good
result,

26.3. Summarize the Gauss algorithm for the general n by n linear system,

Suppose that k steps of the type described in Problem 26.1 have been made, bringing the system to
this form:

U¡¡Xi + Ui2X2 + . , , + UlkXk + Ui,k+IXk+I + ' . , + UinXn = b;

U22X2 + . , , + U2kXk + U2,k+1Xk+1 + ' , . + U2nXn = b~

UkkXk + Uk,k+iXk+1 + ' , , + UknXn = b~

a~kl1,k+1xk+I + . . . + a~kl1.nxn = b~1.1

(k)an.k+1Xk+I + ' . , + a~~)xn = b~k)

The top k equations are in their final form, with U¡¡, . , . , Ukk the first k pivots. In the remaining n - k
equations the coeffcients bear the superscript (k) of this modified system, We next seek the (k + l)th
pivot among the coeffcients of Xk+1 in the lower n - k equations. It wil be the absolutely largest and its
èquation wil be interchanged with equation k + 1. With this new pivot in place, now called Uk+l,k+l' a
new set of multpliers is found

1¡,k+I

(k)a¡,k+l

Uk+i,k+l
i = k + 2, . . , ,n
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and zeros are arranged under the new pivot by subtracting equations, Coeffcient changes are governed
by

k =0,.,., n-2
j =k +2".., n
i = k +2, . , . ,n

with k = 0 referring to the original system. The back-substitution part of the algorithm is represented by

ait+l) = ahk) -l¡,k+1a~k21,j

b)k+l) = bik) -l¡,k+1b~k)

X¡ =! (bf - i U¡jXj)U¡¡ j=i+l i = n, . . , , 1

26.4. What is the Gauss-Jordan variation?

Here zeros are generated both below and above each pivot, by further subtractions, The final
matrix is thus diagonal rather than triangular and back-substitution is eliminated, The idea is attractive,
but it involves more computing than the original algorithm and so is little used,

26.5. Estimate the amount of computing needed to carry out the Gauss algorithm for an n by n
system,

Consider the reduction of the coeffcient matrix A to tri angular form, This is where the lion's share
of the effort occurs, At the first step, (n - 1)2 modified coeffcients are obtained, We further limit our
attention to a count of such coeffcients, In successive steps this number is reduced and the grand total
wil be

(n - I? + (n - 2? + . , , + 1
coeffcients, By a well-known result of algebra this is equal to (2n3 - 3n2 + n )/6, from which the
principal term n3/3 is extracted as a simple measure of the computation's size. If n = 100, this number
runs to six figures.

26.6. Apply Gaussian elimination to this system, assuming that a computer capable of carrying only
two floating-point digits is to do the calculations,

Xl + ,67xz + ,33x3 = 2

.45xl + Xz + ,55x3 = 2

,67xi + ,33xz + X3 = 2

With l21 = .45 and l31 = ,67, the array below left summarizes the first stage of the process, and then
with l32 = -.17 the array at the right shows the final triangularization.

1 .67 .33 2,0 1 ,67 .33 2,0
0 .70 .40 1. 0 ,70 .40 1.
0 -.12 .78 ,7 0 0 .85 .89

Back-substitution now begins with
,89

X3 = .85 = 1.047

if we ass urne a double precision accumulator, but rounding to 1.0 in any event. Then

X2 = (~)(1. - .4) = 1.0

Xl = 2 - ,67 - .33 = 1.0

and the exact (1,1,1) solution has been found in spite of the severe limitations of the computer. This is
because we have a very cooperative matrix, (See also Problem 26,20.)
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26.7. What is the connectionbetween Gaussianelimination and factors of the coeffcient matrix?

Form matrices Land U.as follows, using results of Problem 26,1:

For a general proof of this factorization see the following problem,

26.8. Show that if L is a lower triangular matrix with elements Zij and Z¡¡ = 1, and if U is an upper

tri angular matrix with elements Uij, then LU = A,

The proof involves some easy exercise with triangular matrices, Returning briefly to the opening
example, define

1 0 0

1

(1 0 n
SI =1 -Z 1 0 S= 0 1

1 o -1
-- 0 1

3

and observe that the product S¡A effects Step 1 of the Gauss algorithm, as it applies to the left sides of
the equations, while SzSlA then effects Step 2, This means that

S2S1A = U A = SïISï1U = LU

with L = Sï1Sï1, Also note that

S-lI =

1 0 0

1

2

1

3

1 0 s,,~n
o 0J

1 0

1 0
o 1

so that inversions are achieved by changing the signs of the lìj entries.
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For the general problem assurne at first that no interchanges wil be needed, Défine matrices

1

, 1

Li= -li+i,i i = 1, , , . , n - 1

-ln,i 1

with all other elements zero. As in the example, each of these effects one step of the elimination
process, making

Ln-iLn-2. , , LiA = V

This means that A = Lï1 . , 'L;;~lV = LV

f,,,f::..j Since the product of lower triangles with diagonalls is itself of the same type we have our factorization,
In addition, since each inversion is achieved by changing the signs of the l¡j entries, these are readily in
hand and may be multiplied to rediscover

(1 0 ... 0J

L = ,l~i..:..:: '.. .. , .. ~,

ln1 ln2 '" ln,n-I 1

Now suppose that so me interchanges are to be made. Introduce the interchange matrices

The product I¡jA wil have rows i and j of A interchanged, while AIij has the corresponding columns

interchanged. The elimination algorithm now uses a chain of I¡j interchanges and Li operations, leading
to this i:epresentation:

Ln-IIn-l,rn_iLn-2In-Z,rn_2' , . L1L1,rIA = V

where the ri are the rows containing the selected pivots, This can be rearranged as

(Ln-iLn-2' , , L1)(In-i,rn_i ' , , Ii.)A = V
CIPA=V PA=LVor

with P the permutation matrix including the n - 1 interchanges. Assuming A nonsingular, this means
that there is apermutation of rows such that PA has an LV factorization, The uniqueness of this
factorization will be evident from Problem 26,14.

26.9. Solve the system Ax = b assuming an LU factorization has been done,

We have, since L, V, and P are in hand,

Ax = L Vx = PAx = Pb
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and letting Y = Ux, first solve Ly = Pb for y, This is easily done by forward-substitution, Then Ux = Y is
solved by back~substitution, More specifically, and with p¡ denoting an element of Pb, the system
Ly =Pb is

lllY1

l21YI + l22Y2

=P1
=P2

ln1YI + ln2Y2 + ' , , + lnnYn = Pn

with alll¡¡ = 1. The solution by forward-substitution is clearly Y1 = Pi. Y2 = P2 -l21Yi. or more generally,

Yr = Pr -lr1YI - , , , -lr-l.r-1Yr-I

for r = 1, ' , , , n, The backward-substitution is then achieved by the formula of Problem 26.3, modified
only by the replacement of the vector b' by y:

x¡ = (.!)(Yi - Ui,i+;Xi+1 -, , , - u¡nxn)
U¡¡

with ¡ = n, ' , . , 1. The combination of factoring and forward-backward substitution is particularly useful
if the system must be solved for more than one vector b,

26.10. What is a compact algorithm?

When Gaussian elimination was done by hand, many elements of A were copied many times, In a
computer this would be equivalent to making liberal use of storage space, With large-scale systems it is
advisable to be economical both of storage space and computer time, For this reason, compact

algorithms have been devised, For example, as elimination proceeds, the lower triangle of matrix A is
replaced by zeros, Thèse storage locations may better be used to record successively the values l¡j, for
j ~ ¡, At the end of the run the upper tri angle of A wil then have been replaced by U, and the lower
triangle by L without its unit diagonaL. And there is no need to store all the interchange matrices Li' It is
enough to define initially a vector v with elements (1,2,3"." n) and at each step to simply
interchange the appropriate elements. If, for instance, the first pivot is in row 3, then (3,2,1,4, , , , , n)
records this, It is not necessary to physically interchange the roWs' thus saving the time that would have
been used for this maneuver, From the final v the permutation matrix P can be constructed if desired, or
v itself used to permute the elements of vector b,

26.11. Apply the procedure of Problem 26,10 to this matrix

(0 1 2 3J

3 0 1 2
A= 2 3 0 1

1 2 3 0

The essential computations are displayed in Fig, 26-1. In three steps the original matrix is replaced
by a four by four array containing all the information needed, except for the vector v which traces the
interchanges,

At this point matri A has been replaced by a triangular matrix in the LU factorization of PA, The
vector v teils us that the triangle will be evident if we look at rows 2,3,4, 1 in that order. Indeed the
unstarred elements are the factor U. The factor L can also be read by taking the starred elements in the
same row order, As for the permutation matrix P, it is constructed by placing ls in columns 2,3,4,1 of
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(0 1 2 3J

3 0 1 2
2 3 0 1
1 2 3 0

0*
I 1

2 3

Q) 0 1 2

2*

m-
3

1 * 8 2- 2 ---
3 3 3 .

0* !* I 20283 9 9
3 0 1 2

2*
Q)

2 1- --
3 3 3

1 *

~* I 28 -~
-
3 3 9 9

0*
1 * 5*

I ~4'
- -
3 7

3 0 1 2

2* 2 1
3 -- --

3 3 3

1 *

~* CI-~
-
3 3 9 9
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The given matrix A

v = (1, 2, 3, 4)

Identify the first pivot, 3,

Bring its row number to the first position in v, v = (2, 1, 3, 4),
Compute and.store the li1 (starred),
Compute the pine new entries by subtractions (right of the solid
line) , .
Identify the second pivot (column 2 and right of the solid line).
Bring its row number to second position in v (2, 3, 1, 4).
Compute the 1i2 and store them (starred),
Compute the four new entries,

Identify the last pivot (column 3 and right of the solid line), Bring
its row number to third position in v (2, 3, 4, 1).
Compute the 1i3 and store them.
Compute the one new entry.

Fig.26-1

an otherwise zero matrix, as follows:

(0 1 0 0J

P= 0 0 1 0
o 0 0 1
1 0 0 0

(3 0 1 2J

One may now calciilate PA =LU= 2 3 0 1
1 2 3 0
o 1 2 3

and so verify all steps taken,

26.12. Using the results of the preceding problem and given the vector b with components
(0,1,2,3), solve Ax = b,

We use the suggestion in Problem 26.9. First either Pb or the vector v rearranges the components
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of b in the order (1,2,3,0). Although it is not necessary, suppose we display the system Ly = Pb

directly.
-

"tl
ri1 0 0

2
1 0 o Y2 I 12-

3

1 2
Oll Y3 I I 3- - 1

3 3

0
1 5

111 Y4 I I 0- -
3 7

Forward-substitution then manages Y = (1, t .l, -¥y, Turning to Ux = Y we face

3 0 1 2 Xl 1

0
2 1 4

3 -- -- X2 -
3 3 3

=

0 0
28 4 16- -- X3 -
9 9 9

0 0
24 12

0 - X4 --
7 7

from whieh comes x = (t t t -~f, which may be verified directly in Ax = b,

26.13. Prove the fundamental theorem of linear algebra,

We use the Gauss algorithm, If it can be continued to the end, producing a triangular system, then
back-substitution wil yield the unique solution. If an the bi are zero, this solution has an zero

components, This is already a principal part of the theorem, But suppose the algorithm cannot be
continued to the anticipated tri angular end. This happens only when at some point all coeffcients below
a certain level are zero, To be definite, say the algorithm has reached this point,

Ul1Xi +, , ,

U22X2 +, , ,

=b;
=b~

UkkXk +'" =b~

0=W2i

o = b~k)

Then in the homogeneous case, where allthe b's are zero, we may choose Xk+1 to Xn as we please and

then determine the other Xi' But in the general case, unless b~k21 to b~k) are an zero, no solution is

possible. If these b's do happen to be zero, then again we may choose Xk+1 to Xn freely, after which the
other Xi are determined, This is the content of the fundamental theorem,

FACTORIZATIONS

26.14. Determine the elements of matrices Land U such that A = LU by a direct comparison of
corresponding elements,

Assurne that no interchanges wil be necessary, Then we are to equate corresponding elements from
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the two sides of

0 0 " , 0 Uii U12 Ul3 " , U1n aii " , a1n

121 1 0 " , 0 0 U22 U23 " , U2n a21 " , a2n

131 132 1 " , 0 0 0 U33 " , U3n = a31 " , a3n

Inl In2 In3 1 o o o Unn ani ... ann

which amounts to n2 equations in the n2 unknowns lij and uij, The determination runs as folIows, First
multiply the top row of L by all columns of V to get

U1j = a1j j= 1",., n

Next multiply the rows of L (omit the first) by column 1 of V, finding lilUii = ail, from whieh the lil
follow,

ailI =~il Ul1 i=2"." n

It is next the turn of the,second row of L to multiply the columns of V (omit the first), The second row
of V is then

U2j = a2j - 121 U1j j=2"." n

Now multiply the rows of L (omit the first two) by column 2 of U. All elements involved except the li2
are in hand, so we solve für these,

I - ai2 -li1U12i2 -
U22

i = 3"", n

Continuing in this recursive way, we alternately find the rows of V to be
'-I

U,j = a,j - L l,kUkj
k=I

j =r",., n

each row followed by the corresponding column of L.

,-I
ai, - ¿ likUk,

k=l
l; =

Urr
i = r + 1", , , n

This procedure is called the Doolittle algorithm.

26.15. What is the Crout algorithm?

The Crout algorithm also pro duces a factorization of A, in the form L' V', with V' having the
diagonal of ls and L' the general diagonaL. Formulas for the elements of the factors may be found very
much as in Problem 26.14, 'but it is of interest to note that, with D denoting the matrix of diagonal
elements of our earlier V and zeros elsewhere,

A = LV = L(DD-1)U = (LD)(D-iV) = L' V'

so the two factorizations are closely related.

26.16. Develop the Choleski method for factoring areal, symmetric, positive definite matrix,

Here we will find factors of the form

A=LLT

the T denoting the transpose. The procedure is almost identical with that of Problem 26,14, with
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symmetry allowing us to consider only the lower triangle of A. The Hilbert matrix of order three can
once again serve as a small-scale introduction,

1 1
111 0 o 11/11 121 131 I I 1 2 3

1 1 1
121 122 o 11 0 122 123 1 = 1 2 3 4

1 1 1
131 132 133 11 0 0 133 1 I 3 4 5

The elements of L wil be found from top to bottom and left to right,

111/11 = 1

1
121/11 = 2

12 12--
121 + 22 - 3

1
131/11 = 3

1
131/21 + 132/22 = 4

. 12/2+/2__
131 + 32 33 - 5

111 = 1

1
121 =2

1
122 = v'

1
131 =3

1
132 = v'

1
133 = v'

The computation is again recursive,. each line having only one unknown,
Because of the way the algorithm develops, should we now wish to extend our effort to the Hilbert

matrix of order four, it is only necessary to border L with a new bottom rowand fourth column,

-- i 1 1
1 0 0 0 1 - - -

2 3 4

1 1 1 1 1 1

y¡ 0 0 - - - -
LLT =1 2 LT= 2 3 4 5

1 1 1
0

1 1 1 1-
y¡ v'

- - - -
3 3 4 5 6

141 143 144
1 1 1 1

142 - - - -
4 5 6 7

We then find
1

141/11 = 4

1
141/21 + 142/22 = 5

and so on to 143 = VS/20 and 144 = ý7 /140.
The algorithm can be summarized in the equations

i-l
2: Ir¡l¡j + Ir¡l¡¡ = ar¡
j~1

r-1

2: I;j + I;r = arr
j=l

to be used for r = 1, , . , , n in turn.

1
141 =4

30
142 = 20

i = 1, . . , , r - 1
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ERRORS AND NORMS

26.17. What is a condition number of a matrix A?

It is a measure of how trustworthy the matrix is in computations, For a given norm, we define the
condition number as

C(A) = IIAII'IIA-III
and observe, using Problem 1.34, that C(I) = 1, where I is the identity matrix, Moreover, using Problem
1.38,

C(A) = IIAII ' IIA -111 ~ 11111 = 1

so the identity matrix has the lowest condition number,

26.18. Suppose the vector b of the system Ax = b contains input errors, Estimate the infiuence of
such errors on the solution vector x,

Rewrite the system as

AXe =b +e

and combine with Ax = b to obtain

A(xe -x) = e

from whieh it follows that, using Problem 1.60,

iix -xell ~ IIA-III'lIelI

xe-x=A-1e

To convert this to a relative error estimate, we have, from Ax = b,

IIAII'llxll~lIbll Ilxll~m
IIAII

and finally Ilxe -xii :5I1AII'IIA-111 Jl= C(A)Jl
IIxll - Ilbll Ilbll

in which the condition number of A appears.
Similarly from

lIell ~ IIAII'IIxe -xii and IIA-III.llbll ~ Ilxll
we find

~-: Ilxe -xii
C(A) IIbll = Ilxll

giving us both a lower and an upper bound for the relative error.

26.19. Suppose the matrix A of the system Ax = b contains input errors. Estimate the infiuence of
such errors on the solution vector x,

Write the system as

and combine with Ax = b to obtain

(A + E)xe = b

A(xe-x)=-Exe

leading to IIxe -xii ~ IIA-111'IIEII'llxell

Ilxe -xii ~ IIA-ill'IIAIi.IIEII = C(A) IIEII
Ilxell IIAII IIAII

which estimates the error relative to the solution Xe' Here again the condition number of A appears,
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Here and in the preceding problem it measures how much the input errors are inflated,
An estimate relative to the solution x can also be found, One such estimate is this:

Ilxe -xII.: C(A)(IIEII/IIAID

IIxlI - 1 - C(A)(IIEII/IIAII)

26.20. Rework the opening example (Problem 26.1) under the assumption that a computer carrying
only two floating-point digits is to do the computations,

The system now takes the form

1.0x1 + .50X2 + ,33x3 = 1.0

.50xl + ,33x2 + ,25x3 = 0

,33xi + ,25x2 + .20X3 = 0

and with 121 = ,5 and 131 = ,33 is so on converted to

.08x2'+ .09X3 = -.50

.09X2 + ,09X3 = -.33

with the first equation retained as iso Here we mayas well complete the triangularization by simply
subtracting what we have..

,Olx2 = .17

Now back-substitution manages x2=17, x3=-21, xi=-,6, and a "solution" vector (-,6,17,-21).

Comparing with the correct (9, -36,30) we see no resemblance whatsoever. The point is, the matrix of
this system is a junior member of a notorious family, the Hilbert matrices, Coupling this with the severe
!imitations of our computer has led to a grotesque result,

In Problem 26.42 the inverse matrix wil be found to be

( 9 -36 30J
-36 192 -180
30 -180 180

in which the large elements should be noted. The maximum norm is 36 + 192 + 180 ='408, making a
condition number of

C(A) = IIAII' IIA -111 == ~1 (408) = 748

By Problem 26.19 we now have the estimate

Ilxe - xII ~ 748 (.005) = 2,04
Ilxeli n

suggesting a relative error of 200 percent, Clearly the computation was naive, At least four digits are
needed.

By way of contrast, recall the cooperative matrix of Problem 26.6 which permittedan exact solution
to be found even by a two-digit computer, For that matrix the maximum norm is 2 and the inverse also
has norm near 2, The condition number is then near 4 and we estimate

Ilxe -xll.:4(,005) = .02
IIxell 1

or a maximum error of 2 percent,

26.21. What is the "nearest singular matrix" theorem?

Suppose A is nonsingular and B singular. Then, by the fundamental theorem of linear algebra,
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there exists a vector xi= 0 satisfying Bx = 0, For this x

IIAxll = IIAx - Bxli = II(A - B)xll;§ IIA - BII'lIxII

and since x = A -lAx, we also have Ilxll ;§ IIA -111 ' IIAxll

Since A is nonsingular, we cancel the factor IIAxl1 and have

1

IIA - BII;§ IIA-III

which is the required theorem,
Its message is that the size of the inverse matrix of A is at least the reciprocal of the "distance" of A

. from ihe nearest singular matrix B. If A is nearly singular, then A-I wil have a large norm. If A is
normalized, in the sense IIAII = 1, the condition number wil also be large,

As a corollary we have the following intuitive result. If B is "elose enough" to the nonsingular A, in
the sense that l/IIA - BII is larger than IIA -111, then B ls nonsingular also,

26.22. Use the theorem of Problem 26,21 to estimate the condition of the matrix of this system,
presented earlier in Problem 1.13,

xi+xz=1
1.1xi +xz=2

The point is that A -1, required for the condition number, is not always easy to find with accuracy,

Though this is not true here, we observe that the matrix of coeffcients is elose to the singular matrix

B=U~J

and find, using maximum norms, IIA 11 = 2,1, IIA - B II = ,1, so that

IIA-III ~~= 10 C(A) ~ (2,1)(10) = 21

26.23. Estimate the error caused by using 1.0lxz in place of Xz in the second equation in Problem
26,22,

The error matrix is E = ri .~lJ with maximum norm ,01. Thus

IIxe -xii ~ C(A) IIEII;; 21(,01) =.1
Ilxe II IIA 1I 2,1

which is our estimate. For an input error of 1 percent we anticipate an output error of 10 percent, This

inflation is due to the ill-condition of A, as measured by C(A),
Solving the system directly, we find x = (10, -9) and Xe = (11, - 10). This makes Ilxe - x 11 = 1 and

IIxell = 11, for a relative error of .09. So the 10 percent inflation is just ab out rea1Ized.

26.24. The many intermediate corIputations that are ~ade in solving a linear system make roundoff
error an important factor. How can this error be estimated?

Backward error analysis has produced the only real successes in this diffcult area. It shows that the
cumulative effect of roundoffs can be estimated by considering the substitute system (A + E)x = b,
where E is aperturbation of A. It then finds bounds for the elements of E. The error in x can then be
estimated by the formula of Problem 26.19. The details are far from trivial but have been carried
through for most of the solution algorithms. The full story must. be sought in the literature, but a
simplified approach leading to the partially satisfactory bound

max leijl ;; n~(max la;¡1 + (3 + n~) max Ib;¡1J
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is offered in Problems 26.113 to 26.117. Here Ô depends upon the unit roundoff and the bi¡ upon the
computed faetors Land U of the given matrix A.

The somewhat deeper estimate

IIEII ~ (1.06 max lu;¡1)(3n2 + n3)TP

may be easier to apply. For example, if A has order ten (n = 1O),and the equivalent of eight decimal
pI aces are carried (2-P = 10-8), and we make the cmde guess of ten for the first factor, then we find

IIEII ~ (1.3)10-4

suggesting that perhaps half the digits being carried may no longer be significant, The estimate is, of
course, conservative, since it ignores the fact that errors often cancel one another to some extent.

26.25. How does the condition of the coeffcient matrix A enter into the roundoff error estimation
process?

Recalling Problem 26,19, the relative error of the solution is bounded by

IIEIIIlxe -xii ~ C(A) IIAII
Ilxeli

where E is now the perturbation of A due to internal roundoffs, For a normalized A, the relative error
in Xe is thus the product of two factors, the condition of A and the norm of E,

26.26. If double precision arithmetic is available, how much does it improve the roundoff situation?

By the formula in Problem 26.24, if the factor 2-P can be reduced from 10-8 to 10-16, eight
additional decimal figures wil be gained, surely a significant improvement, But there is a side effect. A
large-scale system uses a lot of computer storage space, even at single precision. Doubling the precision
may just burst the seams. There is a compromise, similar to the one described in Problem 19.48, where
the motivation was computing time rather than storage space. Instead of doing and storing everything in
double precision, limit this higher level of activity to the numerous inner product evaluations which
permeate these algorithms, Once calculated, their values can be stored in single precision, making just
one roundoff where there might have been n. Only a modest programming effort is needed to
incorporate this feature, and the reward can be dramatic,

26.27. The residual of an approximate solution Xe is defined as the vector

r= b -Axe

and gives the amourit by which each equation of the linear system fails to be satisfied, How is
the residual related to the error of Xe?

Since Ax = b for the exact solution x, we have

r=A(x-xe) X -Xe =A-1r

and, using Problem 1.37,
1:~1111 ~ iix -xell ~ IIA-III'llrll

IIA-11I'llbll ~ IIXIL ~M
IIAII

From Ax = b we have similarly

so dividing corresponding elements leads to the required result.

~lt~ ¡Ix -xell ~ C(A)lt
C(A) IIbll Ilxll Ilbll
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The relative error of Xe is bounded above and below by multiples of the relative residual, the multipliers
involving the condition number of A. If C(A) is near 1, then the relative error is elose to the relative
residual, which is, of course, readily available, If, however, C(A) is large, there may be good reason to
suspect inaccuracy in Xe even though r may be small. In other words, if A is ill-conditioned, the system
may be nearly satisfied by an Xe containing large error. On the optimistic side, and looking primarily at
the left half of the above inequality, when C(A) is large, even a large residual still allows the error X - Xe
to be smalI, though the prob ability of this happening is likelY,to be rather small too,

26.28. What is the method of iterative refinement?

Let h = x - Xe and rewrite the equatioll A(x - Xe) = r of the preceding problem as

Ah =r

This system has the same coeffcient matrix as the originaL. If A has been factored, or the steps of
Gaussian elimination retained in some way, it is solved with relatively little cost. With h in hand, one
computes

X =Xe + h

and has a new, and presumablybetter, approximation to the true solution, New residuals may now be
calculated and the process repeated as long as seems fruitful. This is the idea of iterative refinement, If
double precision arithmetic is available, this is an excellent opportunity to use it.

ITERATIVE METHODS

26.29. Ilustrate the Gauss-Seidel iteration for solving linear systems using the following well-known
example, A dog is lost in a square maze of corridors (Fig, 26-2), At each intersection it
chooses a direction at random and proceeds to the next intersection, where it again chooses at
random and so on, What is the prob ability that a dog starting at intersection i wil eventually
emerge on the south side?

1 2 3

4 5 6

7 8 9

Fig.26.2

Suppose there are just nine interior intersections, as shown, Let PI stand for the prob ability that a
dog starting at intersection 1 wil eventually emerge on the south side. Let P2, . , . , P9 be similarly
defined. Assuming that at each intersection he reaches, a dog is as likely to choose one direction as
another, and that having reached any exit his walk is over, probability theory then offers the following
nine equations for the Pk:

1
PI = ¡ (0 + 0 + P2 + P4)

1
P2 = ¡ (0 + PI + P3 + Ps)

1
P3 = ¡ (0 + P2 + 0 + P6)

1
p4=¡(p¡ +0+PS+P7)

1
Ps = - (P2 + P4 + P6 + Ps)4 .

1
P6 =¡(P3 + Ps + 0 + P9)

1
P7 = ¡ (P4 + 0 + Ps + 1)

1
Ps = ¡ (Ps + P7 + P9 + 1)

1
P9 = ¡(P6 + Ps + 0+ 1)

Leaving the equations in this form, we choose initial approximations to the Pk. It would be possible to
make intelligent guesses here, but suppose we choose the uninspired initial values Pk = 0 for all k.
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Taking the equations in the order 1Isted we compute second approximations, one by one, First PI comes
out zero, And so do P2, P3, ' , . , P6. But then we find1 1P7=¡(0+0+0+1)=¡ 1 (1 ) 5Ps=- 0+-+0+1 =-4 4 16

1 (5 ) 21P. =- 0+-+0+1 =-9 4 16 64
and the second approximation to each Pk is in hand, Notiee that in computing Ps and P9, the newest
approximations to P7 and Ps respectively have been used. There seems little point in using more antique
approximations, This procedure leads to the correct results more rapidly, Succeeding approximations

are now found in the same way, and the iteration continues until no further changes occur in the
required decimal places, Working to three places, the results of Table 26,1 are obtained. Note that Ps
comes out ,250, which means that one-fourth of the dogs starting at the center should emerge on the
south side, Fróm the symmetry this makes sense, All nine values may be substituted back into the
original equations as a further check, to see if the residuals are small.

Table 26.1

Iteration Pi P2 P3 P. Ps Pi P7 Ps P9.

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 ,250 .312 .328

2 0 0 0 ,062 .078 ,082 ,328 .394 .328

3 ,016 .024 .027 ,106 ,152 ,127 ,375 .464 ,398

4 ,032 ,053 ,045 ,140 ,196 .160 .401 .499 .415

5 ,048 ,072 ,058 ,161 ,223 .174 .415 ,513 .422

6 .058 ,085 ,065 ,174 ,236 ,181 .422 ,520 .425

7 ,065 ,092 ,068 ,181 ,244 ,184 ,425 ,524 .427

8 ,068 ,095 ,070 ,184 .247 ,186 .427 .525 .428

9 ,070 ,097 ,071 ,186 ,249 ,187 .428 .526 .428

10 ,071 ,098 .071 ,187 ,250 ,187 .428 .526 .428

In this example of the Gauss-Seidel method each of the nine equations comes to us in the form

P;=" ,
and is used to update the approximation to P; using the most recent values of the other components, It is
worth noting that in each equation the unknown on the left side has the dominant coeffcient,

26.30. Develop the Gauss-Seidel method for a general linear system,

The algorithm is applied most often to systems Ax = b for which the diagonal elements of Aare
dominant. -In any event, ope should arrange by row and column interchanges that larger elements fall
along the diagonal, to the extent that this is possible, The ith equation of the system is then solved for Xi

in terms of the other unknowns, If we use the symbol X~k) to represent the kth approximation to Xi, then

the algorithm proceeds as in the example,

b - a x(O) - , , , - a x(O)(1) _ 1 12 2 In nXI -
aii

b - a X(l) - a X(O) - , .. - a x 
(0)(I) _ 2 21 1 23 3 2n nX2 -

a22

b - a X(l) - a X(l) - a X(O) - , , , - a x 
(0)(1) _ 3 31 1 32 2 34 4 3n nX3 -

a33

the superscript (0) denoting an initial approximation, More generally we have for the kth approximation
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to x;

X(k)i

i-I n
b; - I: a;¡xY) - I: a;¡xY-I)

j=l j=i+l
an

in which the first sum uses kth approximations to x¡ having j -: i, while the second uses (k - l)th
approximations to x¡ with j ? i. Here i = 1, ' , . , n and k = 1, , . . .

26.31. Express the Gauss-Seidel algorithm in matrix form.

First the matrix A is split into

A=L+D+U
where Land U are lower and upper triangles with zero elements on the diagonaL. The general formula
for Problem 26.30 can then be written as

X(k) = D-1(b -; LX(k) _ UX(k-1))

which can be solved for X(k), First

(I + D-IL)x(k) = D-1b - D-IUx(k-1)

or.

X(k) = (I + D-1L)-I(D-1b - D-IUx(k-1))

X(k) = -(D + L)-IUX(k-1) + (D + Lt1b

which leads to

26.32. Wh at is a stationary matrix iteration?

A matrix iteration of the form

X(k) = Mkx(k-I) + Ckb

is called stationary if Mk and Ck are independent of k, The iteration then becomes

X(k) = MX(k-1) + Cb

The Gauss-Seidel method is stationary, with this M and C.

M = -(D + L)-IU C= (D +L)-I

26.33. Discuss the convergence of matrix iterations,

First we ask that the exact solution ofAx = b be a fixed point of the iteration, That is, we substitute
x = A -1 b for both the input and output approximations in

X(k) = Mkx(k-l) + Ckb

and have x =A-1b = MkA-Ib + Ckb =Mkx + Ckb

This is to hold for all vectors b, so we equate coeffcients.

A-1 = MkA-1 + Ck

I=Mk + CkA

Now define e(k) as the error of the kth approximation.

e(k) = x - X(k)

Then e(k) = x - Mkx(k-1) - Ckb

= Mk(x - X(k-I)) = Mke(k-1)
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which shows that it is the matrices Mk that control error behavior. Using this result repeatedly,

eCk) = MkMk-1, "Mie(O)

where e(O) is the initial error, For a stationary iteration this becomes

eCk) = Mke(O)

26.34. Prove that the Gauss-Seidel iteration converges for an arbitrary initial vector x(Ü), if the
matrix A is positive definite, symmetric,

Because of the symmetry, A = L + D + L T, which makes

M = -(D + L)-IC

If À and v are an eigenvalue and eigenvector of M, then

(D + L)-ILTv = -Àv
LTv = -À(D + L)v

Premultiplying'by the conjugate transpose of v (denoted v*)

v*LTv = -v*À(D + L)v

and then adding v*(D + L)v to both sides

v*Av ~ (1 - À)v*(D + L)v

since A = L + D + LT, But the conjugate transpose of v* Av is v* Av, so the same must be true for the
right side of this last equation. Thus, with X denoting the conjugate of À,

(1 - X)v*(D + LYv = (1 - À)v*(D + L)v

= (1 - À)(v*Dv + v*Lv)

= (1 - À)(v*Dv - Xv*(D + L)TV)

Combining terms
(1 -IÀI2)v*(D + L)TV = (1 - À)v*Dv

multiplying both sides by (1 - X), and doing a little algebra we have finally

(1 - IÀ¡zv* Av = 11 - À12v* Dv

But both v* Av and v* Dv are non negative and À cannot equal 1 (since this would lead back to Av = 0),
so

IÀI2-: 1

placing all eigenvalues within the unit CIrc1e and guaranteeing that lim Mk = O. Thus eCk) has limit zerofor any e(O). '
26.35. How can an acceleration method be applied to the Gauss-Seidel iteration?

Since eCk) = Me(k-1), we anticipate that errors may diminish in a constant ratio, much as in Problem
25,4, The extrapolation to the limit idea then suggests itself, Here it would take the form

Xi = X¡k~i) _ Ax¡k+1)
¿\2X(k)i

for i = 1, ' , , , n, The superscripts denote three successive approximations,
For example, using the center column of Table 26-1, in whieh we know the correct value to be .250,

the errors in rows 4 to 8 are 54, 27, 14,6, and 3 in the third decimal place, This is very c10se to a steady

reduction by one-half. Suppose we try extrapolation to the limit using the three entries below, together
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with the corresponding differences as given.

,196

,027

.223 -,014
.013

.236
We find

p. = 236 - (,OB? = 2485' -.014'

which isin the right direction if not especially dramatic,

26.36. What are relaxation and overrelaxation methods?

The central idea is to use residuals as indicators of how to correct approximations already in hand,
For example, the iteration

X(k) = X(k-1) + (b _ AX(k-I))

has the character of a relaxation method, It has been found that giving extra weight to the residual can
speed convergence, leading to overrelaxation formulas such as

X(k) = X(k-I) + web - AX(k-I))

with w :; 1. Other variations of the idea have also been used,

p(1) = p(O) + 1 2( 250 + ! p(1) + ! p(1) _ p(O) + ! pro)) = 3908 8 " 4547849 '
p&I) =p&O) + 1.(.250 + ~ p~I) + ~ p~I) _ P&O)) = .418

Succeeding approximations are found in the same way and are listed in Table 26,2, Notice that about
halfas many iterations are now needed,

Table 26.2

Iteration Pt P2 l\ P4 Ps P6 P7 P8 P9

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 .300 ,390 .418
2 0 0 0 ,090 .144 .169 .384 .506 .419
3 .028 .052 .066 ,149 .234 ,182 .420 .520 .427
4 .054 .096 .071 .183 .247 .187 .427 .526 .428
5 .073 ,098 .071 ,188 .251 .187 .428 .527 .428
6 .07- .098 ,071 .187 .250 ,187 .428 .526 .428
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Since we have actually solved three linear systems of the form Ax = b, with vectorsbT = (1,0,0),
(0, 1,0), and (0,0,1) in turn, it is clear that the last threè columns now contain A -I. The original array
was (A, I), The final array is (/, A -I). The same process can be applied to other matrices A, row or
column interchanges being made if required, If such interchanges are made, they must be restored at the
completion of the algorithm,

26.39. Assuming that the matrix A has beeri factored as A = LU, how can A -1 be found from the
factors?

Since A -I = U-1L -I, the question is one of inverting triangular matriees. Consider Land seek an
inverse in the same form,

1 0 0 ., , 0 1 0 0 " , 0

121 1 0 " , 0 C21 1 0 " , 0

131 132 1 " , 0 C31 C32 1 " , o I=LCI=/
. e 6.............................. .................................. ..

In 1 In2 In3 ., , 1 CnI Cn2 Cn3 " , 1

The validity of the assumption will be clear as we proceed. Now match the elements of the two sides,
much as in the Choleski factorization algorithm, top to bottom and left to right, We find

121 + C21 = 0

131 + 132C21 + C31 = 0

132 + C32 = 0

141 + 142C21 + 143C31 + C4I = 0

142 + 143C32 + C42 = 0

143 + C43 = 0

C21 = -/21

C31 = -(/31 + 132C21)

C32 = -/32

C41 = -(/41 + 142C21 + 143C31)

C42 = -(142 + 143C32)

C43 = -/43

The elements are determined recursively, the general formula being

i-I
Cij = - L likCkj

k~j

i =2"", n
j = 1, ' , , ,i - 1

All diagonal elements are 1.
The inversion of U is similar. Assuming the inverse to be an upper triangle, with elements dij, we

proceed from bottom to top and right to left, finding

1
d¡¡=-

U¡¡

and
-1 j

d. = - L Uikdkjl) U¡¡ k=i+l

i = n, . . . ,1

i = n, . , . , 1
j = n, . . . , i + 1

26.40. Apply the method of the preceding problem to fhe matrix of Problem 26,11.

In that problem the factorization

..
1 o 0 0 3 0 1 2

2
0

2 1- 1 0 0 3 -- --
3 3 3

PA=LU=11 2
0

28 4- - 1 0 0 - --
3 3 9 9

0
1 5

0
24- - 1 0 0 -

3 7 7
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was made, Applying the above recursions, we now have

( 63 0

C1=~ -42 6363 7 -42
9 9

o

o

63

-45 ~J63 (56

U-'~1~8 ~

from whieh there comes eventually

( 7

1 -5
(PA)-I = U-IL -I = 24 ~

1

7

-5
1

1 -5J
1 1
7 1
-5 7

o -18

56 12
o 54
o 0

rCHAP, 26

-3~J

49

To produce the ultimate A-i, we use A-I = (PA)-ip and recall that postmultiplication by apermutation
matrix P rearranges the columns, Referrng back to the earlier problem, it is found that the above
columns should be taken in the order 4, 1,2,3,

26.41 Derive the formula for making an exchange step in a linear system.

Let the linear system be Ax = b, or
n

2: a¡kxk = b¡
k=I

i = 1" , . , n

The essential ingredients may be displayed as in this array for n = 3.

Xl X2 X3

b'~ a12 al3

b2 a21 a22 a23

b3" a3i a32 a33

We proceed to exchange one of the "dependent" variables (say b2) with one of the independent
variables (say X3)' Solving the second equation for X3, X3 = (b2 - a2iXi - a22x2)/a23, This requires that the
pivot coeffcient a23 not be zero, Substituting the expression for X3 in the remaining two equations brings

b al3(b2 - a2ix1 - a22x2)1 = aI1xi + aI2x2 +
a23

\

b3 = a31x1 + a32x2 + a33(b2 - a21x1 - a22x2)
a23

The array for the new system, after the exchange, is as folIows,

Xl X2 b2

b I _ al3a21
al3a22 al3

1 an a12-- -
a23 a23 a23

a2I a22 1
X3 i -- -

a23 a23" a23

b I _ a33a21
a33a22 a33

3 a31 a32-- -
a23 a23 a23

This may be summarized in four rules:

1. The pivot coeffcient is replaced by its reciprocaL.

2, The rest of the pivot column is divided by the pivot coeffcient,
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3, The rest of the pivot row is divided by the pivot coeffcient with a change of sign,

4, Any other coeffcient (say alm) is replaced by alm - alk 
alm 

where aik is the pivot coeffcient,
aik

26.42. Ilustrate the exchange method for finding the inverse matrix,

Once again we take the matrix of Problem 26,1,

Xl X2 X3

I

1 1
b1 1 - -

2 3

b2 I
1 1 1- - -
2 3 4

b3 I
1 1 1- - -
3 4 5

For error control it is the practice to choose the largest coeffcient for the pivot, in this case 1.

Exchanging b1 and Xi, we have this new array:

b1 X2 X3

1
1 1

Xl I
-- --

2 3

b2 I

1 1 1- - -
2 12 12

b3 I

1 1 4- - -
3 12 45

Two similar exchanges of b3 and X3, then of b2 and X2, lead to the two arrays shown below. In each case
the largest caeffcient in a b row and an X columD is used as pivot.

b1 X2 b3 b1 b2 b3

9 3 15
I

XI I
- -- -- Xl 9 -36 304 16 4

b2 I

3 1 15
I

- - - X2 -36 192 -18016 192 16

15 15 45
I

X3 1-- -- - X2 30 -180 1804 16 4

Since what we have done is to exchange the system b = Ax for the system X = A - I b, the last matrix is
A-1.

26.43. Derive the formula A -1 = (I + R + R2 + . , ')B where R = I - BA,

The idea here is that B is an approximate inverse of A, so that the residual R has small elements, A
few terms of the series involved may therefore be enough to produce a much better approximation to
A -1. To derive the formula note first that (I - R)(I + R + R2 + ' , .) = I provided the matrix series is
convergent, Then 1+ R + R2 +, , ,= (I - R)-l and so

(I +R +R2+" :)B = (I -R)-IB = (BA)-lB =A-1B-1B
which reduces to A -1.
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26.44. Apply the formula of the preceding problem to the matrix

(1 10 1J

A = 2 0 1
3 3 2

assuming only a three-digit computer is available, Since any computer carries only a limited
number of digits, this wil again ilustrate the power of a method of successive corrections,

First we apply Gaussian elimination to obtain a first approximation to the inverse, The three steps,
using the largest pivot available in each case, appear below along with the approximate inverse B which
results from two interchanges of rows, bringing the bot tom row to the top,

.1 1 .1 .1 0 0 0 1 ,037 .111 0 -.0371
2.0 0 1.0 0 1 0 0 0 -.260 .222 1 -.742
2.7 0 1.7 -.3 0 1 1 0 .630 -.111 0 .371

Step 1 Step 2

0 1 0 ,143 .143 -.143

( 421

2.43 -143 J

0 0 1 -.854 -3,85 2.85 .143 .143 -.143
1 0 0 .427 2.43 -1.43 -.854 -3.85 2.85

Step 3 The Matrix B

(.003 .020 .003 J

Next we easily compute R~I-BA= 0 -,001 0
.004 -.010 .004

after which RB, B + RB, R2B'= R(RB), and B + RB + R2B are found in that order, (Notice that because
the elements in R2B are so small, a factor of 10,000 has been introduced for simplicity in presentation,)

( .001580

-,000143
-.003140

-,001400 .0014.00J

-.000143 .000143

-.007110 .007110

RB
( .428579

,142857

-,857138

2.428600

,142857

-3,857110
B+RB

-1. 428600J
-,142857
2,857110

(-,07540 -.28400 . 

28400J
.00143 .00143 -.00143

-,04810 -,32600 ,32600

104, R(RB)
( .4285715. 2.4285716

,1428571 .1428571

-.8571428 -3,8571426

B +RB +R2B

- 1. 4285716J
-.1428571
2,8571426

Notice that except in the additive processes, only three significant digits have been carried, Since the
exact inverse is

A-1 =! (~ 1~ -~~J
7 -6 -27 20

it can be verified that B + RB + R2B is at fault only in the seventh decimal place, More terms of the
series formula would bring stil further accuracy. This method can often be used to improve the result of
inversion by Gaussian elimination, since that algorithm is far more sensitive to roundoff error
accumulation,
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DETERMINANTS

26.45. Determinants are no longer used extensively in the solution of linear systems, but continue to
have application in other ways, Direct evaluation of a determinant of order n would require
the computation of n! terms, whieh is prohibitive except for small n, What is the alternative?

From the properties of determinants, no step in a Gaussian elimination alters the determinant of
the coeffcient matrix except normalization and interchanges, If these were not performed, the
determinant is available by multiplication of the diagonal elements after triangularization, For the
matrix of Problem 26.1 the determinant is, therefore, a quick (fi(lgO) = 2I~O' This small value is another
indication of the troublesome character of the matrix,

Determinants can also be found from the'factorization PA = LU. Since A = P-ILU we have

det (A) = det(P-I) det (L)det (U) = (- 11 det (U)

where pis the number of interchanges represented by the permùtation matrix P, or P-1. For the matrix
of Problem 26.11

det (U) = 3(3)(~8)(~4) = 96

while det (P) is easily found to be - 1. (Or recall that three interchanges were made during factorization,
making p = 3,) Thus

det (A) = -96

EIGENV ALUE PROBLEMS, THE CHARACTERISTIC POLYNOMIAL
26.46. What are eigenvalues and eigenvectors of a matrix A?

A number À for which the system Ax = Àx or (A - M)x = 0 has a nonzero . solution vector x is called
an eigenvalue of the system. Any corresponding nonzero solution vector x is called an eigenvector.
Clearly, if x is an eigenvector then so is Cx for any number C.

26.47. Find the eigenvalues and eigenvectors of the system

(2-À)x¡- X2 =0
-Xl + (2 - À)X2 - X3 = 0

-X2 + (2 - À)X3 = 0

which arises in various physical settings, ineluding the vibration of a system of three masses
connected by springs,

We ilustrate the method of finding the characteristic polynomial directly and then obtaining the
eigenvalues as roots of this polynomial. The eigenvectors are then found last, The first step is to take
linear combinations of equations much as in Gaussian elimination, until only the X3 column of
coeffcients involves À. For example, if Ei, E2, and E3 denote the three equations, then -E2+ ÀE3 is
the equation

xi - 2x2 + (1 + 2À - À2)X3 = 0

Calling this E4, the combination Ei - 2E2 + ÀE4 becomes

4xi -5X2 + (2+ À +2À2- À3)X3= 0

These last two equations together with E3 now involve À in only the X3 coeffcients,
The second step of the process is to triangularize this system by the. Gauss elimination algorithm or

its equivalent. With this small system we may take a few liberties as to pivots, retain

x 1- 2x2 + (1 + 2À - À 2)X3 = 0

-X2 + (2 - À)x3 = 0
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as our first two equations and soon achieve

(4 - 10Â + 6Â2 - Â3)X3 = 0

to complete the triangularization, Ta satisfy the last equation we must avoid making X3 = 0, because this
at once forces X2 = X i = 0 and we do not have a nonzero solution vector, Accordingly we must require

4 - lOÂ + 6Â2 - Â3 = 0

This cubic is the characteristic p()lynomial, and the eigenvalues must be its zeros since in no other way
can we obtain a nonzero solution vector, By methods of an earlier chapter we find those eigenvalues to
be Â1 = 2 - V2, Â2 = 2, Â3 = 2 + V2 in increasing order. .

The last step is to find the eigenvectors, but with the system already triangularized this involves no
more than back-substitution. Taking Â1 first, and recalling that eigenvectors are determined only to àn
arbitrary multiplier so that we may choose X3 = 1, we find X2 = V2 and thén Xi = 1. The other
eigenvectors are found in the same way, using Â2 and Â3, The final results are

Î. Xi Xz X3

2-V2 1 V2 1

2 -1 0 1

2+V2 1 -V2 1

In this case the original system of three equations has three distinct eigenvalues, to each of which there
corresponds one independent eigenvector. This is the simplest, but not the only, possible outcome of an
eigenvalue problem, It should be noted that the present matrix is both real and symmetric, For areal,
symmetric n x n matrix,an important theorem of algebra states that

(a) All eigenvalues are real, though perhaps not distinct.

(b) n independent eigenvectors always exist.

This is not true of all matriees, It is fortunate that many of the matrix problems which computers
currently face are real and symmetric,

26.48. To make the algorithm for direct computation of the characteristic polynomial more clear,
apply it to this larger system:

£1: (1-Â)X1+ xz+ X3+ X4=0
£z: xi+(2-Â)xz+ 3X3+ 4X4=0
£3: Xi+ 3xz+(6-Â)X3+ lOx4=0
£4: Xl + 4xz + lOx3 + (20 - Â)X4 = 0

Callng these equations Ei, E2, E3, E4, the combination Ei + 4E2 + lOE3 + ÂE4 is

15x1 + 39xz + 73x3 + (117 + 20Â - Â2)X4 = 0

and is our second equation in which all but the X4 term are free of Â, We at once begin triangularization
by subtracting 15E4 to obtain

Es: -21x2 -77X3 + (- 183 + 35Â - Â2)X4 = 0

The combination -21E2 -77E3 + ÂEs becomes

-98xi - 273x2 - 525x3 + (-854 - 183Â + 35Â2 - Â3)X4 = 0

and is our third equation in whieh all but the X4 term are free of Â. The triangularization continues by

blending this last equation with E~ and Es to obtain

E6: 392x3 + (1449 - 1736Â + 616Â2 - 2U3)X4 = 0
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Now the combination 392E3 + )"E6 is formed,

392xi + 1176x2 + 2352x3 + (3920 + 1449Å - 1736),2 + 616),3 - 2U4)X4 = 0

and the triangularization is completed by blending this equation with E4, Es, and E6 to obtain

E7: (1 - 29)" + 72),2 - 29),3 + ),4)X4 = 0

The system E4, Es, E6, E7 is now the triangular system we have been aiming for. To avoid the zero
solution vector, )" must be a zero of 1 - 29)" + 72),2 - 29),3 +),4 whieh is the characteristie polynomial.

Finding these zeros and the corresponding eigenvectors wil be leftas a problem. The routine just used

can be generalized for larger systems,

26.49. Ilustrate the use of the Cayley-Hamilton theorem for finding the characteristie equation of a
matrix,

Writing the equation as

f(),) =)"n + C1),n-i + ' , , + cn-1)" + Cn = 0

the Cayley-Hamilton theorem states that the matrix A itself satisfies this equation, That is,

f(A) = An + ciAn-1 + ' , , + cn-1A + cnI = 0

where the right side is now the zero matrix, This comes to n2 equations for the n coeffcients Ci so there is
substantial redundance,

Take, for example, the Fibonacci matrix P = G ~J. Since p2 = G :l we have

(: :J+c1G ~J+C2(~ ~J=(~ ~J

or 2+c1 +c2=0
1 + Cl = 0 1 + C2 = 0

with the second of these repeated, The familiar equation ),2 = )" + 1 is again in hand, (See Problems
18,24 and 26,128,)

Or consider the permutation matrix P with

(0 0

P= 1 0
o 1 iJ p,=G

1 0J

o 1

o 0 p'=(i

o 0J

1 0

o 1

which leads quickly to the set

1 + C3 = 0 CI =0 C2 = 0

repeated twiee, The characteristic equation is ),3 - 1 = O.
Several deviees have been suggested for selecting a suitable subset of the available n2 equations,

One such device calls for computing

f(A)v = 0

for an appropriate vector v, and solving this system,

26.50. Prove Gerschgorin's theorem, which states that every eigenvalue of a matrix A falls within
one of the complex circles having centers at a¡¡ and radii

R¡= L a¡i
i*¡

with i = 1, ' , , , n,
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Let X; be the component of largest magnitude of one of the eigenvectors of A. From the ¡th
equation of the system (A - ÅI)x = 0, we have

(a;; - Å)x; = - L a;jxj
i'*î

lai; -ÅI ~~ laijl.l; I ~~ la¡jl¡rl L J-rl
which is the theorem,

26.51. What does the Gerschgorin theorem tell us about the eigenvalues of a permutation matrix
which has a single 1 in each row and column, with zeros elsewhere?

The circles either have center at 0 with radius 1, or center at 1 with radius O. All eigenvalues lie

within a unit of the origin, For example, the eigenvalues of

(0 0 1J

1 0 0
o 1 0

are the cube roots of 1. In particular, the eigenvalues of the identity matrix must be within the circle
having center at 1 and radius 0,

26.52. The Gerschgorin theorem is especially useful for matriees having a dominant diagonaL. Apply
it to this matrix,

(-~
-1

o

-1
4

-1
-1

-1
-1

4

-1 -~J
-1

4

All the eigenvalues must fall inside the circle with center at 4 and radius 3, By the symmetry, they
must also be reaL.

TUE POWER METUOD
26.53. What is the power method for producing the dominant eigenvalue and eigenvector of a

matrix?

Assurne that the matrix A is of size n x n with n independent eigenvectors Vi, V2, ' , , , Vn and a
truly dominant eigenvalue Å¡: IÅ11 ? IÅ21 ~, , '~IÅnl. Then an arbitrary vector V can be expressed as a

combination of eigenvectors,

V = a¡ Vi + a2 is + ' , , + an Vn

It follows that

A V = a1A Vi + a2A is + ' , , + anA Vn = a¡Å¡ Vi + a2Å2 V2 + ' , , + anÅn Vn

Continuing to multiply by A we arrive at

. ( (Å2)P (Ån)P JNV = a1Å~Vi + a2Å~is + ' , , + anÅ~Vn = Å~ a1 Vi + a2 Å¡ V2 + ' , , + an Å1 Vn

provided ai'* O. Since Åi is dominant, all terms inside the brackets have limit zero except the first term,
If we take the ratio of any corresponding components of AP+¡V and APV, this ratio should therefore
have limit Å¡, Moreover, Å¡P APV will converge to the eigenvector a1 Vi,
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26.54. Apply thepower method to find the dominant eigenvalue and eigenvector of the matrix used
in Problem 26.47,

( 2 -1 0J
A = -1 2-1

o -1 2
Choose the initial vector V = (1, 1, 1), Then AV = (1,0, 1) and A2V = (2, -2,2), It is convenient

here to divide by 2, and in the future we continue to divide by some suitable factor to keep the numbers
reasonable, In this way we find

A 7V = c(99, - 140, 99) A8V = c(338, -478,338)

where c is some factor. The ratios of components are

338 = 3.41414

99

478

140 = 3.41429

and we are already elose to the correct Å1 = 2 +0 = 3.414214, Dividing our last output vectôr by 338, it
becomes (1, -1.41420, 1) approximately and this is elose to the correct (1, -0, 1) found in Problem
26.47,

26.55. What is the Rayleigh quotient and how may it be used to find the dominant eigenvalue?

The Rayleigh quotient is xTAx/xTx, where T denotes the transpose, IfAx = Åx this collapses to Å,
IfAx = Åx then it is conceivable that the Rayleigh quotient is approximately Å, Under certain

circumstances the Rayleigh quotients for the successive vectors generated by. the power method
converge to Å¡, For example, let x be the last output vector of the preceding problem, (1, ~1.41420, 1),
Then

Ax = (3.41420, -4,82840, 3.41420) xTAx = 13.65672 xTx = 3,99996

and the Rayleigh quotient is 3.414214 approximately, This is correct to six decimal places, suggesting
that the convergence to Å¡ here is more rapid than for ratios of components,

26.56. Assuming all eigenvalues are real, how may the other extreme eigenvalue be fouIid?

IfAx = Åx, then (A - qI)x = (Å - q )x. This means that Å - q is an eigenvalue of A - qI. By
choosing q properly, perhaps q = ÅI, we make the other extreme eigenvalue dominant and the power
method can be applied. For the matrix of Problem 26,55 we may choose q = 4 and consider

(-2 -1 0J
A-4I= -1 -2 -1

o -1 -2

Again taking V = (1, 1, 1) we soon find the Rayleigh quotient -3.414214 for the vector (1,1.41421,12
which is essentially (A - 4i)8V. Adding 4 we have ,585786 which is the other extreme eigenvalue 2 - 0

correct to six places. Thevector is also elose to (1,0,1), the correct eigenvector,

26.57. How may the absolutely smallest eigenvalue be found by the power method?

IfAx = Åx, then A-1x == Å-1x. This means that the absolutely smallest eigenvalue of A can be found
as the reciprocal of the dominant Å of A -I. For the matrix of Problem 26.55 we first find

(3 2 1J

A-1 =! 2 4 2
4 1 2 3
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Again choosing V = (1, 1, 1) but now using A -I instead of A, we so on find the. Rayleigh quotient
1.707107 for the vector (1,1.41418,1). The reciprocal quotient is ,585786 so that we again have this
eigenvalue and vector already found in Problems 26.47 and 26,56. Finding A -I is ordinarily no simple
task, but this method is sometimes the best approach to the absolutely smallest eigenvalue.

26.58. How maya next dominant eigenvalue be foundby a suitable choiee of starting vector V?

Various algorithms have been proposed, with varying degrees of success, The diffculty is to
sidetrack the dominant eigenvalue itself and to keep it sidetracked, Roundoff errors have spoiled several
theoretically sound methods by returning the dominant eigenvalue to the main line of the computation
and obscuring the next dominant, or limiting the accuracy to which this runnerup can be determined.
For example, suppose that in the argument of Problem 26.53 it could be arranged that the starting
vector V is such that ai is zero, Then ÅI and VI never actually appear, and if Å2 dominates the remaining
eigenvalues it assurnes the role formerly played by ÅI and the same reasoning proves convergence to Å2
and V;, With our matrix of Problem 26.54 this can be nicely illustrated. Being real and symmetric, this
matrix has the property that its eigenvectors are orthogonaL. (Problem 26.47 allows a quick verification
of lhis,) This means that viv =a1 viv¡ so that ai wil be zero if V is orthogonal to Vi. Suppose we take

V = (- 1,0, 1), This is orthogonal to VI' At on ce we find AV = (-2,0,2) = 2V, so that we have the

exact Å2 = 2 and V; = ( - 1, 0, 1). However, our choice of starting vector here was fortunate,
It is almost entertaining to watch wh at happens with a reasonable but not so fortunate V,

say V = (0, 1, 1.4142) which is also orthogonal to VI as required. Then we so on find A3V =

4,8( - 1, .04, 1.20) which is something like V; and from whieh the Rayleigh quotient yields the
satisfactory Å2 = 1. 996, After this, however, the computation deteriorates and eventually we come to
A20V = c(l, - 1.419, 1.007) which offers us good approximations once again to ÅI and V¡, Roundoff
errors have brought the dominant eigenvalue back into action, By taking the trouble to alter each vector
APV slightly, to make it orthogonal to Vi, a better result can be achieved. Other devices also have been
attempted using several starting vectors,

26.59. Develop the inverse power method,

This is an extension of the eigenvalue shift used in Problem 26.56, If A has eigenvalues Å¡, then
A - t! and (A - t1)-i have eigenvalues Å¡ - t and (Å¡ - t)-i, respectively. Applying the power method as
in Problem 26,53, but using (A - t1)-1 in place of A, we have

(A - t1)-PV = al(ÅI - tfPV¡ + ' , , + an(Ån - t)-PVn

If t is near an eigenvalue Åb then the term ak(Åk - t)-PVk wil dominate the sum, assuming that ak =1 0

and Åk is an isolated eigenvalue, The powers being computed wil then lead to an eigenvalue of A,
because all these matrices have the same eigenvectors. This is the basis of the inverse power method,

An interesting variation of this idea uses a sequence of values ti. -Given an initial approximation to
an eigenvector, say x(O), compute successively

x(i)TAx(i)
t¡+1 = X (i)TX(i)

X(i+I) = c¡+I(A - t¡+l1)-IX(i)

the ti+1 being Rayleigh quotient estimates to Åk and the X(i+I) approximations to Vk. Convergence has
been proved under various hypotheses, The factor C¡+l is chosen to make 1i~(i+I)11 = 1 for some norm.

It is not actually necessary to compute the inverse matrix. What is needed is the vector W(i+I)
defined by

W(i+I) = (A - t¡+I1)-IX(i)

so it is more economical to get it by solving the system

(A - ft+I1)W(i+I) =x(i)

for this vector. Then X(i+I) = C¡+IW(i+l), As the sequence develops, the matrices A - t¡+i! wil approach
singularity, suggesting that the method may have aperilous character, but with attention to
normalization and pivoting, accurate results can be obtained,
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26.60. What is inverse iteration?

Given an accurate approximation to an eigenvalue of A, inverse iteration is a fast way to obtain the
corresponding eigenvector. Let t be an approximation to À, obtained from the characteristie polynomial
or other method which produces eigenvalues only, Then A - tI is near singular, but still has a
factorization

P(A -tl) =LU A -tI=p-ILU

as in Problem 26.8, Just as in the preceding problem, we begin an iteration with

(A - tI)X(l) = P- i LUx(l) = x(O)

using an x(O) with a nonzero component in the direction of x, the eigenvector corresponding to À, The .
choiee x(O) = p-l L(1, 1, . . , , ir has sometimes been suitable, or what is the same thing,

UX(I) = (1, 1, ' . . , l)T

26.61. Apply inverse iteration to the matrix of Problem 26.47, using ,586 as an approximation to the
eigenvalue 2 - Vi, Since the eigenvector x = (1, Vi, 1) has already been found, this wil serve

as a small-scale ilustration of the method's potentiaL.

To start, we need the factors. Land U, which prove to be the following:

( 1 0
L= - ,70721 1

o -1.4148 n (1.414 -1 0 J
U= 0 .7068 -1

o 0 - .0008
of Ux(l) = (1, 1, . ." , ,ir, found by back-substitution, is X(I) =In this example P = i. The solution

(1250, 1767, - 1250)T, after which

LUX(2) = x(l)

yields X(2) = (31,319,44,273, 31,265r to five figures, Normalizing thcn brings the approxirrate eigen-

vector (1, 1.414, .998)T.

REDUCTION TO CANONICAL FORMS

26.62. Abasie theorem of linear algebra states that areal symmetric matrix A has only real
eigenvalues and that there exists a real orthogonal matrix Q such that Q-1AQ is diagonaL.
The diagonal elements are then the eigenvalues and the columns of Q are the eigenvectors,
Derive the Jacobi formulas for producing this orthogonal matrix Q.

In the Jacobi method Q is obtained as an infinite product of "rotation" matrices of the form

Qi = (c~S ep -sin epJsm ep cos ep

all other elements being identieal with those of the unit matrix I, If the four entries shown are in
positions (i, i), (i, k), (k, i), and (k, k), then the corresponding elements of Qï1AQi may easily be
computed to be

b¡¡ = aii cos2 ep + 2aik sin ep cos ep + akk sin2 ep

bki = bik = (akk - ai;) sin ep cos ep + aik(cos2 ep - sin2 ep)

bkk = aii sin2 ep - 2aik sin ep cos ep + akk cos2 ep

Choosing ep such that tan 2ep = 2aik/(aii - akk) then makes bik = bki = 0, Each step of the Jacobi
algorithm therefore makes a pair of off-diagonal elements zero. Unfortunately the next step, while it
creates a new pair of zeros, introduces nonzero contributions to formerly zero positions. Nevertheless,

successive matrices of the form Q21QïIAQ1Q2' and so on, approach the required diagonal form and
Q=QIQ2.."
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26.63. Apply Jacobi"s metbod to A ~ ( - ~

-1
2

-1 -H
With i = 1, k = 2 we have tan 2Ø = -2/0 which we interpret to mean 2Ø = n/2, Then cos ø =

sin ø = I/Vi and .
1 1

0
1 1

1 0
1

o 0 2 -1 0 0 - 0 0 - 0
-1 I 1 1 1 1

0 0 3
1

A1=Q1 AQ1= - 0 0 0 -1 2 -1 0 V2
=

- 0
1 1

20 0 1 0 -1 2 0 0 1 - 0 - 0

Next we take i == 1, k = 3 making tan 2Ø = -0/( - 1) = 0, Then sin ø = ,45969, cos ø = .88808 and

we compute

-1 (.88808 0 .45969J (.88808A2 = Q2 Ai Q2 = 0 1 0 Ai 0
- .45969 0 ,88808 .45969

( .63398 -.32505 0 J

= -.32505 3 -.62797
o - . 62797 2,36603

o -.45969J

1 0
o ,88808

The convergence of the off-diagonal elements toward zero is not startling, but at least the decrease has
begun, After ni ne rotations of this sort we achieve

( .58578 .000000

A9 = ,00000 2,00000

,00000 .00000

'OOOOOOJ

,00000

3.41421

in which the eigenvalues fuund earlier have reappeared, We 'also have

(,50000
Q = Q1 Q2 ' , , Q9 = ,70710

,50000

,70710 '50oo0J

,00000 -.7071~

-,70710 ,50000

in which the eigenvectors are also conspicuous,

26.64. What are the three main parts of Givens' variation of the Jacobi rotation algorithm for areal
symmetric matrix?

In the first part of the algorithm rotations are used to reduce the matrix to triple-diagonal form,
only the main diagonal and its two neighbors being different from zero, The first rotation is in the (2, 3)
plane, involving the elements a22, a23, a32, and a33' It is easy to verify that such a rotation, with ø

determined by tan ø = al3/a12, wil replace the al3 (and a3l) elements by O. Succeeding rotations in the
(2, i) planes then replace the elements ali and an by zero, for i = 4, . , . , n, The ø values are determined
by tan ø = aiJa;2, where a;2 denotes the current occupant of row 1, column 2, Next it is the turn of the
elements a24,"" a2n. which are replaced by zeros by rotations in the (3,4),...; (3, n) planes,
Continuing in this way a matrix of triple-diagonal form will be achieved, since no zero that we have
worked to create wil be lost in a later rotation, This may be proved by a direct computation and makes
the Givens' reduction finite whereas the Jacobi diagonalization is an infinite process,
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The second step involves forming the sequence

!o(À) = 1 f¡(À) = (À - a'¡h-1(À) - ßt-1h-2(À)
where the a"s and ß's are the elements of our new matrix

a'1 ß1 0 ' , , 0

ß1 a'2 ß2 ' , , 0

B = I 0 ß2 a'3 ", 0

, " "',' ". " '" ßn-1

o 0 0 ßn-1 a'n

and ßo = 0, These f¡(À) prove to be the determinants of the principal minors of the matrix À/ - B, as may
be seen from

À-a'i -ß1 0
-ß1 À - a'2 -ß2

f¡(À) = I 0 -ß2 À - a'3

o

o

o

.............................. . -ßi-
-ßi-
À - a'¡

......................................... ..

by expanding along the last column,

f¡(À) = (À - a'¡)f¡-l(À) + ß¡-lD
where D has only the element -ß¡-i in its bottom row and so equals D = -ß¡-lh-2(À), For i = n we
therefore have in fn(À) the characteristie polynomial of B. Since our rotations do not alter the
polynomial, it is also the characteristic polynomial of A.

Now, if some ß¡ are zero, the determinant splits into two smaller determinants which may be treated
separately, If no ß¡ is zero, the sequence of functions f¡(À) proves to be a Sturm sequence (with the
numbering reversed from the order given in Problem 25,33), Consequently the number of eigenvalues in
a given interval may be determined by counting variations of sign, '

Finally, the third step involves finding the eigenvectors, Here the diagonal nature of B makes
Gaussian elimination a reasonable process for obtaining its eigenvectors U¡ directly (deleting one
equation and assigning some component the arbitrary value of 1), The corresponding eigenvectors ofA
are then V¡ = QU¡ where Q is once again the product of our rotation matrices,

26.65. Apply the Givens method to the Hilbert matrix of order three,

1 ! !
2 3

H= I! ! !
2 3 4

1 1 1- - -
3 4 5

For this sm all matrix only one rotation is needed. With tan ø = t we have cos ø = 3/Vi and
sin ø = 2/Vi, Then

Vi 0 01 r 1 v; 0
Q=vhl 0 3 -21 B=Q-1HQ= I v; 34 9- -

65 260

0 2 3 I I 0
9 2- -

260 195
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and we have our tripIe diagonal matrix, The Sturm sequence consists of

foÀ) = 1 ( 34) 13f:À) = À - - (À - 1) - -2 65 16

( 2 ) 81 .h(À) = À - 195 fzÀ) - 67,600 (À - 1)

fi(À)=À-1

which lead to the :f signs shown in Table 26,3. There are two roots between 0 and 1 and a third between
1 and 1.5, Iterations then locate these more precisely at ,002688, ,122327, and 1.408319. The eigenvalue
so elose to zero is another indication of the ne ar singularity of this matrix,

Table 26.3

fo Ii Ii h Changes

0 + - + - 3

1 + 0 - - 1

1.5 + + + + 0

To find the eigenvector for Ài, we solve BUi = Ài Ui andsoon discover U¡ = 1, U2 = - 1.6596,

U3 = 7.5906 to be one possibility, Finally

VI = QUi = (1, -5.591, 5,395)T

which can be normalized as desired. Eigenvectors for the other twoeigenvalues respond to the same
process,

26.66. A similarity transformation of A is defined by M-1AM, for any nonsingular matrix M, Show
that such a transformation leaves the eigenvalues unchanged,

Since Ax = ÀX implies

MAM-I(Mx) = À(Mx)

we have at once that À is an eigenvalue of MAM-1 with corresponding eigenvector Mx, The orthogonal
transformations used in the Jacobi and Givens methods are special cases of similarity transformations,

26.67. Show that a matrix having all distinct eigenvalues, and corresponding independent eigenvec-
tors, can be reduced to diagonal form by a similarity transformation,

Form the matrix M by using the eigenvectors of A as columns. It follows that

AM=MD

where D is diagonal and has the eigenvalues along its diagonaL. Because the eigenvectors are linearly
independent, M-1 exists and

M-IAM=D

as required, This elassic theorem on the reduction of matrices to special, or canonical, form has
questionable computational value, since to find Mappears to presuppose the solution of the entire
problem,

26.68. What is a Hessenberg matrix?

It is a matrix in which either the upper or the lower triangle is zero except for the elements adjacent
to the main diagonaL. If the upper triangle has the zeros, the matrix is a lower Hessenberg, and vice
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versa, Here are two small Hessenbergs, the second being also tripIe diagonal since it is symmetric:

(: : ::J (1 1 0J
0111 1110011 011

26.69. Show that a matrix A can be reduced to Hessenberg form by Gaussian elimination and a
similarity transformation,

Suppose we take an upper Hessenberg as our goal. The required zeros in the lower triangle can be
generated column by column in n - 2 stages. Assurne k -1 such stages finished, and denote the new
elements by aij. The zeros for column kare then arranged as follows:.

(a) From the elements a~+i,k' . , , , a~k find the absolutely largest and interchange its row with row
k + 1. This is the partial pivoting step and can be achieved by premultiplying the current
matrix A' by an interchange matrix Ir,k+1 as introduced in Problem 26,8,

(b) Calculate the multipliers

a"Cjk = - -- j = k + 2, . , , , n
ak+1,k

(the double prime referring to elements after the interchange). Add Cjk times row k + 1 to row
j, This can be done for all the j simultaneously by premultiplying the current matrix A" by a
matrix Gk similar to the Li of Problem 26,8.

1

1

Gk= -Ck+2.k 1 rowk +2

-Cnk 1

col. k + 1

This is the Gaussian step,

(c) Postmultiply the current matrix by the inverses of Ir.k+i andGk, This is the similarity step. Of
course, Ir.k+i is its own inverse, while that of Gk is found by changing the signs of the C
elements, This completes the kth stage of the reduction, which can be summarized by

Gklr.k+1A'lr,k+IG;1

with A' the input from the preceding stage, or A itself if k = 1.

The steps a, b, and C are carried out for k = 1, , . . , n - 2 and it is easy to discover that the target
zeros of any stage are retained,

26.70. Apply the algorithm of the preceding problem to this matrix:

(0 1 2 3J

2 3 0 i
3 0 i 2
i 2 3 0

All the essentials appear in Fig. 26-3, the two stages side by side. Remember that as apremultiplier,
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lr.k+i swaps rows but as its own inverse and postmultiplier it swaps columns, The given matrix A is not
symmetric so the result is Hessenberg but not tripIe diagonaL. The matrix M of the similarity
transformation MAM-1 is G2134 Gi 123 ,

26.71. What is the QR method of finding eigenvalues?

Suppose we have an upper Hessenberg matrix Hand can factor it as

H=QR
with Q orthogonal and R an upper (or right?) triangle, In the algorithm to come what we actually find
first is

QTH=R
by reducing H to tri angular form through successive rotations, Define

H(2) = RQ = QTHQ

and note that H(2) will have the same eigenvalues as H, because of the theorem in Problem 26,66, (Since
Q is orthogonal, QT = Q-i,) It turns out that H(2) is also Hessenberg, so the process can be repeated to
generate H(k+l) from H(k), with H serving as H(l) and k = 1, , , . . The convergence pieture is fairly
complicated, but under various hypotheses the diagonal elements approach the eigenvalues while the
lower triangle approaches zero, (Of course, the R factor at each stage is upper triangular, but in forming
the product RQ, to recover the original eigenvalues, sub diagonal elements become nonzero again.) This
is the essential idea of the QR method, the eventual annihilation of the lower triangle.

26.72. How can the matrix Q(k), required for the kth stage of the QR method, be found? That is,
find Q(k) such that

H(k+l) = Q(k)TH(k)Q(k)

for k = 1, . , , ,

Orie way of doing this uses rotations, very much as in the Givens method presented in Problem
26,64. Since we are assuming that His upper Hessenberg, it is only the elements h¡+I,¡ that need our
attention, for i = 1, . . . , n - 1. But h¡+l. can be replaced by zero using the rotation

1

sT= I
cos ø sinØ

I rowi-sin ø cos ø rowi+1

1

co!. co!.
i + 1

and calculating sTH, provided tan ø = h¡+i)hi,. (It is easier to let sin ø = ch¡+i,¡, cos ø = ch¡,¡ and

choose c to make the sum of squares 1.) Then the product of these rotations

QT =Sr-i'" Sr

is wh at we need. The same argument applies for any stage, so the superscript (k) has been suppressed
here.

26.73. How has the idea of eigenvalue shifting, presented in Problem 26,56, been applied to
accelerate the convergence of the QR algorithm?
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Instead of factoring thematrix H, we try instead the reduction

QT(H - pI) =R

for some suitable value of p. The factorIZation H - pI = QR is thus implied, Then

QT(H - pI)Q = RQ = H(2) - pI

exhibits the reversed product which is central to the method and also defines H(2, But then

H(2) = QT(H - pI)Q + pI = QTHQ

so H(2) again has the same eigenvalues as H. With H(2) in hand, we are ready to begin the next iteration,
It would be nice to choose p ne ar an eigenvalue, but in the absence of such inside information, the

following alternative is recominended, Find the eigenvalues of the 2 by 2 submatrix in the lower right
corner of the current Hand set p equal to the one closest to hnn, assuming these eigenvalues reaL. If they
are complex, set p to their common real part.

26.74. Given the midget Hessenberg matrix

(4 2 IJ
. H= 0 1 0

o 2 3

find the eigenvalues by the QR method,

It is easy to discovet that the eigenvalues are the diagonal elements 4, 1, 3,But it is also interesting
to watch the QR method perform the triangularization, Choosing a shift of 3, we compute

(1 2
H -31= 0 -2

o 2 n
whieh wil need just one rotation to re ach triangular form.

(\Í 0 0J
ST = .- 0 - 1 1 .V2 0 -1 -1 (\Í

1 0
ST(H - 31) = V2 0

2\Í \ÍJ
4 0
o 0

Postmultiplication by S then completes the similarity transformation,

(2 -\Í -3\ÍJ

ST (H - 3I)S = ! 0 -4 -42 0 0 0

Finally we add 31 and have

HO)~ (;

\Í
2

1

o

_3~J

-2
3

the tri angular form having been preserved, Ordinarily this wil not happen, and several stages such as
the above wil be needed,
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26.75. Apply the QR method to the Hessenberg matri

(4 1 1

1 4 1H= 0 1 4
o 0 1 iJ

for whieh the exact eigenvalues are 6, 4, 3, and 3,

A substantial number of rotation cycles eventually reduced this matrix to the following triangle:

rm~

1.50750 -,17830
3,99997 - ,44270

3,00098

'29457J
,22152

-,60302
2,99895

in which the eigenvalues are evident along the diagonaL. For larger jobs a saving in computing time
would be realized by a reduction of the order when one of the subdiagonal elements becomes zero, Here
it was entertaining simply to watch the lower triangle slowly vanish, Using the above approximate
eigenvalues, the corresponding vectors were found directly and matched the correct (3,3,2,1),

(- 1, -1,0,1), and (0,0, -1, 1) to three decimal places more or less, There is no fourth eigenvector.

26.76. Apply the QR method to the tripie diagonal matrix

(4 1 0 0J

1 4 1 0
o 1 4 1
o 0 1 4

and then use the resùlts obtained to "guess" the correct eigenvalues,

Once again the rotation cycles were allowed to run their course, with this result, Off-diagonal
elements were essentially zero,

(50618031

4.618065 J
3,381945

2,381942

Since the given matrix was symmetric, both the lower and upper triangles have become zero, leaving the
eigenvalues quite conspicuous, Taking the largest, a direct calculation of the eigenvector managed

(1.00002, 1.61806, 1.61806, 1)

tle fourth component having been fixed in advance. Guessing that this ought to have been (1, x, x, 1)leads quickly to the equations '
À=x+4 x2 -x - 1 = 0

the second of whieh is familiar by Its connection with Fibonacci numbers, The root x = (1 + ÝŠ)/2 is
now paired with À = (9 + ÝŠ)/2, while x= (1 - ÝŠ)/2 is paired with À = (9 - ÝŠ)/2 giving us two of the
exact solutions, The other two are found similarly.
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COMPLEX SYSTEMS

26.'77. How can the problem of solving a system of complex equations be replaced by that of solving .
a real system?

This is almost automatic, since complex numbers are equal precisely when their real and imaginary
parts are equal. The equation

is at once equivalent to

(A + iB)(x + iy) = a + ib

Ax - By = a Ay + Bx = b

and this may be written in matrix form as

(~ ~BJC) = (:)
A complex n x n system has been replaced by areal 2n x 2n system, and any of our methods for real
systems may now be used, It is also possible to replace this real system by two systems

(B-IA + A -1 B)x = B-1a + A -lb

(B-lA + A -1 B)y = B-1b - A -la

of size n x nwith identical coeffcient matrices, This follows from

(B-lA +A-IB)x = B-I(Ax - By) +A-I(Bx +Ay) = B-Ia +A-Ib
(B-1A + A -lB)y = B-1(Ay + Bx) + A -I(By - Ax) = B-1b - A -la

Using these smaller systems slightly shortens the overall computation,

26.78. Reduce the problem of inverting a complex matrix to that of inverting real matriees,

Let the given matrix be A + iB and its inverse C + iD. We are to find C and D such that
(A + iB)(C + iD) = i. Suppose Ais nonsingular so that A-l exists, Then

C = (A + BA-IB)-l D = -A-1B(A + BA-IBri
as may be verified by direct substitution, If Bis nonsingular, then

C = S-IA(AB-IA + B)-I D = -(AS-lA + Bri

as may be verified by substitution, If both.A and Bare nonsingular, the two results are of course
identieaL. In case both A and B are singular, but (A + iB) is not, then a more complicated procedure
seems necessary, First areal number t is determined such that the matrix E = A + tB is nonsingular.
Then, with F = B - tA, we find E + iF = (1 - it)(A + iB) and so

(A + iB)-I = (1 - it)(E + iF)-I

This can be computed by the first method since E is nonsingular.

26.79. Extend Jacobi's method for finding eigenvalues and vectors to the case of a Hermitianmatrix,

We use the fact that a Hermitian matrix H becomes diagonalized under a unitary transformation,
that is, V-1HV is a diagonal matrix, The matrices Hand V have the properties fIT = Hand UT = V-I,
The matrix V is to be obtained as an infinite product of matriees of the form

VI = ( cos ø -sin ø e-ieJsin ø eie cos ø
all other elements agreeing with those of ¡, The four elements shown are in positions (i, i), (i, k), (k, i),
and (k, k), If the corresponding elements of H are

H=( a b-iCJb +ic d
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then the (i, k) and (k, i) elements of V-IHV wil have real and imaginary parts equal to zero,

(d - a) cos ep sin ep cos 0 + b cos2 ep - b sin2 ep cos 20 - c sin2 ep sin 20 = 0

(a - d) cos ep sin ep sin 0 - C cos2 ep + b sin2 ep sin 20 - c sin2 ep cos 20 = 0

if ep and 0 are chosen so that

è
tan 0 =b tan 2ep

2(b cos 0 + c sin 0)
a-d

This type of rotation is applied iteratively as in Problem 26,62 until all off-diagonal elements have been
made satisfactorily small. The (real) eigenvalues are then approximated by the resulting diagonal
elements, and the eigenvectors by the columns of V = Vi V2 V3 ' , , ,

26.80. How may the eigenvalues and vectors of a general complex matrix be found? Assurne all
eigenvalues are distinct,

As a first step we obtain a unitary matrix V such that V-IAV = T where T is an upper triangular
matrix, all elements below the main diagonal being zero, Once again V is to be obtained as an infinite
product of rotation matriees of the form VI shown in the preceding problem, whieh we now write as

VI = (; ;J

The element in position (k, i) Qf V¡lAVi is then

akix2 + (akk - aii)xy - aiky2

To make this zero we let y = Cx, x = I/VI + ICl2 whieh automatically assures us that Vi wil be unitary,
and then determine C by the condition alkC2 + (aii - akk)C - aki = 0 which makes1 . I 2

C = 2- ((akk - aii):f v 
(akk - aii) + 4alkak;)alk

Either sign may be used, preferably the one that makes ICI smaller. Rotations of this sort are made in
succession until all elements below the main diagonal are essentially zero, The resulting matrix is

(tii t12 '" t J

T = V-lA V = ,~.. t~~ , : : : ..t;,

o 0 '" tnn

where V = Vi V2 ' , . VN' The eigenvalues of both T and Aare the diagonal elements tii'
Wenext obtain the eigenvectors of T, as the columns of

1, W12 WB " , wln

0 1 W23 " , W2n

w=lo 0 1........ ,

o 0 o ' " Wnn

The first column is already an eigenvector belonging to tll. To make the second column an eigenvector
belonging to t22 we require tli WI2 + tl2 = t22 WI2 or WI2 = ti2/(t22 - tii) assuming tii * t22. Similarly, to make

the third column an eigenvector we need

t23
W23 = t33 - t22 WB

tl2 W23 + t13

t33 - tii



398 LINEAR SYSTEMS (CHAP, 26

In general the Wik are found from the recursion

k

Wik = ¿ t'J WJk
j~i+¡ tkk - t¡¡

with i = k - 1, k - 2, . : . , 1 successively. Finally the eigenvectors of A itself are available as the columns
of UW.

Supplementary Problems

26.81. Apply the Gauss elimination algorithm to find the solution vector of this system:

W + 2x - 12y + 8z = 27

5w + 4x + 7y - 2z = 4
-3w + 7x + 9y + 5z = 11

6w - 12x - 8y + 3z = 49

26.82. Apply the method of Problem 26.10 to find the solution vector of this system:

33x¡ + 16x2 + 72x3 = 359

-24xi - 10xz - 57x3 = 281

-8xi - 4X2 - 17x3 = 85

26.83. Suppose it has been found that the system

1.7x¡ +2.3x2 - 1.5X3 = 2.35

1.1x¡ + 1.6X2 - 1.9X3 = -.94

2.7x¡-2.2xz+ 1.5X3= 2,70

has a solution near (1,2,3), Apply the method of Problem 26.28 to obtain an improved approximation,

26.84. Apply Gaussian elimination to the system which foUows, computing in rational form so that no roundoff
errors are introduced, and so getting an exact solution. The coeffcient matrix is the Hilbert matrix of
order four.

1 1 1
X¡ +Zx2+"3x3+"4x4=1

1 1 1 1
ZX¡ + "3X2 +"4X3 +Sx4 = 0

1 1 1 1
"3Xi +"4XZ+SX3+"6X4=0

1 1 1 1
"4Xi +SX2+"6X3+7x4=0

26.85. Repeat the preceding problem with all coeffcients replaced by decimals having three significant digits,
Retain only three significant digits throughout the computation. How elose do your results come to the
exact solution of the preceding problem? (The Hilbert matrices of higher order are extremely

troublesome even when many decimal digits can be carried.)
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26.86. Apply the Gauss-Seidel iteration to the following system:

-2x1 + X2

XI - 2x2 + X3

X2 -2x3 +

= -1
o

X4= 0
X3 - 2x4= 0

Start with the approximation Xk = 0 for all k, rewriting the system with each equation solved for its
diagonal unknown, After making several iterations can you guess the correct solution vector? This
problem may be interpreted in terms of a random walker, who takes each step to left or right at random
along the line of Fig, 26-4, When he reaches an end he stops, Each Xk value represents his probability of
reaching the left end from position k, We may define Xo = 1 and Xs = 0, in which case each equation has

the form Xk-1 - 2xk + Xk+1 = 0, k = 1, . , . , 4,

I Io 1
i.. "i

step length

t
2

I
3

T
4

I
5

Fig.26.4

26.87. Does overrelaxation speed convergence toward the exact solution of Problem 26.86?

26.88. Apply the Gauss-Seidel method to the system

3 1
Xk =¡Xk-I + ¡Xk+1 k = 1, . . . , 19

Xo = 1 X20= 0

whieh may be interpreted as representing a random walker who moves to the left three tim es as often as
to the right, on a li ne with positions numbered 0 to 20,

26.89. The previous problem is a boundary value problem for a difference equation. Show that its exact
solution is Xk = 1 - (3k - 1)/(320 - 1). Compute these values for k = 0(1)20 and compare with the results
found by the iterative algorithm.

26.90. Apply overrelaxation to the same system. Experiment with values of w, Does underrelaxation (w.: 1)
look promising for this system?

26.91. Apply any of our methods to the following system:

Xl + X2 + X3 + X4 + Xs = 1
Xi + 2x2 + 3X3 + 4X4 + 5xs = 0

Xi +3X2 + 6X3 + lOx4 + 15xs = 0

Xi + 4X2 + lOX3 + 20X4 + 35xs = 0

Xi + 5x2 + 15x3 + 35x4 + 70xs = 0

26.92. Invert the coeffcient matrix of Problem 26.81 by the elimination algorithm of Problem 26.38.

26.93. Invert the same matrix by the exchange method,

26.94. Invert the coeffcient matrix of Problem 26,86 by any of our methods,
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26.95. Try to invert the Hilbert matrix of order four using three-digit arithmetic,

26.96. Try to invert Wilson's matrix. Invert the inverse, How elose do you come to the original?

(...10 7 8 7.J

7 5 6 5
8 6 10 9
7 5 9 10

26.97. Apply the inethod of Problem 26.43 to the måtrix of Problem 26.82, Does it appear to converge toward
the exact inverse?

1 (-58 -16 -192JA -1 = 6 48 15 153
16 4 54

26.98. Evaluate the determinant of the coeffcient matrix of Problem 26,81.

26.99. Evaluate the determinant of the coeffcient matrix of Problem 26.82,

26.100. What is the determinant of the Hilbert matrix of order four?

26.101. Apply the method of Problem 26.48 to find the eigenvalues and eigenvectors ofAx = ÀX where A is the
Hilbert matrix of order three. Use rational arithmetic and obtain the exact characteristic polynomial.

26.102. Referring to Problem 26,101, apply the same method to(2-À)X1- .X2 =0
-Xi + (2 - À)X2 - X3 = 0

-x2+(2-À)X3- X4 =0
-x3+(2-À)X4- xs=O

-X4 + (2- À)xs =0

26.103. Use the power method to find the dominant eigenvalue and eigenve~tor of the matrix

(2 -1 0 0J

A = -1 2 -1 0o -1 2-1
o 0 -1 2

26.i04. Use the power method to find the dominant eigenvalue and eigenvector of the Hilbert matrix of order
three,

26.i05. Apply Jacobi's method to the Hilbert matrix of order three,

26.106. Apply Jacobi's method to the matrix of Problem 26.103.

26.107. Apply Givens' method to the matrix of Problem 26,103,

26.108. Apply Givens' method to the Hilbert matrix of order four.
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26.109. Solve the system

Xl + iX2 = 1
-ixi + x2 + iX3 = 0

-ix2+ X3 = 0

by the method of Problem 26.77.

26.110. Apply the method of Problem 26,78 to invert the coeffcient matrix in Problem 26,109,

26.111. Apply Jacobi's method, as outlined in Problem 26,79, ,to find the eigenvalues anò vectors for the
coeffcient matrix of Problem 26,109.

(li -lJ
26.112. Apply the algorithm of Problem 26.80 to the matrix A = i 1 i,

-1 i 1

26.113. Assuming that a matrix A has an LU factorization, we have the formulas of Problem 26,14 for

determining the factor elements,

ur¡ = ar¡ -Iriui¡ -Ir2u2¡ - , , , -Ir,r-1Ur-1,¡ j ~ r

urrIlr = air -lnUlr -112U2r - , . , -Ii,r-1Ur-i,r i? r

Suppose these are computed from left to right, With primes denoting computed values, subject to
roundoff error, the calculation of u;¡ then begins like this, (See Problems 1.22 and 1.23,)

a,¡(l + E) -I;lu;¡(l + El2)

Each E represents a roundoff error, probably a different error at each appearance, and the superscript is
not apower but only a count of the number of different (1 + E) factors, This deviee wil shorten some
otherwise lengthy expressions, Continuing,

a,¡(l + E)(2) -I;¡u;¡(l + E)(3) -I;2u~¡(1 + E)(2)

until ultimately we obtain the computed u;¡:

u;¡ = ar¡(l + E)Cr-1) -I;iu;¡(l + E)(') - , , , -I;,r-1u;_1,¡1 + E)C)

Show that the corresponding expression for the computed IIr is as folIows:

u;rIIr(l + E) = aAl + E)('-I) -II1u;r(1 + Ef) - , , , -II.r-1U;-i,,1 + E)(2)

26.114. Define ~2 by

(1 + Ei)(l + E2) '; 1 + 2~2

1~21 = I ~ (Ei + E2 + Ei E2) I ~ U + ~ u2

with U the maximum roundoff error, Show similarly that with ~3 defined by (1 + E1)(1 + E2)(1 + E3) =
1 + 3~3 the bound U + u2 + lu3 exists, and that more generally we may write

and note that

(1 + E)(n) = 1 + n~n

with ~n bounded by ((1 + u)" - l)/n.

26.115. Combine the results of the preceding two problems to obtain (with ~ an appropriate ~k)

l;kU~¡ - ar¡ = ar¡(j - 1)~ -lnUi¡j~ - , , , -Ii¡uìì~ r? j

= a,¡(r - 1)~ -Iiiui¡r~ - . , , -Irrur¡~ r ~j
and note that this is equivalent in matrix form to

L'U'=A+F



402 LINEAR SYSTEMS (CHAP.26

with the elements of F as shown on the right-hand side above, This shows that the factorization L' V' is
exact for the perturbed matrix A + F.

26.116. Show that the elements of the matrix F of the preceding problem do not exceed in absolute value nA
times the combined terms of A and L' V', That is,

Ihjl ~ nA(la;jl + b;j)

where Abounds all the Ak involved and b;j is computed from the absolute elements of the ¡th row of L'
and the jth column of V/. Thisestimate of the effect of internal roundoffs depends strongly upon the b;j'
These may be computed after the factorization has been made, Here n is the order of the original matrix
A. In a way we may deduce that the overall error is a modest multiple of the maximum roundoff,
provided that n is not too large and the bij cooperative.

26.117. The formulas for forward- and back-substitution, derived in Problem 26,9

Yr = br -lr1 Y1 - , , , -lr-1,r-1Yr-1

U¡¡X¡ = Y¡ - Ui,i+iXi+l - . . . -UinXn

have the same form as those just analyzed for roundoff error propagation. Reasoning much as in the
preceding problem, one may obtain this equation for the computed y' .

(L' + G)y' =b

where Ig;¡1 ~ nA II:¡I, and then to (V' + H)x' = y/

for the computed solution itself. Here Ih;¡1 ~nA lu;Ji .

By combining these results with that of the preceding problem, show that

, (A + E)x' = b'

with E ablend of F, G, H, L, and V, Further deduce the estimate

lei¡1 ~ nA(la;¡1 + (3 + nA) Ib;¡IJ

with b;¡ as defined earlier.

26.118. Applyì:he algorithm of Problem 26,80 to the real but nonsymmetric matrix

(1 2 3J

A= 1 3 5
1 4 7

26.119. Solve the system
6,4375x1 + 2. 1849x2 - 3.7474x3 + 1. 8822x4 = 4.6351

2. 1356x1 +5.2101x2 + 1. 5220X3 - 1.234x4 = 5.2131,

-3.7362x1 + 1. 4998x2 + 7,6421x3 + 1. 2324x4 = 5,8665

1.8666x1 - 1. 1l04x2 + 1. 2460X3+ 8.3312x4 = 4,1322

26.tlO. Find all the eigenvalues of this system:

4x +2y + z =í\x

2x + 4y + 2z = í\y

x +2y +4z =í\z

26.121. Find all the eigenvalues and eigenvectors of this system:

(4 2 2J(X1) (Xl)
2 5 1 X2 = í\ X2

2 1 6 X3 X3



CHAP, 26) LINEAR SYSTEMS 403

26.122. Invert Pascal's matrix,

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15

1 4 10 20 35

1 5 15 35 70

26.123. Invert the following matrix:

1 1
1 - -

3 5

1 1 1- - -
3 5 7

1 1 1- - -
5 7 9

26.12. Invert the following matrix:

( 5+i 4+2iJ10 + 3i 8 + 6i

26.125. Find the largest eigenvalue of

L25

-41
10

-6

-41
68

-17
10

10

-17
5

-3

-6J
10

-3
2

to three places,

26.126. Find the largest eigenvalue of

( 8

5"

3 +12i

-5i 3 - 2iJ

3 0
o 2

and the corresponding eigenvector.

2(j27.Find th, two oxI"m, 'i",n..ln" 01 (1~

10 8J
5 -1
-1 3

26.12. Show that the characteristic polynomial for the matrix

(~ ~J

is À 2 - À - 1 and note the relationship with Fibonacci numbers as encountered in Problem 18.23 and
elsewhere. What is the characteristic polynomial for the more general "Fibonacci" matrix of order n?
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Find its eigenvalues by any of our methods,

1 1 1 " , 1 1

1 o 0 ,. , o 0

0 1 0 " , o 0
F. =1n 0

0 1 " , o 0

000",10
Given some initial vector x, what are the vectors F~x for p = 2, , , . ?

26.129. Apply the QR method to this Hessenberg matrix:

L2 1 ,5 'lJ

1 3 1 ,5
o 1 2 1
o 0 .5 1

26.130. Apply the QR method to this tripIe diagonal matrix:

L2'5 -2.0 0

-2,0 3.5 1.5
o 1.5 2.5
o 0 -1.0

~LJ'
1.

26.131. Rotating a square a quarter turn clockwise can be simulated by applying the permutation matrix R to the
vector (1,2,3, 4f, (See Fig, 26-5,) Reflection in the vertical (dashed) line can be simulated using the

matrix V. The eigenvalues of Rare easily found to be 1, i, - 1, -i, while those of V 
are 1,1, - 1, - 1.

Both matrices are of Hessenberg type, Wil the QR algorithm of Problem 26,73 be convergent in either
case?

1

· 4

2 1

2
,

1.
,
.
,
,
.-:
,
,
.

3
,

4,
.

2

1

0'

3 24 3 4 3

Lo 0 0 1J

R= 1 0 0 0
o 1 0 0
o 0 1 0 Lo 1 0 0J

1 0 0 0
V= 0 0 0 1

o 0 1 0

Fig.26.5



Chapter 27

Linear Programming

TUE BASIC PROBLEM
A linear programming problem requires that a linear function

H=cixi +'" +cnxn

be minimized (or maximized) subject to constraints of the form

a¡ixi + . . ,+ a¡nxn ~ b¡ 0 ~Xj

where i = 1, . , , , m and j =1, , , , , n, In vector form the problem may be written as

H(x) = cTx = minimum Ax~b, o~x
'An important theorem of linear programming states that the required minimum (or maximum)
occurs at an extreme feasible point, A point (xi'. , , , xn) is called feasible if its coordinates satisfy all
n + m constraints, and an extreme feasible point 1S one where at least n of the collstraints actually
become equalities, The introduction of slack variables Xn+l1 ' , , , Xn+m converts the constraints to the
form

a¡¡xi + a¡2x2 + ' , , + a¡nxn + xn+¡ = b¡

for i = 1, ' , , , m, ii allows an extreme feasible point to be identified as one at which n or more
variables (including slack variables) are zero, This is a great convenience, In special cases more than
one extreme feasible point may yield the required minimum, in which case other feasible points also
serve the purpose, A minimum point of H is called a solution point,

The simplex method is an algorithm for starting at some extreme feasible point and, by a
sequence of exchanges, proceeding systematieally to other such points until a solution point is found,
This is done in a way which steadily re duces the value of H, The exchange process involved is
essentially the same as that presented in the previous chapter for matrix inversion,

The duality theorem is a relationship between the solutions of the two problems

cTx = minimum Àx ~ b, 0 ~ x
yTb = maximum yTA~cT O~y

which are known as dual problems, and whieh involve the same a¡j, b¡, and Cj numbers, The
corresponding minimum and maximum values prove to be the same, and application of the simplex
method to either problem (presumably to the easier of the two) allows the solutions of both
problems to be extracted from the results, This is obviously a great convenience,

TWO RELATED PROBLEMS
1. Two-person games require that R choose a row and C choose a column of the following

"payoff" matrix:

(aii al2 '" aln J

~~I, . , ~~~ , . .' ,. ,', , ~~~

amI am2 '" amn

The element a¡j where the selected row and column cross, determines the amount which R
must then pay to C. Naturally C wishes to maximize his expected winnings while R wishes to

minimize his expected losses, These conflicting viewpoints lead' to dual linear programs

405



406 LINEAR PROGRAMMING (CHAP,27

which may be solved by the simplex method, The solutions are called optimal strategies for
the two players.

2, Overdetermined systems of. linear equations, in which there are more equations than
unknowns and . no vector x can satisfy the entire system, may be treated as linear
programming problems in whieh we seek the vector x which in some sense has minimum
error. The details appear in Chapter 28,

Solved Problems

TUE SIMPLEX METHOD
27.1. Find Xi and X2 satisfying the inequalities

O~Xl 0~X2 -Xl +2x2~2
and such that the function F = X2 - Xl is maximized,

Since only two variables are involved it is convenient to interpret the entire problem geometrically,
In an Xl' X2 plane the fivè inequalities constrain the point (xv X2) to fall within the shaded region of Fig,
27-1. In each case the equality sign corresponds to(xv X2) being on one of the five linear boundary
segments, Maximizing F subject to these constraints is equivalent to finding that line of slope 1 having
the largest Y intercept and stil intersecting the shaded region, It seems clear that the required line Li is
1 = X2 - Xl and the intersection point (0,1), Thus, for a maximum, Xl = 0, X2 = 1, F = 1.

Xl +X2~4 xi~3

L2

(0,0) 1 2 (3,0)
Xl

Fig.27-1

27.2. With the same inequality constraints as in Problem 27,1, find (Xl' X2) such that G = 2x 1 + X2 is
a maximum,

We now seek the line of slope -2 and having the largest Y intercept while stil intersecting the
shaded region, This line L2 is 7 = 2x1 + X2 and the required point has Xl = 3, X2 = 1. (See Fig, 27-1.)

27.3. Find Yl, Y2, Y3 satisfying the constraints

O~Yl 0~Y2 0~Y3
and minimizing H = 2yi + 4Y2 + 3Y3'

Interpreting the entire problem geometrically, we find that the five inequalities constrain the point
(Y1' Y2' Y3) to fall within the region pictured in Fig. 27-2, This region is unbounded in the positive Y1' Y2'
Y3 directions, but is otherwise bounded by portions of five planes, shown shaded, These planes

Yl - Y2 - Y3~ 1 -2Y1 - Y2~-1
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Y3

y.,

Fig.27.2

correspond to equality holding in our five constraints, Minirnzing H subject to these constraints is
equivalent to finding a plane with normal vector (2, 4, 3) having smallest intercepts and stil intersecting
the given region, It is easy to discover that this plane is 1 = 2Y1 + 4Y2 + 3Y3 and the intersection point is

(l,O,O),

27.4. List three principal features of linear programming problems and their solutions whieh are
ilustrated by the previous problems,

Let the problem be to find a point x with coordinates (xi, X2, , , . ,xn) subject to the constraints
O~X, Ax~b and minimizing a functionH(x)=cTX=I:C¡X¡, Callng a point which meets all the
constraints a feasible point (if any such exists), then:

1. The set of feasible points is convex, that is, the line segment joining two feasible points consists

entirely of feasible points, This is due to the fact that each constraint defines a half-space and the set
of feasible points is the intersection of these half-spaces,

2, There are certain extreme feasible points, the vertiees of the convex set, identified by the fact that at
least n of the constraints become equalities at these points, In the two-dimensional examples, exactly
n = 2 boundary segments meet at such vertices, In the three-dimensional example, exactly three
boundary planes meet at each such vertex, For n ~ 3 it is possible, however, that more planes (or
hyperplanes) come together at avertex,

3, The solution point is always an extreme feasiblé point, This is dueto the linearity of the function
H(x) being minirnzed, (It is possible that two extreme points are solutions, in which case the entire
edge joining them consists of solutions, etc,)

These three features of linear programming problems will not be proved here, They are also true if
H(x) is to be maximized, or if the constraints read Ax ~ b,

27.5. What is the general idea behind the simplex method for solving linear programs?

Since the solution occurs at an extreme feasible point, we may begin at some such point and
compute the value of H. We then exchange this extreme point for its mate at the other end of an edge,
in such a way that a smaller (in the case of a minimum problem) H value is obtained, Thé process of
exchange and edge-following continues untI1 H can no longer be decreased, This exchange algorithm is
known as the simplex method, The details are provided in the following problem,

27.6. Develop the simplex method,

Let the problem be

O~X Ax~b H(x) = cTx = minimum
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We first introduce slack variables Xn+1' , , , , Xn+m to make

aiiX¡ + aI2x2 + ' , , + a1nXn + Xn+I = bi

a21x¡ + a22x2 + ' , , + a2nXn + Xn+2 = b2

amiX1 + am2X2 + ' , , + amnXn + Xn+m = bm

Notice that these slack variables, like the other Xi, must be nonnegative, The use of slack variables
allows us to identify an extreme feasible point in another way, Since equality in Ax ~ b now corresponds
to a slack variable being zero, an extreme point becomes one where at least n of the variables
Xi, , , , , Xn+m are zero, Or said differently, at an extreme feasible point at most m of these variables are
nonzero, The matrix of coeffcients has become

(aii a12 '" a1n 1 0 '" 0J

a2I a22 ' " a2n 0 1 '" 0
.......................... .'.......................
amI am2 ,,' amn 0 0 '" 1

the last m columns corresponding to the slack variables, Let the columns of this matrix be called
Vi, V2, . , , , Vn+m' The linear system can then be written as

Xi vi + X2V2 + ' , , + Xn+mVn+m = b

Now suppose that we know an extreme feasible point, For simplicity we wil take. it that
Xm+1' . , , , Xm+n are all zero at this point so that Xi, , , , , x,; are the (at most m) nonzero variables, Then

Xivi +X2V2 +'" +XmVm = b (1)

and the corresponding H value is

H1 = Xl CI + X2C2 + ' , , + XmCm (2)

Assuming the vectors Vi, , , , , Vm linearly independent, all n + m vectors may be expressed in terms of.
this basis:

Also define

V¡ = V1jVI + ' , . + vm¡vm j = 1, , . , , n + m

h¡ = V1jC1 + ' , , + VmjCm - cj j = 1, ' , , , n + m

(3)

(4)

Now, suppose we try to reduce H1 by including a piece pxk, for k ;: m and P positive, To preserve the
constraint we multiply (3) for j = k by p, whieh is stil to be determined, and subtract from (1) to find

(Xi - PV1k)Vi + (X2 - PV2k)V2 + ' , , + (xm - PVmk)Vm + PVk = b

Similarly from (2) and (4) the new value of H wil be

(xi - PV1k)C1 + (X2 - PV2k)C2 + ' , , + (Xm - PVmk)Cm + PCk = H1 - phk

The change wil-be profitable only if hk ;: 0, In this case it is optimal to make P as large as possible
without a coeffcient Xi - PVik becoming negative, This suggests the choiee

, Xi Xlp=min-=-
i Vik Vlk

the minimum being taken over terms with positive Vik only, With this choice of P the coeffcient of Ci
becomes zero, the others are nonnegative, and we have a new extreme feasible point with H value

H~ =H1-phk

which is definitely smaller than Hi' We also have a new basis, having exchanged the basis vector Vi for
the new Vk' The process is now repeated until all h¡ are negative, or until for some positive hk no Vik is
positive, In the former case the present extreme point is as good as any adjacent extreme point, and it
can further be shown that it is as good as any other adjacent or not, In the latter case P may be
arbitrarily large and there is no minimum for H.
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Before another exchange can be made all vectors must be represented in terms of the new basis,
Such exchanges have already been made in our section on matrix inversion but the details will be
repeated. The vector Vi is to be replaced by the vector Vk' From

Vk = VlkVi + ' , , + VmkVm

we solve for Vi and substitute into (3) to obtain the new representation

Vj = V;jV1 +, , ,+ V!-lßi-i + V~jVk + V!+lßI+1 +, . ,+ V;"jVm

where

1 Vlj

Ulj -c_ Vlk, Vlk
Vij=

Vii

Vlk

for i *l

for i = L

Also, substituting for Vi in (1) brings

X;V1 + ' , , + X!-lVI-1 + X~Vk + X!+lVI+1 + ' , , + x;"vm = b

where

LXi

Xi--Vlk, Vlk
Xi =

Xl

Vlk

for i *l

for i = L

Furthermore, a short calculation proves

h" " h vUh.=V1.C1+"'+V.c -c.= .--- kJ J mJ m J J Vlk

and we already have H' H" Xlh1= 1-- k
Vlk

This entire set of equations may be summarized compactly by displaying the various ingredients as
follows:

Xl Vii V12 " , Vi,n+m

X2 V2I V22 " , Vi,n+m

...................... .
Xm Vm1 Vm2 " , Vm,n+m

H1 hi h2 " . hn+m

Callng Vlk the pivot, all entries inthe pivot row are divided by the pivot, the pivot column becomes zero
except for a 1 in the pivot position, and all other entries are subjected to what was formerly called the
rectangle rule. This wil now be ilustrated in a variety of examples,

27.7. Solve Problem 27,1 by the simplex method,

After jntroducing slack variables, the constraints are

-Xi +2x2+X3
Xl + X2 +X4

=2
=4

Xi +xs=3
with all five vanables required to be nonnegative, Instead of maximizing X2 - Xl we wil minimize
Xl - X2' Such a switch between minimum and maximum problems is always available to us, Since the
origin is an extreme feasible point, we may choose X i = X2 = 0, X3 = 2, X4 = 4, Xs = 3 to start, This is very
convenient since it amounts to choosing V3, V4, and Vs as our first basis whieh makes all vlj = aij, The
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starting display is therefore the following:

Basis I b Vi V2 V3 V4 Vs

V3

I

2 -1 (6 1 0 0

V4 4 1 1 0 1 0

Vs 3 1 0 0 0 1

0 -1 1 0 0 0

Comparing with the format in Problem 27.6, one finds the six vectors b arid VI' , , , , Vs forming the
top three rows, and the numbers H, h1, ' , , , hs in the bottom row, Only h2 is positive, This determines
the pivot column, In this column there are two positive Vi2 numbers, but 2/2 is less than 4/land so the
pivot is V12 = 2, This number has been circled, The formulas of the previous problem now apply to
produce a new display, The top row is simply divided by 2, and all other entries are subjected to the
rectangle rule:

Basis I b VI V2 V3 V4 Vs

1
1 1

0 0V2 I 1 -
2 2

3
3

0
1

1 0V4 I
- --
2 2

Vs
I

3 1 0 0 0 1

1 1
0-1 -- 0 -- 0

2 2

The basis vector V3 has been exchanged for V2 and all vectors are now represented in terms of this
new basis, But more important for this example, no h¡ is now positive so the algorithm stops, The
minimum of Xl - X2 is -1 (making the maximum OfX2 - Xi equal to 1 as . before) , This minimum is
achieved for X2 == 1, X4 = 3, Xs = 3 as the first column shows, The constraints then make Xi = 0, X3 = 0
which we anticipate since the x¡ not corresponding to basis vectors should always be zero, The results
Xi = 0, X2 = 1 correspond to our earlier geometrical conclusions, Notice that the simplex algorithm has
taken us from the extreme point (0,0) of the set of feasible points to the extreme point (0,1) whieh
proves to be the solution point, (See Fig, 27-1.)

27.8. Solve Problem 27,2 by the simplex method,

Slack variables and constraints are the same as in the previous problem, We shàll minimize
H = - 2x1 - X2' The origin being an extreme point, we may start with this display:

Basis I b Vi V2 V3 V4 Vs

V3 2 -1 2 1 0 0

V4 4 1 1 0 1 0

Vs 3 CD 0 0 0 1

0 2 1 0 0 0

Both h1 and h2 are positive, so we have a choiee, Selecting h1 = 2 makes VI3 the pivot, since 3/1 is
less than 4/1. This pivot has been circled: Exchanging Vs for Vi we have a new basis, a new extreme
point, and a new display.

V3 5

1

3

-6

o

o

1

o

2

CD

o

1

1

o

o

Õ

o

1

o

o

1

-1
1

-2

V4

Vi
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Now we have no choiees, Thenew pivot has been circ1edand means that we exchange V4 for V2 with
the f?llowing result:

v, I 3 0 0 1 -2 3
V2 1 0 1 0 1 -1
VI 3 1 0 0 0 1

-7 0 0 0 -1 -1
Now no h¡ is positive, so we stap. The minimum is -7, which agrees with the maximum of 7 for

2x1 + X2 found in Problem 27,2, The solution point is at Xl = 3, X2 = 1 which also agrees with the result
found in Problem 27,2, The simplex .method has led us from (0,0) to (3,0) to (3,1), The other choice

available to us at the first exchange would have led us around the feasible set in the other direction,

27.9. Solve Problem 27,3 by the simplex method,

With slack variables the cbnstraints become

Y1 - Y2 - Y3 + Y4 = 1
-2Y1 - Y2 + Ys = - 1

all five variables being required to be positive or zero, This time, however, the origin (Yi = Y2 = Y3 = 0) is

not a feasible point, as Fig, 27-2 shows ahd as the enforced negative valùe Ys = - 1 corroborates, We
cannot therefore follow the starting procedure of the previous two examples based on a display such as
this:

Basis b Vi V2 V3 V4 Vs

V4 1

-1
1

-2
-1
-1

-1
o

1

o

o

1Vs

The negative value Ys = - 1 in the b column cannot be allowed. Essentially our problem is that we do

not have an extreme feasible point to start from, A standard procedure for finding such a point, even for
a much larger problem than this, is to introduce an artifcial basis, Here it wil be enough to alter the
second constraint, whieh contains the negative b component, to

- 2yi - Y2 + Ys - Y6 = - 1

One new coluInn may now be attached to our earlier display,

Basis I b Vi V2 V3 V4 Vs V6

V4

I

1 1 -1 -1 1 0 0

Vs -1 -2 -1 0 0 1 -1

But an extreme feasible point now corresponds to Y4 = Y6 = 1, all other Y¡ being zero, This makes it
natural to exchange Vs for V6 in the basis, Only a few sign changes across the Vb row are require~,

Basis I b Vi V2 V3 V4 Vs V6

V4

I

1 1 -1 -1 1 0 0

V6 1 (6 1 0 0 -i 1

W 2W-2 W-4 -3 0 -W 0

The last row of this starting display wil now be explained,
Introducing the artificial basis has altered our origirial problem, unless we can be sure that Y6 wil

eventually turn out to be zero. Fortunately this can be arranged, by changing the function to be
minimized from H = 2Y1 + 4Y2 + 3Y3 as it was in Problem 27,2 to

H* = 2Y1 + 4Y2 + 3Y3 + WY6
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where W is such a large positive number that for a minimum we wil surely have to make Y6 equal to
zero. With these alterations we have a starting H value of W, The numbers hj mayaIso be cpmputed and
the last row of the starting display is as shown,

We now proceed in normal simplex style. Since W is large and positive we have a choice of two
positive hj values, Choosing h1 leads to the circ1ed pivot. Exchanging V6 for VI brings a new display from
which the last column has been dropped since V6 is of no further int~rest:

1
0

3 -1 1
1

V4 I - -- -
2 2 2

1 1
0 0

1
VI I - 1 - --

2 2 2

1 0 -3 -3 0 -1

Since no h, is positive we are already at the end. The minimum is 1, which agrees with our geometrical
conc1usion of Problem 27.3, Moreover, from the first column we find Yi = t Y4 = ~ with all other Yj equal
to zero. This yields the minimum point (!, 0, 0) also found in Problem 27,3.

27.10. Minimize the function H = 2Yi + 4Y2 + 3Y3 subject to the constraints Yi - Y2 - Y3 ~ - 2,
- 2Yi - Y2 ~ -1, all Yj being positive or zero,

Slack variables and an artificial basis convert the constraints to

Yi - Y2 - Y3 + Y4

-2yl - Y2 + Ys
- Y6 =-2

- Y7=-1

and much as in the preceding problem we soon have this starting display:

Basis I b VI V2 V3 V4 Vs V6 V7

V6

I

2 -1 1 1 -1 o . 1 0

V7 1 2 CD 0 0 -1 0 1

3W W-2 2W-4 W-3 -W -W 0 0

The function to be minimized is

H* = 2Y1 + 4Y2 + 3Y3 + WY6 + WY7

and this determines the last row, There are various choices for pivot and we choose the one circ1ed. This

leads to a new display by exchanging V7 for V2 and dropping the V7 column,

V6

I

1 -3 0 CD -1 1 1

V2 1 2 1 0 0 -1 0

W+4 -3W+6 0 W-3 -W W-4 0

A new pivot has been circ1ed and the final display follows:

V3

I

1 -3 0 1 -1 1

V2 1 2 1 0 0 -1
7 -3 0 0 -3 -1

The minimum of H* and His 7;and it occurs at (0,1,1).
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THE DUALITY THEOREM
27.11. What is the duality theorem of linear programming?

Consider these two linear programming problems:

Problem A
cTx = minimum

x~O
Ax~b

Problem B

Y Tb = maximum

Y~O
yTA ;;cT

They are called dual problems because of the many relationships between them, such as the following:

1. If either problem has a solution then the other does also and the minimum of cTxequals the
maximum of y Tb,

2, For either problem the solution vector is found in the usual way, The solution vector of the dual
problem may then be obtained by taking the slack variables in order, assigning those in the final basis
the value zero, and giving each of the others the corresponding value of -h¡,

These results wil not be proved here but wil be ilustrated using our earlier examples, The duality

makes it possible to obtain the solution of bóth Problems A and B by solving either one,

27.12. Show that Problems 27,1 and 27,3 are dual problems and verify the two relationships claimed
in Problem 27.11.

A few minor alterations are involved, To match Problems 27,1 and A we minimize Xl - X2 instead
of maximizing X2 - Xi' The vector cT is then (1, - 1). The constraints are rewritten as

Xl - 2x2~-2 -Xi -x2~-4 -x1~-3

which makes ( J (-1 -2 -2
A = - 1 - 1 b = -4J
-1 0 -3

For Problem B we then have

yTA=(YI-Y2-Y3);;( 1)
-2yl - Y2 -1

which are the constraints of Problem 27,3. The condition yTb = maximum is also equivalent to

yT( -b) = 2yi + 4Y2 + 3Y3 = minimum

so that Problems 27.3 and B have also been matched. The extreme values for both problems proved to be
1, which verifies relationship 1 of Problem 27,11. From the final simplex display in Problem 27,7 we
obtain xT = (0,1) and yT = 0,0,0) while from the computations of Problem 27.9 we find yT = (!, 0, 0)
and xT = (0, 1), verifying relationship 2.

27.13. Verify that Problems 27.2 and 27.10 are duals,

The matrix A and vector bare the same as in Problem 27.12, However, we now have
cT = (-2, -1). This matches Problem 27.2 with Problem A and Problem 27,10 with Problem B. The

final display of Problem 27.8 yields xT = (3,1) and yT = (0,1,1) and the same results come from
Problem 27.10. The common minimum of cTx and maximum of yTb is -7,
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SOLUTION OF TWO.PERSON GAMES
27.14. Show how a two-person game may be made equivalent to a linear pi¡ograrr,

Let the payoff matrix, consisting of positive numbers aíj, be

(aii a12 a13J

A = a21 a22 a23

a31 a32 a33

by which we mean that when player R has chosen row i of this matrix and player C has (independently)
chosen column j, a payoff of amount aíj is then made from R to C. This constitutes one play of the game,
The problem is to determine the best strategy for each player in the selection of rows or columns. To be
more specific, let C choose the three columns with probabilitiesp1' P2, P3' respectively, Then

Pi, P2, P3 s;0 and Pi +P2+P3= 1

Depending on R's choiee of row, C now has one of the following three quantities for his expected
winnings:

p¡ = aiiPi +aI2P2 + a13P3

P2 = a21P1 + a22P2 + a23P3

P3 = a31P1 + a32P2 + a33P3

Let P be the least of these three numbers, Then, no matter how R plays, C wil have expected winnings
of at least P on each play and therefore asks hirnself how this amount P can be maximized, Since all the
numbers involved are positive, so is P; and we obtain an equivalent problem by letting

PiXl = P P2X2= P P3X3= P

and minimizing
1

F=X1 +X2+X3=p

The various constraints may be expressed as Xl' X2' X3 s; 0 and

aiix1 + a12x2 + ai3x3 s; 1

a2¡x¡ + a22X2 + a23x3 s; 1

a3¡x1 + a32x2 + a33x3 s; 1

This is the type A problem of our duality theorem with cT = bT = (1, 1, 1),
Now look at things from R's point of view, Suppose he chooses the three rows with probabilites a1,

Q2' a3, respectively, Depending on C's choiee of column he has one of the following quantities as his'
expected loss:

a1aii + a2a21 + a3a31;§ Q

a1a12 + a2a22 + a3a32;§ Q

a1a13 + a2a23 + a3a33;§ Q

where Q is the largest of the three, Then, no matter how C plays, R wil have expected loss of no more
than Q on eachplay. Accordingly he asks how this amount Q can be minimized, Since Q ;: 0, we let

Q1
Y1 = Q

a2
Y2= Q

a3
Y3= Q

and consider the equivalent problem of maximizing

1
G == Y1 + Y2 + Y3 = Q
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The constraints are Y1, Y2' Y3 ~ 0 and

Yiaii + Y2a21 + Y3a31 ~ 1

Yi aI2 + Y2a22 + Y3a32 ~ 1

Y1 aB + Y2a23 + Y3a33 ~ 1

This is the type B problem of our duality theorem with cT = bT = (1, 1, 1). We have discovered that R's
problem and C's problem are duals, This means that the maximum P and minimum Q values wil be the
same, so that both players wil agree on the average payment which is optimaL. It also means that the
optimal strategies for both players may be found by solving just one of the dual programs, We choose
R's problem since it avoids the introduction of an artificial basis,

The same arguments apply for payoff matrices of òther sizes, Moreover, the requirement that all az¡
be positive can easily be removed since, if all az¡ are replaced by az¡ + a, then P and Q are replaced by
P + a and Q + a. Thus only the value of the game is changed, not the optimal strategies, Examples will
now be offered,

27.15. Find optimal strategies for both players and the optimal payoff for the game with matrix

(0 1 2J

A = 1 0 1
1 2 0

Instead we minimize the function -G = -Yi - Y2 - Y3 subject to the constraints

Y2 + Y3 + Y4 = 1

Y1 +2Y3 +Ys = 1

2Y1 + Y2 + Y6= 1

all Y¡ including the slack variables Y4' Ys, Y6 being nonnegative. Since the origin is an extreme feasible
point, we have this starting display:

Basis I b VI V2 V3 V4 Vs V6

V4 1 0 1 1 1 0 0

Vs 1 1 0 2 0 1 0

V6 1 ø 1 0 0 0 1

0 1 1 1 0 0 0

Using the indieated pivotswe make three exchanges as folIows:

V4 I 1 0 1 1 1 0 0

1
0

1 ø 0
1Vs I - -- I --

2 2 2

1 1
0 0

1Vi I - 1 - 0 -
2 2 2

1
0

1
1 0 0

1-- - --
2 2 2

3
0

5
0

1 1V4 I - -
1 -- -

4 4 2 4
1

0
1

0
1 1V3 I - -- I - --

4 4 2 4
1 1 1VI I - 1 - 0 0 0 -
2 2 2

3 3
0

1 1-- 0 - 0 -- --
4 4 2 4
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3
V2 I -

5

2
V3 I -

5
1

VI I
5

1 236
0 0 0

5 5 5
--

5

From the final display we deduce that theoptimal payoff, or value of the game, is ì. the optimal strategy
for R can be found directly by normalizing the solution Y1 = l, Y2 = t Y3 = ~, The probabilities q1, Q2' Q3

. must be proportional to these Y¡ but must sum to 1. Accordingly,

1
Q1=Ó

3
Q2=Ó

2
Q3=Ó

To obtain the optimal strategy for C we note that there are no slack variables in the final basis so that
putting the -h¡ in place of the (nonbasis) slack variables,

3 1 2
x1=S x2=S x3=S

3 1 2
Normalizing brings P1=Ó P2=Ó P3=Ó

If either player uses the optimal strategy for mixing his choiees the average payoff wil be ì. To make the
game fair, all payoffs could be reduced by this amount, or C could be asked to pay this amount before
each play is made.

, 27.16. Find the optimal strategy for each player and the optimal payoff for the game with matrix

(0 3 4J

A = 1 2 1
4 3 °

Notice that the center element is both the maximum in its row and the minimum in its column, It is
also the smallest row maximum and the largest column .minimum, Such a saddle point identifies agame
with pure strategies, The simplex method leads directly to this result using the saddle point as pivot, The
starting display is as folIows:

Basis

V4

Vs

V6

b VI V2 V3 V4 Vs V6

1 0 1 4 1 0 0

1 3 (6 3 0 1 0

1 4 1 0 0 0 1

0 1 1 1 0 0 0

One exchange is suffcient:

1
V4 I -

2

1
V2 I -

2

1
V6 I -

2-
1

2

1

2
o

1

2
o

1

2
o
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The optimal payoff is the negative reciprocal of -l, that is, the pivot element 2, The optimal strategy for
R is found directly, Since Yi = 0, Y2 = t Y3 = 0, we normalize to obtain the pure strategy

al=O a2 = 1 a3=0
Only the second row should ever be used, The strategy for Cis found through the slack variables, Since
V4 and V6 are in the final basis we have XI =X3 = 0, and finally X2"7 -hs = l, Normalizing, we have
another pure strategy

P1=0 P2= 1 P3=0

Supplementary Problems

27.17. Make a diagram showing all points which satisfy the following constraints simultaneously:

O~Xi 0~X2 XI +2x2~4 -x1+X2~1 XI +X2~3

27.18. What are the five extreme feasible points for the previous problem? At which extreme point does
F = X i - 2x2 take Its minimum value and what is that minimum? At which extreme point does this
function take its maximum value?

27.19. Find the minimum of F = Xl - 2x2 subject to the constraints of Problem 27,17 by applying the simplex
method, Do you obtain the same value and the same extreme feasible point as by the geometrical
method?

27.20. What is the dual of Problem 27.19? Show by using the final simplex display obtained in that problem
that the solution of the dual is the vector Yi = l, Y2 = t Y3 = 0,

27.21. Find the maximum of F = Xl - 2x2 subject to the constraints of Problem 27,17 by applying the simplex
method, (Minimize - F.) Do you obtain the same results as by the geometrical method?

27.22. Wh at is the dual of Problem 27.21? Find Its solution from the final simplex display of that problem,

27.23. Solve the dual of Problem 27,19 directly by the simplex method, using one extra variable for an artificial
basis. The constraints should then read

-Yi + Y2 - Y3 + Y4 = 1
- 2yi - Y2 - Y3 + Ys - Y6 = -2

with Y4 and Ys the slack variables, The function H= 4yi + Y2 + 3Y3 is to be minimized. From the final

display recover both the solution of the dual andof Problem 27.19 itself.

27.24. Minimize F = 2x i + X2 subject to the constraints

3xi +x2~3 4xi +3X2~6 Xi+2x2~2
all xj being nonnegative, (The solution finds Xi = t X2 = n

27.25. Show geometrically that for a minimum of F = X i - X2 subject to the constraints of Problem 27.17 there
wil be infinitely many solution points. Where are they? Show that the simplex method produces one
extreme solution point directly and that it also produces another if a final exchange of V3 and VI is made
even though the corresponding hj value is zero. The set of solution points is the segment joining these
extreme points.
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27.26. Minimize F = X i + X4 subject to the constraints

2x1 + 2x2 + x3~7
2xI + x2+2x3~4

X2 +X4~ 1
X2 +X3 +X4= 3

all xi being nonnegative, (The minimum is zero andit occurs for more than one feasible point,)

27.27. Find optimal strategies and payoff for the game

A = (l ~J

using the simplex method, (The payoff is 2.5, the strategy for R being (l, D and that for C being (l, Ü,)

27.28. Solve the game with matrix

( 0 3 -4J
A = 3 0 5

-4 5 0

showing the optimal payoff to be ~, the optÍmal strategy for R to be (f4, t -h, and that for C to be the

same,

27.29. Solve the following gameby the simplex method:

L 0 0 1 1J

A = 1 1 -2 -21 -2 1-2
-2 3 -2 3

27.30. Find the min-max cubic polynomial for the following function, What is the min"'max error and where is
it attained?

~ 10

2

122

o

1

,5

3

1

7

1.

5

-1

4

-,5-2

5

-1.

27.31. Find the min-max quadratic polynomial for

y(x)
1

1 + (4,1163x)2
x = 0(.01)1

as well as the min-max error and the arguments at which it is attained,

27.32. What is the result of seeking a cubic approximation to the function of the preceding problem? How can
this be forecast from the results of that problem?

27.33. Maximize Xl - X2 + 2x3 subject to

Xl +X2+3x3+ X4~5
XI + X3 - 4X4~2

and all Xk ~ 0,

27.34. Solve the dual of the preceding problem,
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27.35. Maximize 2x¡ + X2 subject to

Xi-X2~2 XI +x2~6 Xi +2x2~A
and all Xk ~ 0, Treat the cases A = 0, 3, 6, 9, 12,

27.36. Use linear programming to find optimum strategies for both players in the following game:

(-6 4)4 -2

27.37. Solve as a linear program the game with payoff matrix

(~ ~J.



Chapter 28

Overdetermined Systems

NATURE OF THE PROBLEM

An overdetermined system of linear equations takes the form

Ax=b

the matrix A having more rows than columns, Ordinarily no solution vector x wil exist, so that the
equation as written is meaningless, The system is also called inconsistent, Overdetermined systems
arise in experimental or computational work whenever more results are generated than would be
required if precision were attainable, In asense, a mass of inexact, cont1ieting information be comes a
substitute for a few perfect results and one hopes that good approximations to the exact results can
somehow be squeezed from the cont1ict,

TWO METHODS OF APPROACH
The two principal methods involve the residual vector

R =Ax-b

Since R cannot ordinarily be reduced to the zero vector, an effort is made to choose x in such a way
that r is minimized in some sense,

1, The least-squares solution of an overdetermined system is the vector x which makes the sum

of the squares of the components of the residual vectora minimum, In vector language we
want

RTR = minimum

For m equations and n unknowns, with m? n, the type of argument used in Chapter 21
leads to the normal equations

(ai, ai)xi +,.. + (ai, an)Xn = (ai, b)

(an, al)Xi + ' , , + (an, an)Xn = (an, b)

which determine the components of X, Here

(ai' aJ = alialj + ' . , + amiamj

is the scalar product of two column vectùrs of A,
2, The Chebyshev or mi-max solution is the vector x for whieh the absolutely largest

component of the residual vector is aminimum, That is, we try to minimize

r = max (Irii, , , , ,Irrni)

where the ri are the components of R, For m = 3, n = 2 this translates into the set of
constraints

aiixi + al2x2 - bi ~ r

a2lxi + a22x2 - b2 ~ r

a3lx¡ + a32x2 - b3 ~ r

- aliXi - al2xi + b¡ ~ r

- a2lx¡ - a22x2 + b2 ~ r

- a3¡x¡ - a32x2 + b3 ~ r

with r to be minimized, This now transforms easily into a linear programming problem,
Similar linear programs solve the case of arbitrary m and n,

420
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Solved Problems

LEAST-SQUARES SOLUTION

28.1. Derive the normal equations for finding the least-squares solution of an overdetermined
system of linear equations,

Let the given system be

allx1 + a12x2 = bi

a21xi + a22X2 = b2

a3IX1 + a32X2 = b3

This involves only the two unknowns XI and X2 and is only slightly overdetermined, but the details for
larger systems are almost identical. Ordinarily we wil not be able to satisfy all three of our equations,
The problem as it stands probably has no solution. Accordingly we rewrite it as

allxi + a12X2 - b1 = r1

a21x¡ + a22x2 - b2 = r2

a31X1 + a32X2 - b3 = r3

the numbers ri, r2, r3 being called residuals, and look for the numbers Xl' X2 which make ri + r~ + d
minimaL. Since

2 2 2 (2 '2 2) 2 + ( 2 2 2) 2 2( )
ri + r2 + r3 = aii + a21 + a3i X¡ aI2 + a22 + a32 X2 + allaI2 + a21a22 + a31a32 X1X2

- 2(aiibl + a2ib2 + a31b3)X1 - 2(al2bi + a22b2 + a32b3)X2 + (bi + b~ + bD

. the result of setting derivatives relative to Xl and X2 equal to zero is the pair of normal equations

(ai, ai)Xi + (ai, a2)X2 = (ai, b)

(a2, a¡)xi + (a2' a2)X2 = (a2, b)

in whieh the parentheses denote

(ai, a¡) = aii + a~i + a~i (ai, a2) = aiial2 + a2ia22 + a31a32

and so on, These are the scalar products of the various columns of coeffcients in the original system, so
that the normal equations may be written directly. For the general problem of m equations in n
unknowns (m? n),

a¡ix¡ +, , ,+ a1nXn = bi

a2¡XI +, , . + a2nXn = b2

amiX1 +, . ,+ amnXn = bm

an alm ost identical argument leads to the normal equations

(ai, a¡)xi + (a¡, a2)x2 +" ,+ (a¡, an)xn = (ai, b)

(a2, a¡)x 1+ (a2' a2)X2 + ' . , + (a2' an)Xn = (a2, b)

(an, ai)x¡ + (an, a2)X2 +" ,+ (an, an)Xn = (an, b)

This is a symmetric, positive definite system of equations.
It is also worth noticing that the present problem again fits the model of our general least-squares

approach in Problems 21.7 and 21.8, The results just obtained follow at once,as a special case, with the
vector space E consisting of m-dimensional vectors such as, for instance, the column vectors of the
matrix A wh ich we denote by ai, a2, . . , , an and the column of numbers b¡ which we denote by b. The
subspace S is the range of the matrix A, that is, the set of vectors Ax. We are looking for a vector p in S
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whieh minimizes

IIp - b 112 = IIAx - b 112 = 2: ,¡

and this vector is the orthogonal projection of b onto S, determined by (p - b, Uk) = 0, where the Uk are

some basis for S, Choosing for this basis Uk = ab k = 1, , . , , n, we have the usual representation
p = X1a1 + . , , + xnan (the notation being somewhat altered from that of our general model) and
substitution leads to the normal equations.

28.2. Find the least-squares solution of this system:

xi-xz=2
xi+xz=4

2xi+xz=8

Forming the required scalar products, we have

6X1 +2x2=22 2xi +3X2= 10

for the normal equations, This makes Xl =?; and X2 =~, The residuals corresponding to this Xl and X2 are
'1 = t '2 = t and '3 = -~, and the sum of their squares is ~, The root-mean-square error is therefore

p = ýf, This is smaller than for any other choice of Xl and X2, . '.

28.3. Suppose three more equations are added to the already overdetermined system of Problem

28,2:
Xi + 2xz = 4

2xi-xz=5
Xi - 2xz =2

Find the least-squares solution of the set of six equations,

Again forming scalar products we obtain 12xi = 38, 12x2 = 9 for the normal equations, making
Xl = 11, X2 = l, The six residuals are 5, - 1, - 11, 8, 7, arid - 4, all divided by 12, The RMS error is

p=~,

28.4. In the case of a large system, how may the set of normal equations be solved?

Since the set of normal equations is symmetric and positive definite, several methods perform very
weIl, The Gauss elimination method may be applied, and if its pivots are chosen by descending the main
diagonal then the problem remains symmetric to the end, Almost half the computation can therefore be
saved,

CHEBYSHEV SOLUTION

28.5. Show how the Chebyshev solution of an overdetermined system of linear equations may be
found by the method of linear programming,

Once again we treat the small system of Problem 28,1, the details for larger systems being almost
identical. Let, be the maximum of the absolute values of the residuals, so that 1'11 ~" 1'21 ~" 1'31 ~,.
This means that 'i ~, and -'1 ~', with similar requirements on '2 and '3' Recallng the definitions of the

residuals we now have six inequalities:

aiiX1 + a12X2 - b1 ~,

a21X1 + a22X2 - b2 ~ ,

a31xi + a32x2 - b3~'

- aiiXi - a12x2 + b1 ~,

- a21x1 - a22X2 + b2 ~,

- a31X1 - a32X2 + b3 ~,
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If we also suppose that Xl and X2 must be nonnegative, and recall that the Chebyshev solution is defined
to be that choIce of XI. X2 whieh makes r minimal, then it is evident that we have a linear programming
problem, It is convenient to modify it slightly, Dividing through by rand lettingx¡lr = YI. x2/r = Y2,
l/r = Y3, the constraints become

aiiYi + a12Y2 - bIY3 ~ 1

a21Y1 + a22Y2 - b2Y3 ~ 1

a31Y1 + a32Y2 - b3Y3 ~ 1

- aiiYi - a12Y2 + bIY3 ~ 1

- a21Y1 - a22Y2 + b2Y3 ~ 1

- a31Y1 - a32Y2 + b3Y3 ~ 1

and we must maximize Y3 or, what is the same thing, make F = - Y3 = minimum, This linear program
can be formed directly from the original overdetermined system, The generalization for larger systems is
almost obvious. The condition that the xj be positive is often met in practice, these numbers representing
lengths or other physical measurements, If it is not met, then a translation Zj = xj + C may be made, or a
modification of the linear programming algorithm may be used,

28.6. Apply the linear programming method to find the Chebyshev solution of the system of
Problem 28,2,

Adding one slack variable to each constraint, we have

Y1 - Y2': 2Y3 + Y.. = 1
Y1 + Y2 - 4Y3 + Ys = 1
2Y1 + Y2 - 8Y3 + Y6 = 1
-Y1+Y2+2Y3 +Y7 =1
-Y1-Y2+4Y3 +YB =1

- 2Y1 - Y2 + 8Y3 + Y9 = 1
with F = - Y3 to be minimized and all Yj to be nonnegative, The starting display and three exchanges
following the simplex algorithm are shown in Fig, 28-1. The six columns corresponding to the slack

Basis I b Vi Vz V3 Basis b Vi V2 V3

V4 1 1 -1 -2 5

CD
5

'0V4 4 -4
Vs 1 1 1 -4 3 o , 1 0V5 2 2
v6 1 2 1 -8 V6 2 0 0 0
V7 1 -1 1 2 V7

3 1 5 04 -2 4
VB 1 -1 -1 4 i 0 I 0VB 2 -2
v9 1 -2 -1 CI i 1 1

1V3 8 -4 -8

0 0 0 1 i I I 0-8 4 8

Basis I b Vi V2 V3 Basis b Vi V2 V3

Vi 5
1

5 0 Vi 10 1 0 02 -2
V5

3 0 CD 0 V2 3 0 1 02

v6 2 0 0 0 V6 2 0 0 0
V7 2 0 0 0 V7 2 0 0 0
VB

1 0 I 0 VB 2 0 0 02 -2
V3

3 0 3
1 V3 3 0 0 14 -4

3 0 3 0 -3 0 0 0-4 4

Fig.28.1
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variables are omitted since they actually contain no vital information, From the final display we find
YI = 10 and Y2 = Y3 = 3. This makes r = 1/Y3 = l and then XI =~, X2 = 1. The three residuals are l, l, - l

so that the familiar Chebyshev feature of equal error sizes is again present,

28.7. Apply the linear programming method to find the Chebyshev solution of the overdetermined
system of Problem 28,3,

The six additional constraints bring six more slack variables, YlO, , . . ,Y15' The details are very much
asin Problem 28,6. Once again the columns for slack variables are omitted from Fig, 28-2, which
summarizes three exchanges of the simplex algorithm. After the last exchange we find Yi = lf, Y2 = 1,
Y3 = 1. So r = ~ and Xi = lf, X2 =~. The six residuals are 2, 0, -3, 3, 3, and -1, all divided by 4, Once

again three residuals equal the min-max residual r, the others now being smaller, In the general
problem n + 1 equal residuals, the others being smaller, identify the Chebyshev solution, n being. the
number of unknowns.

Basis I b VI V2 V3 Basis I b VI V2 V3

V4 1 1 -1 -2 V4
5 1 5 04 i -4

v5 1 1 1 -4 V5
3 0 1 0i i

V6 1 2 1 -8 V6 2 0 0 0

V7 1 -1 1 2 V7
3 1 5 04 -i 4

vg 1 -1 -1 4 Vg
1 0 1 0i -i

V9 1 -2 -1 @ V3
1 I 1

18 -4 -8
Vio 1 1 2 -4 VlO

3 0 3 0i i
Vii 1 2 -1 -5 Vii 13

CD
13 08 -8

V12 1 1 -2 -2 V12
5 I 9 04 i -4

v13 1 -1 -2 4 V13
1 0 3 0i - i

V14 1 -2 1 5 V14
3 3 13 08 -4 8

V15 1 -1 2 2 V15
3 1 9 04 -i 4

0 0 0 1
1 1 I 0-8 4 8

Basis I b VI V2 V3 Basis b VI V2 V3

V4
I 0 1 0 I 0 0 06 -6 V4 3

V5
3 0 1 0 1 0 0 0i i V5

V6 2 0 0 0 V6 2 0 0 0

V7
ii 0 1 0 5 0 0 06 6, V7 3

Vg
I 0 1 0 1 0 0 0i -i Vg

V3
2 0 2

1 4 0 0 13 -3 V3 3

Vio 3 0 CD 0 1 0 1 0i V2

V1 13
1

13 0 13
1 0 06 -6 VI 3

V12 1 0 7 0 4 0 0 06 -6 VI2 3

Vl3 1 0 3 0 2 0 0 0i -i Vl3

V14 2 0 0 0 V14 2 0 0 0

V15
11 0 7 0 2 0 0 06 6 V15 3

2 0 2 0 4 0 0 0-3 3 -3
Fig.28-2

28.8. Compare the residuals of least-squares and Chebyshev solutions,

For an arbitrary set of numbers Xi, . . . , Xn let Irlmax be the largest residual in absolute value, Then
ri + ' , , + r;; ~ m Irl~ax so that the root-mean-square error surely does not exceed Irlmax' But the
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least-squares solution has the smallest RMS error of all, so that, denoting this error by P, P ~ Irlmax' In
particular this is true when the x¡are the Chebyshev solution, in whieh case Irlmax is what we have been
calling r, But the Chebyshev solution also has the property that its maximum error is smallest, so if
IPlmax denotes the absolutely largest residual of the least-squares solution, Irlmax ~ IPlmax' Putting the two

inequalities together, P ~ r ~ IPlmax and we have the Chebyshev error bounded on both sides, Since the
.least-squares solution is often easier to find, this last r.esult may be used to decide if it is worth
continuing on to obtain the further reduction of maximum residual which the Chebyshev solution brings.

28.9. Apply the previous problem to the systemsof Problem 28,2,

We have already found P = ýf, r = l, and IPlmax = ~ which do steadily increase as Problem 28,8

suggests, .The fact that one of the least-squares residuals is three times as large as another already
r.ecommends the search for a Chebyshev solution,

28.10. Apply Problem 28,8 to the system of Problem 28,3,

We have found P =~, r = t and IPlmax = M. The spread does support a search for the Chebyshev

solution.

Supplementary Problems

28.11. Find the least-squares solution of this system:

xi-x2=-1
xi+x2=8

Compute the RMS error of this solution,

2x1-X2=2
2xi +X2 = 14

28.12.. Compare IPlmax with P for the solution found in Problem 28,11.

28.13. Find the Chebyshev solution of the system in Problem 28.11 and compare its r value with P and IPlmax'

28.14. Find both the least-squares and Chebyshev solutions for this system:

xi+ X2-X3= 5

2x¡ - 3x2 +X3 =-4

x¡+2x2-2x3=1
4x1 - X2 - X3 = 6

28.15. Suppose it is known that - 1 ~ Xi' Find the Chebyshev solution of the following system by first letting
z¡ = x¡ + 1 which guarantees 0 ~ z¡. Also find the least-squares solution.

2xi - 2x2 + X3 + 2x4 = 1 -2xi - 2x2 + 3X3 + 3x4 = 4

x¡+ x2+2x3+4x4=1 -xi-3x2-3x3+ x4=3
x¡-3x2+ X3+2x4=2 2xi+4x2+ X3+5x4=0

28.16. Find the least-squares solution of this system:

Xi =0

X2 =0

x¡+ x2=-1

.1x¡+.lx2= .1
What is the RMS error?

28.17, Find the Chebyshev solution of the system in Problem 28.16.
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28.18. Four altitudes Xl' X2, X3, X4 are measured, together with the six differences in altitude, as folIows. Find
the least-squares Ýalues.

Xl = 3.47

Xi -X2 = 1.42

X2 =2,01

Xi-X3=1.92
Xi-X4= 1.53

X3 = 1.58

XI -x4=3,06
X3 -X4 = 1.20

X4 =.43

X2 -X3 = .44

28.19. A quantity xis measured N times, the results being a1, a2, . . . , aN' Solve the overdetermined system

X =a¡ i = 1,.,., N

by the least-squares method. What value of X appears?

28.20. Two quantities x and y are measured, together with their difference x - y and sum x "/ y,

x=A y=B x-y=C x+y=D

Solve the overdetermined system by least-squares.

28.21. The three angles of a triangle are measured to be Ai, Az, A3, If XI' x2, X3 denote the correct values, we

are led to the overdetermined system

x1=Ai x2=A2 :r -Xl -x2=A3

Solve by the method of least-squares,

28.22. The two legs of a right triangle are measured to be A and B, and the hypotenuse to be C. Let Li, L2,
and H denote the exact values, and let Xl = Li, X2 = L~, Consider the overdetermined system

xi=A2 X2= B2 Xi+X2=C2

and obtain the least-squares estimates of XI and X2' From these estimate Li, L2, and H.

28.23. Verify that the normal equations for the least-squares solution ofAx = bare equivalent to AT A = ATb,



Chapter 29

Boundary Value Problems

NATURE OF TUE PROBLEM
This is a subject that runs wide and deep, Volumes could be filed with its variations and

algorithms, This chapter can offer only a sampling of the many ideas that have been brought to bear
on it, This me ans that the coverage is, of necessity, superficial, but the alternative of omission
seemed totally unacceptable,

A boundary value problem requires the solution of a differential equation, or system of
equations, in a region R, subject to additional conditions on the boundary of R, Applications
generate a broad variety of such problems, The classieal two-point boundary value problem of
ordinary differential equations involves a second-order equation, an initial condition, and a terminal
condition,

y" = fex, Y, y') y(a) =A y(b) = B

Here the region R is the interval (a, b) and the boundary consists of the two endpoints, A typieal
problem of partial differential equations is the Dirichlet problem, which asks that the Laplace
equation

Uxx + Uyy =0

be satisfied inside a region R of the xy plane and that U(x, y) take specified values on the boundary
of R. These examples suggest two important classes of boundary value problems,

SOLUTION METUODS
1. The superposition pnnciple is useful for linear problems, For example, to solve

y"= q(x)y y(a)=A y(b) = B
one could use the methods of Chapter 19 to solve the two initial value problems

y~ = q(x)Yi

yz = q(x)Ji

Yi(a) 
= 1

Y2(a)=0

Yi(b) = 0

yz(b) = 1

after which y(x) = AYi(x) + Byz(x)

2, Replacement by a matri problem is also an option when the problem is linear, For
example, replacing y"(Xk) by a second difference converts the equation y" = q(x)y into the
difference equation

Yk-i - (2 + hZqk)Yk + Yk+i = 0

which is required to hold for k = 1, ' , . , n corresponding to the arguments Xl' . , , ,Xn- With
Yo = A and Yn+i = B, we then have a linear system of order n, producing approximate y
values at the listed arguments.

Similarly, the Laplace equation Uxx + Uyy = 0 converts to the difference equation

1
U(x, y) = 4 (U(x - h, y) + U(x + h, y) + U(x, Y - h) + U(x, y + h))

which makes each value the average of its four neighbors in the square lattice of points
Xm = Xo + mh, Yn = Yo + nh, Writing this equation .for each interior lattice point produces a

linear system of order N, where N is the number of such points, The idea can be adapted to
other equations, to regions with curved boundaries, and to more dimensions. Convergence
to the correct solution can be proved under fairly broad circumstances,

427
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The classic diffusion problem

T; = Txx T(O, t) = T(l, t) = 0 T(x, 0) = f(x)

also responds to the finite difference treatment. The equation is to be satisfied inside the
semi-infinite strip O;§ x ;§ 1, O;§ t, On the boundaries of the strip, T is prescribed, There is a
well-known solution by Fourier series, but finite differences are useful for various
modifications, Replacing derivatives by simple differences, the above equation becomes

Tm,n+1 = ÀTm-l.n+ (1 - 2À)Tm.n + ÀTm+l.n

with Xm = mh, tn = nk, and À = k/h2. A rectangular lattiee of points thus replaces the strip,
In the form given, the difference equation allowseach T value to be computed directly from
va lues at the previous time step, with the given initial vallles f(xm) triggering the process,
For proper choices of hand k, tending to zero, the method converges to the true solution,
However, for sm all k the computation is strenuous and numerous variations have been

proposed for reducing the size of the job,
3. The garden hose method offers an intuitive approach to the classic two-point boundary value

problem, We first solve the initial value problem

y" = fex, y, y') y(a) =A y'(a) =M
for some choiee of M, The terminal value obtained wil depend upon the choiee of M, Call it
F(M), Then what we want is that F(M) = B, This is a problem similar to the root-finding
problems of Chapter 25 and can be solved by similar methods, Successive approximations to
Mare found, each one bringing a new initial value problem. As with root finding, there are
several ways for choosing the corrections to M, including a Newton-type method,

F(M1) - B
M2 = Mi - r(Mi)

4, The calculus of variations establishes the equivalence. of certain boundary value problems
with problems of optimization, To find the function y(x) which has y(a) =A and y(b) = B
and also makes

f F(x, y, y') dx

a minimum (or maximum), one may solve the Euler equation

d
Fy == dxFy,

subject to the same boundary conditions, There are also direct meihods, such as the Ritz
method, for minimizing the integral, which may, therefore, be considered as methods for
solving the Euler equation with its boundary conditions,

For the Laplace equation a corresponding minimization problem is

f f (U; + U;) dx dy = minimum

with the double integral being taken over the region R of the boundary value problem,
For the Poisson equation Uxx + Uyy = K, the appropriate optimization problem is

fI (~( U; + U;) + KU J dx dy = minimum
5, The finite element method is a powerful procedure for direct solution of optimization

problems, The region R is subdivided into basic pieces (triangles, squares, etc, for a
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two-dimensional R) and a solution element is associated with each piece, For instance, over
a set of basic triangles one might choose a set of plane tri angular elements, joined to form a
continuous surface, The vertical coordinates of the corners of these elements become the
independent variables of the optimization, Partial derivatives relative to these variables are
developed and equated to zero, The resulting system of equations must theri be solved,

6, Infinite series provide solutions for many classic problems, They are a development of the
superposition principle, Fourier series and their various generalizations are prominent.

Solved Problems

LINEAR ORDINARY DIFFERENTAL EQUATIONS
29.1. Find a solution of the second-order equation

L(y) = y"(x) - p(x)y'(x) - q (x)y (x) = rex)

satisfying the two boundary conditions

ciiy(a) + C12y(b) + c13y'(a) + C14y'(b) = A

c21y(a) + C22y(b) + c23y'(a) + C24y'(b) = B

With linear equations, we may rely upon the superposition principle whieh is used in solving
elementary examples by analytie methods. Assuming that elementary solutions cannot be found for the
above equation, the numerical algorithms of an earlier chapter (Runge-Kutta, Adams, etc.) may be
used to compute approximate solutions of these three initial value problems for a ~x ~ b,

L(yi) = 0

Yi(a)=l
'y;(a) = 0

L(Y2) = 0

Y2(a) = 0

y~(a) = 1

L(Y) = rex)

Y(a) = 0

Y'(a)=O

The required solution is then available by superposition,

y(x) = CiYi(x) + Czyz(x) + Y(x)

where to satisfy the boundary conditions we determine Cl and Cz from the equations

(CL 1+ CI2Yi(b) + CI4Y ;(b ))Ci + (C13 + C12Y2(b) + c14y~(b ))C2 = A - CI2 Y(b) - C14Y'(b)

(C21 + C22Yi(b) + C24y;(b))Ci + (CZ3 + C2ZY2(b) + C24y~(b))C2 = B - C22Y(b) - C24Y'(b)

In this way the linear boundary value problem is solved by our algorithms for initial value problems, The
method is easily extended to higher-order equations or to linear systems, We assurne that the given
problem has a unique solution and that the functionsyi, Y2' etc., can be found with reasonable accuracy.
The equations determining Ci, C2, etc., wil then also have a unique solution,

29.2. Show how a linear boundary value problem may be solved approximately by reducing it to a
linear algebraic system,

Choose equally spaced arguments X¡ = a + jh with Xo = a and XN+I = b. We now seek to determine
the corresponding values Y¡ = y(x¡). Replacing y"(x¡) by the approximation

"( ) ~y¡+1 - 2y¡ + y¡-IY x¡ - h2

and y'(x¡) by y'(x¡) =y¡+1 - y¡-I2h
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the differential equation L(y) = rex) of Problem29, 1 becomes,after slight rearrangement,

(1 -~hp¡)y¡-i + (-2 
+ h2q¡)y¡ + (1 +~hP¡)Y¡+l =h2r¡

If we require this to hold at the interior points j = 1" . , , N, then we have N linear equations in the N
unknowns Yi., , . , YN, assuming the two boundary values to be specified as Yo = y(a) = A, YN+1 = y(b) =
B. In this case the linear system takes the following form:

ß1Y1 + Y1Y2 = h2r1 - alA
a2Y1 + ß2Y2 + Y2Y3 = h2r2

a3Y2 + ß3Y3 + Y3Y4 = h2r3

aNYN-1+ ßNYn = h2rN - yNb

where
1

a¡ = 1 -Zhp¡ ß¡=-2+h2q¡ 1
Y =l+-hp.J 2 J

The band matrix of this system is typieal of linear systems obtained by discretizing differential boundary
value problems, Only a few diagonals are nonz.ero. Such matrices are easier to handle than ot.hêrs which
are not so sparse, If Gaussian elimination is used, with the pivots descending the main diagonal, the
band nature wil not be disturbed, Tiis fact can be used to abbreviate the computation, The iterative
Gauss-Seidel algorithm is also effective, If the more general boundary conditions of Problem 29,1 occur
these mayaIso be discretized, perhaps using

y'(a) =Y1 - Yoh y'(b)=YN+I-YN

This brings a system of N + 2 equations in the unknowns Yo, , . , , YN+I'
In this and the previotis problem we have alternative approaches to the same goal. In both cases the

output is a finite set of numbers y¡, If either method is reapplied with smaller h, then hopefully the larger
output will represent the true solution y(x) more accurately, This is the question of convergence.

29.3. Show that for the special case

y"+y=O y(O)=O
the method of Problem 29,2 is convergent,

The exact solution function is y(x) = (sinx)(sin 1), The approximating difference equation is

Y¡-l + ( - 2 + h2)y¡ + Y¡+l = 0

y(l) = 1

and this has the exact solution

Y¡

sin (ax¡lh)
sin (alh)

for the same boundary conditions Yo = 0, YN+I = 1. Here x¡ = jh and cos a = 1 - !h2. These facts may be
verified directly or deduced by the methods of our section on difference equations. Since lim (alh) is 1
for h tending to zero, we now see that limy¡ = y(x¡), that is, solutions of the difference problem for
decreasing h converge to the solution of the differential problem, In this example both problems may be
solved analytically and their solutions compared. The proof of convergence for more general problems
must proceed by other methods,

29.4. Ilustrate the reduction of a linear differential eigenvalue problem to an approximating

algebraic system,

Consider the problem

y" +Ây =0 y(O) = y(l) = 0
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This has the exact solutions y(x) = C sin nnx, for n = 1, 2, , " , The corresponding eigenvalues are
Ån = n2n2, Simply to ilustrate a procedure applieable to other problems for which exact solutions are
not so easily found, we replace this differential equation by the difference equation

yj- + ( - 2 + Åh2)Yj + Yj+1 = 0

Requiring this to hold at the interior points j = 1, , , , , N, we have an algebraic eigenvalue problem
Ay = Åh2y with the band matri

-2 1
1 -2 1

1 -2A=

, . . , , , , . , , , , , , , , , , 1
1 -2

all other elements being zero, and yT = (Ylt ' , , ,YN)' The exact solution of this problem may be found
to be

yj = C sin nnxj with
4 , 2nnhÅn = h2sin 2

Plainly, as h tends to zero these results converge to those of the target differential problem,

NONLINEAR ORDINARY DIFFERENTAL EQUATIONS
29.5. What is the garden-hose method?

Given the equation y" = fex, y, y'), we are to find a solution whieh satisfies the boundary conditions
y(a)=A, y(b)=B.

One simple procedure is to compute solutions of the initial value problem

y" = fex, y, y') y(a)=A y'(a) =M
for various values of M until two solutions, one with y(b).. Band the other with y(b)? B, have been
found, If these solutions correspond to initial slopes of Mi and M2, then interpolation wil suggest a new
M value between these and a better approximation may then be computed (see Fig, 29-1). Continuing
this process leads to successively better approximations and is essentially the regula falsi algorithm used
for nonlinear algebraic problems. Here our computed terminal value' is a function of M, say F(M), and
we do have to solve the djuation F(M) = B, However, for each choiee of M the calculation of F(M) is
no longer the evaluation of an algebraic expression but involves the solution of an initial value problem
of the differential equation,

T
B

A

a b

Fig,29.1

29.6. How may the garden-hose method be refined?

Instead of using the equivalent of regula falsi, we may adapt Newton's method to the present
problem, presumably obtaining improved convergence to the correct M value, To do this we need to

know reM). Let y(x, M) denote the solution of

y" = fex, y, y') y(a) =A . y'(a) =M
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and for brevity let z(x, M) be its partial derivative relative to M, Differentiating relative to M brings

z" = fAx, y, y')z + h'(x, y, y')z' (1)
if we freely reverse the orders of the various derivatives. Also differentiating the initial conditions, we
have

z(a,M)=O z'(a, M) = 1

Let Mi be a first approximation to M and solve the original problem for the approximate solution
y(x, Mi)' This may then be substituted for y in equation (1) and the function z(x, Mi) computed. Then
F'(M) = z(b, Mi)' With this quantity available the Newton method for solving F(M) - B = 0 now offers
us the next approximation to M:

F(M1) -'B
M2 = Mi - F'(Mi)

With this M2 a new approximation y(x, M2) may be computed and the process repeated, The method
may be extended to higher-order equations or to systems, the central idea being the derivation of an
equation similar to (1), which is caIled the variational equation.

OPTIMIZATION
29.7. Reduce the problem of maximizing or minimizing f~ F(x, y, y') dx to a boundary value

problem,

This is the c1assieal problem of the calculus of variations. If the solution function y(x) exists and has
adequate smoothness, then it is required to satisfy the Euler differential equation F' = (d / dx )F'.. If
boundary conditionssuch as y(a) = A, y(b) = Bare specified in the original optimization problem, then
we already have a second-order boundary value problem. If either of these conditions is omitted, then
the variational argument shows that F'. = 0 must hold at that end of the intervaL. This is called the
natural boundary condition,

29.8. Minimize fõ (y2 + y'2) dx subject to y(O) = 1.

The Euler equation is 2y = 2y" and the natural boundary condition is y'(l) = O. The solution is now
easily found to be y = cosh x - tanh 1 sinh x and it makes the integral equal to tanh 1, wh ich is about ,76,
In general the Euler equation wil be nonlinear and the garden-hose method may be used to find y (x),

29.9. Ilustrate the Ritz method of solving a boundary value problem,

The idea of the Ritz method is to solve an equivalent minimization problem instead, Consider

y" = -x2 y(O) = y(l) = 0

sbmetimes called a Poisson problem in one variable, but in fact requiring only two integrations to
discover the solution

y(x) = x(l - x3)12

Methods are available for finding an equivalent minimization problem for a given boundary problem,
but here one is weIl known,

J(y) = f (~(y')2 _x2y J dx = minimum

The Euler equation for this integral proves to be our original differential equation.
To approximate the solution by the Ritz method, we need a family of functions satisfying the

boundary conditions, Suppose we choose

ep(x)=cx(l-x)
which is probably the simplest such family for this problem. Substituting ep for y in the integral, an easy
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calculation yields

c2 c
J(eP) =--- = f(c)

6 20

which we minimize by setting f' (c) = 0, The resulting c = li gives usthe approximation

3
eP(x) = 20x(1 - x)

which is compared with the true solution in Fig, 29-2, More accurate approximations are available
through the use of a broader family of approximating functions, perhaps

eP(x) = x(l - x)(co + c1x + C2X2 + ' , , + cnxn)

leading to a linear system for determining the coeffcients Ci' The central idea of the Ritz method is the
search for the optimum function among members of a restricted family eP(x), rather than among all y(x)
for which the given integral exists,

\

1j

.04

031 .
.

.02

.01

x
-.
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True solution
. . . Ritz
- - - - Finite element

Fig.29.2

29.10. Use the same boundary value problem solved in Problem 29,9 to ilustrate a finite element
solution method,

The basic idea is the same, It is the nature of the approximating family that identifies a finite
element method, Suppose we divide our interval (0,1) into halves and use two line segments

ePi(X) = 2Ax eP2(X) = 2A(1 -x)

meeting at point G,A) to approximate y(x), In fact, we have a family of such approximations, with

parameter A to be selected, The two line segments are called finite elements, and the approximating
function is formed by piecing them together. As before we substitute into the integral, and we easily
compute

f1/2 JI 7J(eP) = 0 eP1 dx + l/2 eP2 dx = 2A2 - 4SA = f(A)

which we minimize by setting f'(A) = 0, This makes A = Ig2' A quick calculation shows that this is
actually the correct value of the solution at x = ~, (See Fig. 29-2.) It has been shown that if line segments
are used as finite elements (in a one-dimensional problem, of course). correct values are systematically
produced at the joins,

29.11. Extend the procedure of the preceding problem to include more finite elements,



434 (CHAP, 29BOUNDARY VALUE PROBLEMS

Divide the interval (0,1) into n parts, with endpoints at 0 = Xo, Xl' X2' . , . , Xn = 1. Let Y¡, . , , , Yn-1
be corresponding and arbitrary ordinates, with Ya = Yn = O. Define linear finite elements CPl' . . . , CPn in
the obvious way, (See Fig. 29-3.) Then

() X¡-X X-X¡_Icp¡x =Y¡-I +y¡-
X¡ - X¡-l X¡ - X¡_i

X¡-X X -X¡-l= Y¡-l--+ Y¡-¡

o Xo Xl X2 X3 -'11_ i X1/ = 1

Fig.29-3

the second equality holding if the X¡ are equally spaced. We also have

CP:(X) Y¡ -Y¡-l =Y¡ - Y¡-lX¡-X¡_i h

Now consider the integral
n fX¡ (1 J n

J(cp) = B Xj_l 2 (cp;)2 _x2cp¡ dx = B J¡

= f(y¡, . . , ,Yn-l)

To minimize this, we could obtain f explicitly in terms of the Y¡ and then compute the partial derivatives,
setting them to zero and solving the resulting system of equations. This is what was just done in the
simpler case, Here suppose we take derivatives first, integrate second, and. then form the ultimate
system, The dependence of f upon a particular ordinate Yk is through only two of the component terms Jk
and Jk+1, Accordingly, for k = 1, . . , , n - 1,

8f = fXk (Yk - Yk-I (~) _ x2X - Xk-iJ dx + fXk+1 (Yk+I - Yk (- 1) _ X2Xk+1 - XJ dx

8Yk Xk-I h h h Xk h h h
and the integrals being elementary we soon have the system1414141313

- Yk-I + 2Yk - Yk+I = 12 Xk-l + 2 Xk + 12 Xk+I -:3 Xk-iXk -:3 Xk+1Xk

for k = 1, . . . , n - 1.

With n = 2 and k = 1, this quickly reproduces the Yi = Ig2 found before. With n = 3, the system
becomes

7
2yi - Y2 = 486

25
-YI + 2Y2 = 486

from whieh come Y1 = N6 and Y2 = 1:6, both of which agree with the true solution values for these
pOSitions,

THE DIFFUSION EQUATION
29.U. Replace the diffusion problem involving the equation

òT (ò2T) (Òj-=a - +b - +cTòt òx2 ÒX
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and the conditions T(O, t) = J(t), T(/, t) = g(t), T(x, 0) = F(x) by a finite difference
approximation,

Let Xm = mh and tn = nk, where XM+I = L. Denoting the value T(x, t) by the alternate symbol Tm,m

the approximations

aT _ Tm,n+1 - Tm,n

aï- k
aT Tm+i,n - Tm-I,n
ax 2h

a2T Tm+1,n - 2Tm.n + Tm-1.n

ax2 = h2
convert the diffusion equation to

Tm.n+i = À( a - ~ bh) Tm-1,n + (1 - À(2a + ch2)) Tm,n + À( a + ~ bh) Tm+1,n

where À = k/h2, m = 1,2, , . " M and n = 1, 2, . ,. . Using the same initial and boundary conditions
above, in the form To,n = f(tn), T M+1.n = g(tn) and Tm,o = F(xm), this difference equation provides an

approximation to each interior Tm,n+1 value in terms of its three nearest neighbors at the previous time
step, The computation therefore begins at the (given) values for t ='0 and proceeds first to t = k, then to
t = 2k, and so on, (See the next problem for an ilustràtion.)

29.13. Apply the procedure of the preceding problem to the case a = 1, b = c = 0, J(t) = g(t) = 0,
F(x) = 1, and 1=1.

Suppose we choose h = ~ and k = fz, Then À = ! and the difference equation simplifies to

1
Tm,n+1 = Z (Tm-1,n + Tm+1,n)

A few lines of computation are summarized in Table 29.1(a), The bottom line and the side columns are
simply the initial and boundary conditions, The interior values are computed from the difference
equation li ne by line, beginning with the looped (1 which comes from averaging its two lower neighbors,
also looped, A slow trend toward the ultimate"steady state" in whieh all T values are zero may be
noticed, but not too much accuracy need be expected of so brief a calculation,

For a second try we choose h = l, k = 118' keeping À =!' The results appear in Table 29.1(b), The
top line of this table corresponds to the second line in Table 29,l(a) and is in fact a better approximation
to T(x, fz), This amounts to a primitive suggestion that the process is starting to converge to the correct
T(x, t) values,

In Table 29,l(c) we have the results if h = t k = -h are chosen, making À = 1. The difference

equation for this choice is
Tm,n+1 = Tm-1,n - Tm,n + Tm+1,n

Table 29.1

0 -12 17 -12 0

0 5 -7 5 0
o ~ ~ 0 0 3 ã 1 ã ~ 0 0 - 2 3 - 2 0ii

o ! ! 0 0 i 1 1 1 ! 0 0 1 -1 1 0.2

o ! 1 ! 0 0 !11111!0 0 0 1 0 0
0(1110 0 11111110 0 1 1 1 0

(11(111 1 11111111 1 1 1 1 1

(a) (b) (e)
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The start of an explosive oscilation can be seen, This does not at all conform to the correct solution,
which is known to decay exponentially. Later we shall see that unless À ~ ~ such an explosive and
unrealistic oscilation may öccur, This is a form of numerical instabilty.

29.14. What is the truncation error of this method?

As earlier we apply Taylor's theorem to the difference equation, and find that our approximation
has introduced error terms depending on hand k, These terms are the truncation error1 1212 4)

Z kT" - 12 ah 'Lxxx + "6 bh 'Lxx + O(h

subscripts denoting partial derivatives, In the important special case a = 1, b = 0, we have T" = 'Lxxx so

that the choice k = h2/6 (or À = g) seems especially desirable from this point of view, the truncation
error then being 0(h4).

29.15. Show that the method of Problem 29,12 is convergent in the particular case

01' 02r

ot = ox2
. T(O, t) = T(TC, t) = 0 T(x, 0) = sinpx

where p is a positive integer.

The exact solution may be verified to be T(x, t) = e-p2( sinpx. The corresponding difference
equation is

Tm,n+1 - Tm.n = À(Tm+1,n - 2Tm,n + Tm-i.n)

and the remaining conditions may be written

mpTC
Tm,o= sin M + 1 TO,n = TM+i,n = 0

This finite difference problem can be solved by "separation of the variables," Let Tm,n = UmVn to

obtain
Vn+1 - Vn = À(Um+1 - 2um + um-i) = -ÀCVn Um

which defines C. But comparing C with the extreme left member we find it independent of m, and
comparing it with the middle member we find it also independent of n, It is therefore a constant and we
obtain separate equations for Um and Vn in the form

Vn+1 = (1 -ÀC)vn Um+1 - (2 - C)um + Um-1 = 0

These are easily solved by our difference equation methods. The second has no solution with
Uo = UM+1 = 0 (except Um identically zero) unless 0 ~ C ~ 4, in which case

Um = A cos æm + B sin æm

where A and Bare constants, and cos æ = 1 - ~c. To satisfy the boundary conditions, we must now have
A = 0 and æ(M + 1) = j:n, j being an integer. Thus

B. mj:nUm= sin-M
+ 1

Turning toward Vn, we first und that C = 2(1 - cos æ) = 4 sin2U:n/(2(M + 1m after which

Vn = (1 - 4À sin2 2(~: l)r Vo

It is now easy to see that choosing B = Vo = 1 and j = p we obtain a function

(1 4" 2 p:n Jn. mp:n
Tm n = UmVn = - 11 sin ( ) sin-. 2M+1 M+l



CHAP, 29) BOUNDARY VALUE PROBLEMS 437

which has all the required features, For comparison with the differential solution we return to the
symbols Xm = mh, tn = nk,

( h)/nO.h2
Tm,n = 1 - 4À sin2~ sinpxm

As h npw tends to zero, assuming À = klh2 is kept fied, the coeffcient of sinpxm has limit e-p2ln so that
convergence is proved, Here we must arrange that the point (xm, tn) also remain fixed, which involves
increasing m and n as hand k diminish, in order that the Tm.n values be successive approximations to thesame T(x, i), .

29.16. Use the previous problem to show that for the special case considered an explosive oscilation
may occur unless Â ~ l,

The question now is not what happens as h tends to zero, but what happens for fied h as the
computation is continued to larger n arguments, Examining the coeffcient of sin pXm we see that the
quantity in brackets may be less than -lfor some values of À, P, and h, This would lead to an explosive

oscilation with increasing tn. The explosion may be avoided by requiring that À be no greater than ~,
Since this makes k;ã h2/2the computation wil proceed very slowly, and if results for large t arguments
are wanted it may be useful to use a different approach, (See the next problem,)

29.17. Solve Problem 29,12 by means of a Fourier series,

This is the c1assical procedure when a is constant and b = c = 0, We first look for solutions of the
diffusion equation having th~ product form U(x)V(t), Substitution brings V' iV = U"IU = - a2 where a
is constant, (The negative sign wil help us satisfy the boundary conditions,) This makes

V = Ae-a21 U= B cos ax + C sin ax
To make T(O, t) = 0, we choose B = 0, To make T(l, t) = 0, we choose a = n:T where n is a positive
integer. Putting C = 1 arbitrarily and changing the symbol A to An, we have the functions

Ane-n2rr21 sin n:TX n = 1, 2, 3" . ,

each of which meets all our requirements except for the initial condition, The series

~

T(x, t) = 2: Ane-n2rr21 sin n:TX

n=l

if it converges properly wil also meet these requirements, and the initial condition mayaiso be satisfied
by suitable choice of the An' For F(x) = 1 we need

~

T(x, 0) = F(x) = 2: An sin n:TX

n=l

and this is achieved by using the Fourier coeffcients for F(x),

An = 2 f F(x) sin n:TX dx

The partial sums of our se ries now serve as approximate solutions of the diffusion problem. The exact
solution used in Problem 29.15 may be viewedas a one-term Fourier series.

TUE LAIJLACE EQUATION
29.18. Replace the Laplace equation

¿PT a2T

ax2 + ay2 = 0 0 ~ x ~ I 0 ~ y ~ I

bya finite difference approximation, if the boundary values of T(x, y) are assigned on all four
sides of the square, show how a linear algebraie system is encountered,.
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The natural approximations are

a2T T(x - h, y) - 2T(x, y) + T(x + h, y)ax2 = h2
a2T T(x, y - h) - 2T(x, y) + T(x, y + h)ay2 h2

and they lead at once to the difference equation

1
T(x, y) =4(T(x - h, y) + T(x + h, y) + T(x, y - h) + T(x, y + h)J

which requires each T value to be the average of its four nearest neighbors, Here we focus our attention
on a square lattice of points with horizontal and vertical separation h, Our difference equation can be
abbreviated to 1 '

Tz =4(TA + TB + Tc + TD)

with points labe¡ed as in Fig, 29-4, Writing such an equation for each interior point Z (where T is
unknown), we have a linear system in which each equation involves five unknowns, except when a
known boundary value reduces this number.

D

A

,
,

Z B

C

,'.

Fig.29.4

29.19. Apply the method of the previous problem when T(x, 0) = 1, the other boundary values being 0,

For simplicity we choose h so that there are only nine interior points, as in Fig. 29-4, Numbering
these points from left to right, top row first, our ni ne equations are these:

1
Ti = 4 (0 + Ti + Ti + 0)

1
Ti = 4 (0 + 13 + Ts + Ti)

1
13 = 4 (0 + 0 + 4 + Ti)

1
Ti=4(Ti + Ts+ T-+O)

1
Ts = 4 (Ti + 4 + 18 + Ti)

1
4=4(13+0+ ~+ Ts)

1
T- = 4 (Ti + 18 + 1 + 0)

1
18 = 4 (Ts + ~ + 1 + T-)

1

~=4(4+0+ 1 + 18)

The system could be rearranged for Gaussian elimination, but as it stands the Gauss-Seidel iteration
seems natural. Starting from the very poor initial approximation of zero for each interior 1; the
successive results given in Table 29.2 are obtained, Ten iterations bring three-place accuracy for this
linear system. (For a discussion of convergence of the Gauss-Seidel iteration see Problem 26,34.)
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Table 29.2

Iteration Ti Tz 1; T. 1; 1; T, Ts T9

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 ,250 .312 .328
2 0 0 0 ,062 .078 ,082 .328 .394 .328
3 .016 ,024 .027 ,106 .152 .127 .375 ,464 .398
4 ,032 .053 ,045 ,140 ,196 .160 .401 .499 .415

5 ,048 .072 ,058 ,161 .223 ,174 .415 ,513 .422

6 ,058 .085 .065 ,174 .236 ,181 .422 ,520 .425

7 ,065 ,092 .068 ,181 .244 ,184 .425 ,524 .427

8 ,068 .095 ,070 ,184 ,247 ,186 .427 .525 .428

9 .070 ,097 ,071 .186 ,249 ,187 ,428 .526 .428

10 ,071 ,098 ,071 ,187 .250 ,187 .428 .526 .428

A CONVERGENCE PROOF
29.20. Prove that the linear system encountered in Problem 29,18 wil always have a unique solution,

The point is that, since we base our approximation on this system, it is important that it be
nonsingular, Denoting the unknown interior values T¡, ' . , , TN, we may rewrite the system in the form

N

L a;k'4=b¡
k=l

(1)

where the b; depend upon the boundary values, If all boundary values were zero, then all b¡ would be
zero also:

N

L aik'4=O
k=!

(2)

By the fundamental theorem of linear algebra the system (1) will have a unique solution provided that
(2) hasonly the zero solution, Accordingly, we suppose all boundary values are zero. If the maximum
'4 value occurred at an interior point Z, then because of Tz = l(TA + TB + Tc + TD) it would also have to

occur at A, B, C, and D, the neighbors of z. Siniilarly this maximum would occur at the neighboring
points of A, B, C, and D themselves, By continuing this argument we find that the maximum Tk value
must also occur at a boundary point and so must be zero, An identical argument proves that the
minimum '4 value must occur on the boundarý and so must be zero, Thus all '4 in system (2) are zero
and the fundamental theorem applies, Notice that our proof includes a bonus theorem, The maximum
and minimum '4 values for both (1) and (2) occur at boundary points,

29.21. Prove that the solution of system (1) of Problem 29,20 converges to the corresponding

solution of Laplace's equation as h tends to zero,

Denote the solution of (1) by T(x, y, h) and that of Laplace's equation by T(x, y), boundary values
of both being identical. We are to prove that at each point (x, y) as h tends to zero

lim T(x, y, h) = T(x, y)

For convenience we introduce the symbol

L(F) = F(x + h, y) + F(x - h, y) + F(x, y + h) + F(x, y": h) - 4F(x, y)

By applying Taylor's theorem on the right we easily discover that for F = T(x, y), IL(T(x, y ))1 ~ Mh4/6
where M is an upper bound of 1 4xxx 1 and I:Z'YI, Moreover, L(T(x, y, h)) = 0 by the definition of
T(x, y, h), Now suppose the origin of x, y coordinates to be at the lower left corner of our square. This
can always be arranged by a coordinate shift, which does not alter the Laplace equation. Introduce the
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function
Ó. 22 zó.S(x,y,h)=T(x,y,h)-T(x'Y)-2D2(D -X -Y)-2

where Ó. is an arbitrary positive number and D is the diagonal length of the square, A direct
computation now shows

L(S(x, y, h)) = 2h2ó. + 0(Mh4)D2 6
so that for h suffciently small, L( S) ? 0, This implies that S cannot take its maximum value at an interior
point of the square, Thus the maximum occurs on the boundary. But on the boundary T(x, y, h) =
T(x, y) and we see that S is surely negative, This makes S everywhere negative and we easily deduce
that T(x, y, h) - T(x, y) -c ó.. A similar argument using the function

R(x, y, h) = T(x, y) - T(x, y, h) - 2~2 (D2 _x2 _ y2) - ~

proves that T(x, y) - T(x, y, h) -c ó.. The two results together imply ¡T(x, y, h) - T(x, y)I-c ó. for
arbitrarily small ó., when h is suffciently small. This is what convergence means.

29.22. Prove that the Gauss-Seidel method, as applied in Problem 29,19, converges to the exact
solution T(x, y, h) of system (1), Problem 29,20,

This is, of course, an altogether separate matter from the convergence result just obtained. Here we
are concerned with the actual computation of T(x, y, h) and have selected a method of successive

approximations. Suppose we number the interior points of our square lattice from 1 to N as folIows.
First we take the points in the top row from left to right, then those in the next row from left to right,
and so on. Assign arbitrary initial approximations T7 at all interior points, i = 1, , . . , N. Let the
succeeding approximations be called T7. We are to prove

lim T7 = T; = T(x, y, h)

as n tends to infinity. Let S7 = T7 - T;, Now it is our aim to prove !im S7 = O. The proof is based on the
fact that each Si is the average of its four neighbors, which is true since both T7 and T; have this
property, (At boundary points we put S equal to zero.) Let M be the maximum IS?I. Then, since the first
point is adjacent to at least one boundary point,1 3

IS;I ~-(M +M +M +0) =-M4. 4
And since each succeeding point is adjacent to at least one earlier point,

IS;+ll ~¡(M + M + M + ¡S;I)

Assuming for induction purposes that IS;¡ ~ (1 - O)i)M we have at once

3 1 ( (l)i) ( (1);+1)
¡S;+11~4M+4 1- 4 M= 1- 4 M

The induction is already complete and we have ¡S!vl ~ (1 - O)NJM = IxM wh ich further implies

¡S;I ~ IxM i = 1,.,., N
Repetitions of this process then show that IS71 ~ IxnM, and since IX -c 1 we have lim S7 = 0 as required,

Though this proves convergence for arbitrary initial T?, surely good approximations T7 will be obtained
more rapidly if accurate starting values can be found.

29.23. Develop the basic formulas for a finite element method using tri angular elements and the



CHAP.29) BOUNDARY V ALUE PROBLEMS 441

Poisson equation
Uxx + Uyy = K (K a constant)

The region over which this equation is to hold must first be divided up into tri angular pieces,
making approximations where necessary. Let (Xi' y;), (Xj, Yj), (Xk, Yk) be the vertices of one such
triangle, The solution surface above this tri angle is to be approximated by a plane element ø(e)(x, y),
the superscript referring to the element in question. If Zi, Zj, Zk are the distances up to this plane at the
tri angle corners, or nodes, then

ø(e) = L~e)z; + Lje)zj + LLe)Zk

where L~e) is equal to 1 at node i and 0 at the other two nodes, with corresponding properties for Lj')

and LÀe), Let ~e be the area of the base triangle,Jormed by the three nodes. Then

1 Xi Yi j
2~e = 11 xj Yj

1 Xk Yk

which leads quickly to the following representations:

1 I 1 X Y L(e)=--
1 X Y 1 X Y

L(e)=_ 1 X y. 1 Xk Yk L(e)--- 1 X; Y;'2~ J J J 2~e k - 2~e
e 1 Xk Yk

1 Xi Y; i Xj Yj

If we also write L(e) = -- (a + bx + cy), 2~e' , I
then from the determinants

a; =XjYk -XkYj bi = Yj - Yk

with these parallel formulas coming from Lj') and LLe).

c; =Xk -Xj

aj = XkYi - X;Yk bj = Yk - Y; Cj =X¡-Xk

~~~~-~~ ~=~-~ ~=~-~
All these a, b, C coeffcients should have the superscript (e) but for simplicity it has been suppressed,

It is now time to consider the minimization problem equivalent to the Poisson equation. It is

J(U) = J J (~(U; + U~) + KU J dx dy = minimum

with the double integral to be evaluated over the given region R of the boundary value problem, We are
approximating U by a function ø, a composite of plane tri angular elements each defined oVer a

tri angular portion of R, So we consider the substitute problem of minimizing

J(Ø) = ¿Je(ø(e))

with each term of the sum evaluated over its own base tri angle , We want to set the appropriate
derivatives of J( Ø) to zero and to this end require the derivatives of the Je components. Note that

(e) - -- (b b b)Øx - 2~e ;Z; + jZj + kZk

ø(e) = -- (cz + c.z. + CkZk)y 2~e" J J
so that, suppressing the superscript,

Je = J J (~(Ø; + Ø~) + KØ) dxdy = fez;, Zj, Zk)
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The differentiations are straightforward, For example,

3r _ JJ t..! ~ K ) dx d - i (b¡ + c¡ b¡bj + c¡Cj b¡bk + C¡Ck ) :! A
. - epx 2A + epy 2A + L¡ Y - A 4 Z¡ + 4 Zj + 4 Zk + 3 ileZi e e e

with very similar resi:its for 3r / Zj and 3r / Zk' The three can be grouped neatly in matrix form:

( 3r /Z¡J 1 ( b¡ + c¡ b¡bj + c¡cj b¡bk + C¡CkJ (Z¡J 4 (1 J

3r / Zj = 4A b¡bj + c¡cj b; + c; bjbk + CjCk Zj + 3 Ae 1
3r /Zk e b¡bk + C¡Ck bjbk + ch b¡ + d Zk 1

The fact that K has been assumed constant makes the integrations needed to achieve this result easy
enough. Note also that theiritegral of each L function is l, by elementary calculus.

The above matrix equation contains the ingredients needed to assemble the partial derivatives of
J(ep), It remains, in a particular application, to do the assembling properly, Specifically, for each

element ep(e) the active nodes i, j, k must be noted and contributions recorded for derivatives relative to
the corresponding variables among ïhe Zi, Z2, Z3' . , , ,

29.24. Apply the finite element method of the preceding problem given that the region R is the unit
square of Fig, 29-5, with the boundary values indicated, The exact solution is easily seen to be
U(x, y) = x2 + y2, since this satisfies Uxx + Uyy = 4,

!I

4

(Boundary values correspond
to U(x,Y)=X2+y2.j

:2 3

x

Fig.29.5

By symmetry only the lower right half of the square needs to be considered, and thk has
been split into two triangles, The nodes are numbered 1 to 4,and the two triangles are
identified by the node numbers involved,

Node x y

1
, 1
2 2

2 0 0

3 1 0

4 1 1

Elements (by node numbers)

1 2 3 (e = 1)
1 3 4 (e = 2)

Ai =A2=l

From this basic input information we first compute the a, b, C coeffcients, Each column below
corresponds to anode (i, j, k).

e=l e=2

a 0 0 1 0 i-2
b 0 - -1 i

2

C 1 - - 0 - i
2
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It is useful to verify that columns do provide the desired Li') functions, For instance, the first column
gives

LP) = 2(0 + (O)x + (l)y)

where thè leading 2 is the 1/2!:" At node 1 this does produce the value 1, while at nodes 2 and 3 it
manages 0, The other columns verify in similar fashion,

For clarity the process of assembling the partial derivatives of J( Ø) = f(z¡, Z2, Z3, Z4) wil now be
presented in more detail than is probably needed. The matrix equation of the preceding problem

contains the contributions to these derivatives from each of our two elements. From element 1 comes

Zi Zz Z3

af/Z1 1
i I i-2 -2 3

af/z2 - i 0 1
2 3

af/Z3 - 0 I 1
2 3

the last column containing constants, Element 2 provides these pieces,

Zi Z3 Z4

af/z¡ 1
1 i-2 -2

af/z3 - 1 02

af/Z4 - 0 i
2

Assembling the two matrices we have this finished product:

Zi ZZ Z3 Z4

af/z¡ 2 1 -1 1 2-2 -2 3

af/z2 1 1
0 0 1-2 2 3

af/Z3 -1 0 1 0 2
3

af/Z4 1 0 0 I 1-2 2 3

Having thus ilustrated the process of assembling elements, it must now be confessed that for the
present case only the top row is really needed, The values of Z2, Z3, Z4 are boundary values and given as
0, 1, 2, They are not independent variables, and the function f depends only upon Zi' Setting this one
derivative to zero and inserting the boundary values, we have

1 1 2
2z1 - 2 (0) - (1) - 2 (2) + 3 = 0

making Zl =~, The correct value is, of course, l,

29.25. Rework the preceding problem using the finer network of triangles shown in Fig. 29-6,

We have these input ingredients: first, the no des 1 to 4 where the coordinates (x, y) are (l, l), (t ~),

(t ~), and (t i) with corresponding z coordinates to be determined; second, the nodes 5 to 9 at which
boundary values are assigned making (x, y, z) coordinates (1,1,2), (1, t ~), (1,0,1), (l, 0, ~), and
(0,0,0); and third, the eight basic triangles designated by node numbers:

2 9 8 2 8 1 1 8 3 3 8 7 3 7 6 1 3 6 1 6 4 4 6 5
A computer program to run the finite element algorithm as described would need this input information,

Suppose we begin a manual run, carryng it through only one of the eight elements, the first, The a,
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5

6

9

7
x8

Fig.29.6

b, C coeffcients prove to be as follows:

a 0 I 08

b 0 1 i-4 4

i 1 1
C 2 -4 -4

This may be checked as in the preceding problem, the columns representing the three nodes in the given
order, The area of each basic triangle is ft Since partial derivatives will be needed only relative to Z¡ to
Z4, we can shorten our manual effort by finding only the terms contributing to these. Fm this element,
we have

1 1
b¡ + ci = 0 + "4 = "4

1 1
b¡bj + c¡cj = 0 - 8 = - 8

1 1
b¡bk+Ch =0-8=-8

which, after multiplication by 1f4~e = 4, we enter into columns 2, 8, and 9 of the partial derivative
matrix, The constant 4~el3 = li is also recorded, all entries in row 2 which pertains to af /z2'

Zi Z2 Z3 Z4 Zs Z6 Z7 ZS Z9

affz1 I I 02 -2
affz2 1

¡ I 1-2 - i TI .
af/z3
affz4

It remains to find the similar contributions ofthe other seven elements and to assemble them
into the above matrix, It is useful to verify that the second element intro duces the terms

shown in row 1 and to find its further contributions to row 2. The rest of the assembly process
wil be left to the computer as wil the substitution of boundary values and solution of the

resulting fourth-order linear system, The following output was obtained:

Node Computed Tme

1 .500000 ii
2 .166667 i

8

3 .666667 5
8

4 1.66667 9
8

The bulls-eye at node 1 is interesting,
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29.26. Apply the same finite element method to the problem of a quarter circle,'using just a single
element as shown in Fig, 29-7, The Poisson equation is again to be used,as are the boundary
va lues x2 + y2 = 1. The true solution is thus the same x2 + y2,

2

Fig.29.7

The problem ilustrates the approximation of a curved boundary by a straight-line
segment. In general, many such segments would be used, The three nodes have the~e
coordinates:

Node x y z

1 0 0 -
2 1 0 1

3 0 1 1

The value of Zl is the independent variable of the optimization. The a, b, c coeffcients are

Node 1 Node 2 Node3

a 1 0 0
b -1 1 0
c -1 0 1

êJ¡ 1 1 2
-=z --z -..z +-=0
Zl I 2 2 2 3 3

from which Zl = l follows at once, The true value is, of course, zero, By symmetry the same result would
be found for the full circ1e by using four -such triangles,

and lead to

_I_-I ....
I

I

I

I

I

I

I

!

11
i

2 3

I-1---..I ..,I 'I "
1

I

I

I

,11 5
i

.. , ,

Fig.29.8 Fig.29.9
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29.27. Ilustrate the concept of convergence, as it applies to finite element methods, by comparing
the crude approximation just found with results from two-triangle and four-triangle efforts
based upon the arrangements shown in Figs, 29-8 and 29-9,

Needless to say, all these efforts are relatively crude, but it is interesting to observe the results,

Node (0,0) (~, 0)

Fig,29-7 .33 -
Fig.29-8 -,08 .35

Fig,29-9 -.03 ,26

True 0 .25

Things have begun to. move in a good direction. Finite element methods have been shown to be
convergent provided the process of element .refinement is carried out in a reasonable way,

TUE WAVE EQUATION
29.28. Apply finite difference methods to the equation

,PU ,PU

ot2 - ox2 = F(t, x, U, Ur. Uxl
- 00': x ':00, O~t

with initial conditions U(x, 0) = fex), Ut(x, 0) = g(x),

Introduce a rectangular lattice of points Xm = mh, tn = nk. At t = n = 0 the U values are given by the
initial conditions. Using

au U(x, t + k) - U(x, t)-=at k
at t = 0 we have U(x, k) = fex) + kg(x). To proceed to higher t levels we need the differential equation,
perhaps approximated by

U(x, t + k) - 2U(x, t) + U(x, t - k)

k2

U(x + h, t) - 2U(x, t) + U(x - h, t)
h2

= F(' U U(x, t) - U(x, t - k) U(x + h, t) - U(x - h, t)Jt, x, , k ' 2h
which may be solved for U(x, t + k), Applied successively with t = k, k + 1, ' . . , this generates U values
to any t level and for all xm.

29.29. Ilustrate the above method in the simple case F = 0, fex) = x2, g(x) = 1.

The basic difference equation may be written (see Fig, 29-10)

VA = 2(1 - À2)Uc + À2(US + UD) - VE

A

h

B h c D

E.
Fig,29-10
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where Å = klh, For Å = 1 this is especially simple, and results of computation with h = k = .2 are given in
Table 29.3. Note that the initial values for x = 0 to 1 determine the U values in a roughly triangular
region. This is also true of the differential equation, the value U(x, t) being determined by initial values
between (x - t, 0) and (x + t, 0). (See Problem 29.30,)

Table 29.3

,6 1.00 1.0
.4 .52 .64 .84 1.2
.2 .20 .24 .36 .56 .84 1.20
0 .00 .04 ,16 ,36 .64 1.00

tlx 0 .2 .4 .6 .8 1.0

29.30. Show that the exact solution value U(x, t) of Utt = Uxx, U(x, 0) = fex), Ut(x, 0) = g(x)
depends upon initial values between (x - t, 0) and (x + t, 0),

For this old familiar problem, which is serving us here as a test case, the exact solution is easily
verified to be

_f(x + t) + f(x - t) + ~ r+i g(ç) dçU(x, t) - 2 2 JX-I
and the required result follows at once. A similar result holds for more general problems.

29.31. Ilustrate the idea of convergence for the present example,

Keeping Å = 1, we reduce hand k in steps, To begin, a few results for h = k = .1 appear in Table
29.4.' One looped entry is a second approximation to U(,2, ,2) so that .26 is presumably more accurate
than .24, Using h = k = ,05 would lead to the value ,27 for this position, Since the exact solution of the
differential problem may be verified to be

U(x, t) =x2 + t2 + t

we see that U(,2, .2) = ,28 and that for diminishing hand k our computations seem to be headed toward
this exact value. This illustrates, but by no means proves, convergence, Similarly, another looped entry
is a second approximation to U(.4, .4) and is better than our earlier .64 because the correct value is .72,

Table 29.4

.4 .61 @
,3 .40 .45 .52 ,61
.2 .23 @ .31 .38 .47 .58
.1 .10 ,11 ,14 .19 .26 .35 .46 .59
0 .00 .01 .04 ,09 ,16 .25 .36 .49

tlx 0 .1 .2 .3 .4 .5 ,6 ,7

29.32. Why is a choiee of Â = klh? 1 not recommended, even though this proceeds more rapidly in
the t direction?

The exact value of U(x, t) depends upon initial values between (x - t, 0) and (x + t, 0). If Å? 1 the
computed value at (x, t) wil depend only upon initial values in subset AB of this interval. (See Fig,
29-11.) Initial values outside AB could be altered, affecting the true solution, but not affecting our
computed value at (x, t), Thisis unrealistIc.
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Supplementary Problems

29.33. Solve the equation y" + y' + xy = 0 with y(O) = 1 and y(l) = 0 by the method of Problem 29.1.

29.34. Solve the previous problem by the method of Problem 29,2. Which approach do you find more
convenient?

29.35. Solve y" + VX y' + Y = eX with y(O) = 0 and y(l) = 0,

29.36. Apply the method of Problem 29.4 to y" + Ây = 0 with y(O) = y and y'(l) = 0, Prove convergence to the
exact solution y = sin (2n + 1)(.ixI2), Ân;" ((2n + 1)(.i12)Y

29.37. Apply the method of Problem 29.4 to obtain the largest eigenvalue of y" + Âxy = 0 with y(O) = y(l) == 0,

29.38. Apply the method of Problem 29,5 to y" = y2 + (y')2, y(O) = 0, y(l) = 1.

29.39. An object climbs from grouiid level to height 100 feet in 1 second, Assuming an atmospheric drag which
makes the equation of motion y" = - 32 - ,lW, what was the initial velocity?

29.40. An object climbs from (0,0) to (2000, 1000) in 1 second, distances being in feet. If the equations of
motion are

x"(t) == - ,lVVcos æ y"(t) = -32-.1VVsinæ

where v2 = (X')2 + (y')2 and æ =arctan (y' Ix'), find the initial velocity.

29.41. Find the function y(x) which minimizes Sb (xy2 + (y'?l dx and satisfies y(O) = 0, y(l) = 1. Use the
method of Problem 29.7,

29.42. Apply the method of Problem 29.12 to the case a =c = 1, b =0, L = 1, J(t) =g(t) = 0, F(x) =x(l -x),
Diminish h, obtaining successive approximations until you feel you have results correct to two decimal
places, Use Â = l.

29.43. Repeat the previous problem with Â =~. Are satisfactory results obtained more economically or not?
Try Â = 1.

29.44. Show that replacement of derivatives by simple finite differences converts the two-dimensional diffusion
equation T, = Txx + Tyy into

T¡.m.n+1 = (1 - 4Â)TI.m.n + Â(Ti+1,m,n + T¡-l,m,n + Ti,m+i,n + Ti,m-i,n)

and obtain asimilar approximation to the three-dimensional diffsion equation T, = Txx + Tyy + 'Lz'
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29.45. Find an approximate solution to Laplace's equation in the region O;§x, O;§y, y;§ 1 -x2 with

T(O, y) = 1 - y, T(x, 0) = 1 - x and the other boundary values zero, Use the simplest method for
handling curved boundaries, merely transferring boundary values to nearby lattice points. Try h = ~ and
h = l. How accurate do you think your results are?

29.46. Repeat the procedure of Problem 29,9 using the Ritz approximation ep(x) =x(l -x)(co + CiX). Plot the
corresponding curve and compare with the true solution,

29.47. Write out the linear system of Problem 29,11 for the case n = 4, Solve it and verify that exact values are
found.

29.48. Verify the partial derivatives of f relative to Z¡, Zj, Zk as given in Problem 29,23.

29.49. Complete the verifications of the a, b, c coeffcients, as suggested in Problem 29.24.

29.50. Verify the contributions of the second finite element, as suggested in ProbÍem 29.25,

29.51. Verify the results given in Problem 29.27 for the two-triangle and four-triangle configurations,

29.52. Apply the finite element method to the Laplace equation (set K = 0 instead of 4) on the triangle with
vertices (0,0), (1,1), (-1,1) with boundary values given by y2_X2. Note that this makes U(x, y) =
y2 - x2 the true solution, From the symmetry it wil be enough to work with the right half of the triangle,

Use two interior nodes, at (0, l) and (0; Ð, joining these to (1,1) to form three basic triangles. The true
values of U at the two interior no des are, of course, l and ~, What values do these three elements
produce?

29.53. Suggest a simple finite difference approximation to Txx + Tyy + 'tz = 0,

29.54. The boundary value problem y" = n(n - l)y/(x -1)2, y(O) = 1, y(l) = 0 has an elementary solution,
Ignore this fact and solve by the garden-hose method, using n = 2,

29.55. Try the previous problem with n = 20, What is the troublesome feature?

29.56. The boundary value problem y" - n2y = - n2/(1- e-n), y(O) = 0, y(l) = 1 has an elementary solution,
Ignore this fact and solve by one of our approximation methods, using n = 1.

29.57. Try the previous problem with n = 100, What is the troublesome feature?

29.58. The boundary value problem

u,t+Uxxxx=O o 0: x 00: t U(x, 0) = U,(x, 0) = UxxC0, t) = 0 U(O, t) = 1
represents the vibration of a beam, initially at rest on the x axis, and given a displacement at x = 0, This
problem can be solved using Laplace transforms, the result appearing as a Fresnel integral which must
then be computed by numerical integration, Proceed, however, by one of our finite difference methods,



Chapter 30

Monte Carlo Methods

RANDOM NUMBERS
For our purposes, random numbers are not numbers genera ted by a random process such as the

flip of a coin or the spin of a wheeL. Instead they are numbers generated by a completely.

deterministic arithmetical process, the resulting set of numbers having various statistieal properties
whieh together are called randomness, A typieal mechanism is

Xn+i = rxn(mod N)

with rand N specified, and Xo the "seed" of the sequence of "random" numbers Xn' Such modular
multiplicative methods are commonly used as random number generators. With decimal computers

Xn+l = 79xn(mod Ul) Xo = 1

has been used, and with binary computers

Xn+l = (8t - 3)xn(mod 28) Xo= 1

with t some large number, Some generators include an additive element in this way:

Xn+1 = (rxn + s)(modN)

A simple example suitable for practiee problems is

Xn+l = (25, 173xn + 13, 849)(mod 65,536)

which produces a well-scrambled arrangement of the integers from 0 to 65,535,
To be considered random, the sequence of Xn numbers must pass a set of statistical tests, They

must be evenly distributed over the interval (0, N), must have the expected number of upward and
downward double runs (13,69,97, for example), tripie runs (09, 17,21,73), and so on, Sometimes a
successful sequence is said to consist of pseudorandom numbers, presumably to reserve the word
random for the output of truly random devices (roulette wheels?), In this chapterrandomness wil
refer to the qualities of the output, not to the nature of the generator. This wil cover the apparent
contradiction in terms, which has a thoroughly deterministie mechanism producing random output.

Many programming languages (Fortran, for instance) have a built-in random number generator
subject to call, Very likely it is constructed to a modular multiplicative design,

APPLICA TIONS

Monte Carlo methods solve certain types of problems through the use of random numbers,
Although in theory the methods ultimately converge to the exact results, in practice only modest
accuracy is attainable, This is due to the extremely slow rates of convergence. Sometimes Monte
Carlo methods are used to obtain good starting approximations for speedier refinement algorithms,
Two types of applications are offered,

1. Simulation refers to methods of providing arithmetical imitations òf "real" phenomena, In a
broad sense this describes the general idea of applied mathematics, A differential equation
may, for example, simulate the flight of a missile, Here, however, the term simulation refers
to the imitation of random processes by Monte Carlo methods, The classic example is the
simulation ofa neutron's motion into a reactor wall, its zigzag path being imitated by an
arithmetical random walk, (See Problems 30.2 and 30.4,)

2, Sampling refers to methods of deducing properties of a large set of elements by studying
only a smalI, random subset. Thus the average value of fex) over an interval may be

450
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estimated from its average over a finite, random subset of points in the interval. Since the
average of fex) is actually an integral, this amounts to a Monte Carlo method for
approximate integration, As a second example, the location of the center of gravity of a set
of N random points on the unit circle may be studied by using a few hundred or a few
thousand such sets as a sampie, (See Problem 30,5,)

Solved Problems

30.1. What are random numbers and how may they be produced?

For a simple but informative first example begin with the number 01. Multiply by 13 to obtain 13,
Again multiply by 13, but discard the hUhdred, to obtain 69, Now continue in this way, multiplyihg
continually by 13 modulo 100, to produce the following sequence of two-digit numbers. .

01, 13, 69, 97, 61, 93, 09, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77.

After 77 the sequence begins again at 01.
There Ìs nothing random about the way these numbers have been generated, and yet they are

typical of wh at are known as random numbers, If we plot them on a scale from 00 to 99 they show a
rather uniform distribution, no obvious preference for any part of the scale, Taking them consecutively
from 01 ând back again, we find ten increases and ten decreases, Taking them in tripIes, we find double
increases (such as 01,13,69) together with double decreases occurring about half the time, as

prob ability theory suggests they should, The term randorn nurnbers is applied to sequences which pass a
reasonable number of such prob ability tests of randomness, Our sequence is, of course, too short to
stand up to tests of any sophistication. If we count tripIe increases (runs such as 01, 13, 69, 97) together
with tripIe decreases, we find them more numerous than they should be, So we must not expect too
much, As primitive as it is, the sequence is better than what we would get by using 5 as multiplier
(01,05,25,25,25, , , . which are in no sense random nuinbers), A small multiplier such as 3 leads to
01,03,09,27,81" , , and this long upward run is hardly a good omen, It appears that a weIl-chosen
large multiplier may be best,

30.2. Use the random numbers of the preceding problem in a simulation of the movement of
neutrons through the lead wall of an atomic reactor,

For simplicity we assurne that each neutron entering the wall travels a distance D before collding
with an atom of lead, that the neutron then rebounds in a random direction and travels distance D once
again to its next collsion, and so on, Also suppose the thickness of the wall is 3D, though this is far too
flimsy for adequale shielding, Finally suppose that teil collsions are all a neutron can stand, What
proportion of entering neutrons wil be able to escape through this lead wall? If our random numbers
are interpreted as directions (Fig. 30-1) then they may serve to predict the random directions of
rebound. Starting with 01, for example, the path shown by the broken li ne in Fig. 30-2 would be
followed. This neutron getsthrough, after four collisions. A second neutron follows the solid path in
Fig. 30-2, and after ten col1isions stops inside the wall, It is now plain that we do not have enough
random numbers for a realistic effort, but see Problem 30,3,

30.3. How mayamore extensive supply of random numbers be produced?

There are quite a few methods now available, but most of the best use the modular multiplication
idea of Problem 30. L For example, the recursion

Xn+1 = 79xn(mod Hr) XO = 1

generates a sequence of length 5, 10'-3 having quite satisfactory statistical behavior. It is suitable for
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C6

Cg

C2

Fig.30-1 Fig.30-2

decimal machines, The recursion

Xn+1 = (8t - 3)xn(mod l) xo= 1

generates apermutation of the sequence 1,5,9, , , , , l - 3, again with adequate statistical behavior, It
is suitable for binary machines, The number t is arbitrary but should be chosen large to avoid long
upward runs, In both these methods s represents the standard word length of the computer involved,
perhaps s = 10 in a decimal machine and s = 32 in a binary machine,

30.4. Continue Problem 30,2 using a good supply of random numbers,

Using the first sequence of Problem 30,3 on a ten-digit machine (s = 10), the results given below
were obtàined, These results are typical of Monte Carlo methods, convergence toward aprecision
answer being very slow. It appears that about 28 percent of the neutrons wil get through, so that a much
thicker wall is definitely in order,

Number of trials 5,00 10,000 15,000 20,000

Percent penetration 28,6 28,2 28,3 28.4

30.5. Suppose N points are selected at random on the rim of the unit circle, Where may we expect
their center of gravity to fall

By symmetry the angular coordinate of the center of gravity should be uniformly distributed, that
is, one angular position is as likely as another. The radial coordinate is more interesting and we
approach it by a sampling technique, Each random number of the Problem 30.3 sequences may be
preceded by a decimal (or binary) point and multiplied by 2¡¡, The result is a random angle 8; between 0
and 2¡¡, which we use to specify one random point on the unit circle. Taking N such random points
together, their center of gravity wil be at

1 N 1 NX=- L cos 8¡ y=- L sin 8;N;~l N¡~i
and the radial coordinate wil be r = VX2 + y2, Dividing the range 0 ~ r ~ 1 into subintervals of length
-l, we next discover into which subinterval this particular r value falls, A new sampIe of N random
points is then taken and the process repeated. In this way we obtain a discrete approximation to the
distribution of the radial coordinate. Results of over 6000 sampies for the cases N = 2, 3, and 4 are given
in Table 30,1. The columns headed Freq give the actual frequency with which the center of gravity
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Table 30.1

n=2 n=3 n=4

Freq Cum Exact Freq Cum Freq Cum

1 121 ,0197 ,0199 7 .001 36 ,005
2 133 ,0413 ,0398 37 ,007 87 ,018
3 126 .0618 ,0598 58 .017 128 ,038
4 124 ,0820 ,0798 67 ,028 169 ,063
5 129 .1030 ,0999 95 ,043 209 ,094
6 111 ,1211 ,1201 113 ,061 192 ,123
7 123 ,1411 ,1404 141 ,084 266 ,163
8 115 ,1598 ,1609 in ,112 289 ,207

9 129 ,1808 ,1816 224 ,149 238 ,242
10 142 ,2039 ,2023 336 ,203 316 ,290
11 123 ,2240 ,2234 466 ,279 335 ,340
12 138 .2464 ,2447 344 .335 360 .394
13 126 ,2669 ,2663 291 .383 357 .448
14 157 ,2925 .2883 285 .429 365 ,503
15 126 ,3130 ,3106 269 .473 365 .558
16 125 ,3333 .3333 255 .514 405 ,618

17 150 .3577 ,3565 223 ,551 353 .672
18 158 .3835 .3803 189 ,581 255 ,710
19 135 .4054 .4047 208 ,615 275 .751
20 148 .4295 ,4298 185 .645 262 .790
21 157 .4551 ,4558 215 ,680 182 ,818
22 158 .4808 .4826 197 .712 159 .842
23 173 ,5090 ,5106 183 ,742 163 ,866
24 190 .5399 ,5399 201 .775 168 .892

25 191 ,5710 .5708 188 .805 167 ,917
26 211 ,6053 ,6038 183 ,835 131 .936
27 197 .6374 ,6393 163 .862 102 ,952
28 247 ,6776 ,6783 176 ,890 87 .965
29 262 .7202 ,7221 170 ,918 87 ,978
30 308 ,7703 .7737 162 ,944 76 ,989
31 424 ,8394 ,8407 163 ,971 45 .996
32 987 1.0000 1.0000 178 1.000 27 1.000

appeared in each subinterval, from the center outward. Columiis headed Cum give the cumulative
proportions, Fot the case N = 2 this cumulative result also happens to be exactly (21 Jr) arcsin (rI2)
which serves as an accuracy check. Note that we seem to have about three-place accuracy.

30.6. Solve the boundary value problem

Txx+ Tyy= 0 T(O, y) = T(l, y) = T(x, 1) = 0
by a sampling method which uses randorn walks.

T(x, 0) = 1
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This is an example of a problem, with no obvious statistical flavor, which can be converted to a
form suitable for Monte Carlo methods, The familar finite difference approximations lead to a discrete
set of points (say the nine in Fig. 30~3), and at each of these points an equation such as

1
15 = 4: (1; + T4 + 4 + T8)

makes each T value the average of its four neighbors, This same set of nine equations wasencountered
in Problem 26,29, each unknown standing for the prob ability that a lost dog wil eventually emerge on
the south side of our diagram, reinterpreted as. a maze of corridors! Though a sampling approach is
hardly the most economical here, it is interesting to see what it manages, Starting a fictitious dog at
position 1, for example, we generate a random number. Depending on which of the four subintervals
(0, i), (i, D, (t Ü, or (L 1) this random number occupies, our dog moves north, east, south, or west to

the next intersection. We check to see if this brings hirn outside the maze, If it does not, another random
number is generated and a second move folIows. When the dog finally emerges somewhere, we record
wh ether it was at the south side or not, Then we start a new fictitious dog at position 1 and repeat the
action. The result of 10,000 such computer sampIes was 695 successful appearances at a south exit, This
makes the prob ability of success ,0695' and should be compared with the result .071 found by the
Gauss-Seidel iteration. The latter is more accurate, but the possibilty of solving differential boundary
value problems by sampling methods may be useful in more complicated circumstances,

1 2 3

4 5 6.

7 8 9

Fig.30-3

30.7. Ilustrate approximate integration by Monte Carlo methods,

Perhaps the simplest procedure is the approximation of the integral by an average,

rb 1 N
L fex) dx =¡l6f(x¡)

where the X¡ are selected at random in (a, b), For example, if we use just the first five random numbers
of Problem 30.1, all preceded by a decimal point, then we have

( 1
Jo x dx = 5 (2,41) =.48

where the correct result is t andwe also find fox2 dx = .36 where the correct result is l, For the same
integrals, with N = 100 and using the longer sequences of Problem 30.3, the results ,523 and ,316 are
obtained, the errors being about 5 percent, This is not great accuracy, but in the case of integration in
several dimensions the same accuracy holds and Monte Carlo methods compete weIl with other
integration algorithms,

Supplementary Problems

30.8. Generate a sequence of 20 random numbers using Xn+1 = rxn(mod 100), selecting your own multiplier r,
Use these numbers to simulate three or four neutron paths as in Problem 30,2,
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30.9. Using a sequence of the sort in Problem 30.3, simulate 1000 neutron paths as in Problem 30.4. Repeat

for lead walls of thickness 5D, IOD, and 20D. How does the shielding effciency seem to grow?

30.10. Simulate 1000 random walks in a plane, each walk being 25 steps long, steps having equal lengths, Let
each walk start at (0,0) and each step be in a random direction. Compute the average distance from
(0, 0) after 4, 9, 16, and 25 steps,

30.11. Approximate this integral using random numbers: f~ sin x dx.

30.12. Approximate this integral using random numbers:

111111111111 dA dBdCdDdEdFo 0 0 0 0 ol+A+B+C+D+E+F

30.13. Golfers A and B have the following records:

Score 80 81 82 83 84 85 86 87 88 89

A 5 5 60 20 10

B 5 5 10 40 20 10 10

The numbers in the A and B rows indicate how many times each man has shot the given score,
Assuming they continue this quality of play and that A allows B four strokes per round (meaning that B
can subtract four strokes from his scores), simulate 1000 matches between these men, How often does A
defeat B? How often do they tie?

30.14. A, B, and C each has an ordinary pack of cards, They shuffe the packs and each exposes one card, at
random. The three cards showingmay include 1, 2, or 3 different suits, The winner is decided as folIows:

Number of suIts showing 1 2 3

Winner is A B C

The exposed cards are replaced and this completes one play. If many such plays are made, how often
should each man win? The answer can be found by elementary probability, but simulate the actual play
by generating three random numbers at a time, determining suits according to this scheme:

x falls inside interval (0, i) (Ln (!, ~) (t 1)

Suit is S H n C

30.15. A baseball batter with average .300 comes to bat four times in agame, What are his chances of getting
0, 1, 2, 3, and 4 hits, respectively? The answer can be found by elementary probability, but proceed by
simulation.

30.16. In the "first man back to zero" game two players take turns moving the same marker back and forth
across the board.
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The marker is started at 0, Player Astarts and always moves to the right and B to the left, the number
of squares moved being determined by the throw of one die, The first man to stop on zero exactly is the
winner, If the marker goes off either end of the board the game is a tie, the marker is returned to 0 and
a new game is started by player A, What are the chances of A winning? The answer is not so easy to find
by prob ability theory, Proceed by simulation,

30.17. The integers 1 to N are arranged in a random order. What are the chances that no integer is in its
natural place? This is the famous "probleme des rencontres" and is solved by probabilty theory, But
choose some value of N and proceed by simulation,

30.18. Generate three random numbers, Arrange them in increasing order Xl -:X2 -:X3o Repeat many times and
compute the average Xv average X2, and average X3'

30.19. Suppose that random numbers y with nonuniform distribution are required, the density to be f(y), Such
numbers can be generated from a uniform distribution of random numbers X by equatingthe cumulative
distributions, that is,

f1'dx=J:f(Y)dY
For the speciat case f(y) = e-Y, show how y may be computed from x,

30.20. For the normal distribution f(y) = e-y21V2 the procedure of the preceding problem is troublesome. A
popular alternative is to generate 12 random numbers x, from a uniform distribution over (0, 1), to sum
these and, since a mean value of zero is òften preferred for the normal distribution, to subtract 6, This
process depends upon the fact that the sum of several uniformly distributed random numbers is elose to
normally distributed, Use it to generate 100 or 1000 numbers

y = (~Xi) ~6

Then check the distribution of the y numbers generated, What fraction of them are in the intervals
(0,1), (1,2), (2,3), and (3, 4)? The corresponding negative intervals should have similar shares,



Answers to Supplementary Problems

CHAPTER 1

1.39. 1 + ,018, only two terms being needed.

1.40. -.009

1.41. N = 100, N = 10,000

1,42, .114904, .019565, .002486, .000323, .000744, .008605

1,43. .008605

1,44, Computed J8 = .119726;
1.48, .1494 approx.

1.49. Above ¥ there is overflow; below t underflow.
1.56. Pi in binary, approx,

1.57. Li for taxicabs, L for the king.

CHAPTER 2
2.11. (x - 1)(x2 + 1)

2,12, 3, -3, 3, -3, 3

2,13, p(x) = 2x - x2

2,15, Est. max, error = .242; actual error = .043,

2.16, y' = 1.1, p' = 1

2.17, y"= -1.75, p"=-2
2,18, 4fTC, ~

2,19, Y = x + 7x(x - 1) + 6x(x - l)(x - 2)

2,20, TC (x ) = x(x - 1 )(x - 2)(x - 3)
2,21, 1

CHAPTER 3
3.13. Fourth differences are all 24,

3.14, Ll5yo = Ll4yi - Ll4yo and now use our result for fourth differences.

3.15.
Uk+1 Uk VkUk+1 - UkVk+1---= ,etc.
Vk+1 Vk Vk+IVk

3.16.

3.17,

3.22.

3.23.

3,24.

3.25,

3.26,

3,27.

3,28,

3.29,

3.30.

3.31.

Fifth differences are 5, 0, -5.

Change Y2 to O.

1,3,7,14,25,41
LlYk = 0, 1, 5, 18, 36, 60; Yk = 0, 0, 1, 6, 24, 60, 120

Ll2Yk = 24, 30, 36; LlYk = 60, 90, 126; Yk = 120, 210, 336

Change 113 to 13 1.

Ll2yi = Y3 - 2Y2 + Yi; Ll2Y2 = Y4 - 2Y3 + Y2

3k

4\ (- 2)k

~W-(-2n
Apply the identity for the sine of a difference.

Apply the identity for the cosine of a difference.

457
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CHAPTER 4
4.23. 120, 720, 0, -~,~, - fl

4.24. ~, lõ, 5à4' t fg, iii
4.25. 20, 1,0, - l, f¡, - 21J3

4.26. Fourth differences are all 24,

4.27. 4k(3), 12k(2, 24k, 24

4.28. 5k(4), 20k(3), 60k(2, 120k, 120

4,29,2k3-7e+9k-7
4.30. k6 - 15k5 + 85k4 - 224k3 + 271k2 - 118k + 1

4,31. ~k(4) ". 4k(3) + 2k(2) - 2k(1) + 1

4,32, 3k(5) - 25k(3) + 75k(2) + 53k(l)

4.33, AYk = 53 + 135k + 90e - 90k3 + 15k4

4.34, A 2Yk = 150 - 30k - 180e + 60e

4,35, 31, 129, 351

4,36. 10, 45, 126

4,37. 2

4.38. 4

4.39, k(3) /3

4,40, k(4)/4

4,41, lk(3) + !k(2)

4.42. !k(2) + k(3) + ~k(4)

4.43. - l/(k + 1)

CHAPTER 5
5.9. H(n + 1)(2) - 1(2))
5.10, n2(n + 1)2/4

5.11. Use the fact that Ai = A(Ai/(A - 1)),
5,12, Use the fact that W = i(k)/k! = A(i(k+I)/(k + I)!),
5.13, ~

5,14. i
5.15, (R3 + 4R2 + R)/(l - Rt

5.16, 26

5,17. -l

5.18, log (n + 1)

5.19. t \s?)((N + l)u+I))/(j + 1))
j~l .

5.20, ~ (1 +~+~+,.. +~)n 2 3 n
Denote the sum by Sn(R), Then Sn+i(R) = RS~(R) which may be used to compute each sum in its turn,

1 1 1
Yk = 1 + - + - + ' , , +-2 3 k - 1
Yk = log 2 + log 3 + ' , , + log (k - 1)

5.21,

5.22.

5,23.

CHAPTER 6
6.8. ((x - 2)(x - 4)/64)(8 - 4(x - 6) + (x - 6)(x - 8))
6.9. 1 +x + !x(x - 1)

6.10, 6 + 18(x - 3) + 9(x - 3)(x - 4) + (x - 3)(x - 4)(x - 5)
6.11, Degree four suffces, x(x - 1m - l(x - 2) + Mx - 2)(x - 3)).
6,12, 1 + x + !x(x - 1) + gx(x -1)(x - 2)
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6,14. 7x2 - 6x

6.15, lX3 - 2x2 + h; collocation at x = 4, but not at x = 5.
6.16, No, degree three.

6.17. No, degree one,

6.18. (7x2-x4)/6; greater in (-2, -1) and (1,2),
6.19. (7x - x2)/6; arguments are not equally spaced,

6.20. Yk = lk(k - l)/(k - 2)

CHAPTER 7
7.33. 1 + 2k + 2k(k + 1) + 1k(k + l)(k + 2) + ~k(k + l)(k + 2)(k + 3)
7,34. 120 + 60k + 12k(k + 1) + k(k + l)(k + 2)

7,36, 2x - 3x2 + x3

7.37, 1 - k - k(k - 1) + Hk + l)k(k - 1) + l(k + l)k(k - l)(k - 2)
7,38, 1 + k - (k + l)k - Hk + l)k(k - 1) + Hk + 2)(k + l)k(k - 1)

7,39. 24 + 36k + 9k(k - 1) + (k + l)k(k - 1)
7,40. 1 - !k(k - 1) + -bk + l)k(k - l)(k - 2)
7.42, 1 - e + l(k + l)e(k - 1)

7,43, With k = 0 at x = 1, Y = 2 + ~k + !e,
7,44, 60k - 24(k - 1) + 4(k + l)k(k - 1) - 3k(k - l)(k - 2)
7.45. 1 - H(k + l)k(k - 1) - k(k - l)(k - 2)) + M(k2 - 4)(e - l)k - (e - l)k(k - 2)(k - 3))

7.46, 4k - 2(k - 1) + lf(e - l)k - k(k - l)(k - 2))
7,47, 42 + 36(k - !) + ¥k(k - 1) + (k - !)k(k - 1)
7,48. 1 - !k(k - 1) + -bk + l)k(k - l)(k - 2)

CHAPTER 8

815 (x - l)(x - 4)(x - 6) x(x - 4)(x - 6) x(x -l)(x - 6) x(x - l)(x - 4), () = _ 1 (3) = 0 (5) = 1.. -24 15 + -24 60' Y 2 , Y , Y
8.16. - 4x(x - 2) 

(x_ - 4)(x - 5) + 4x(x _ l)(x _ 4)(x _ 5) _ 11 x(x - l)(x ~- 2)(x - 5) ; y(3) = 84

8,18,

8,19,

ao = ~, a1 = - 15, a2 == ¥

i .. ~ TI~+~_-.+-.
x+1 x-I x-4 x-6
(X-X1)2 (( _2(X-Xo)) (_) 'J (X-XO)2 ((1_2(X-xi)) .( - ) IJ

( )2 1 Yo + x Xo Yo + ()2 Yi + x xI Y1xo-xi xo-x1 X1-XO Xi-XO
First order, -2, ~, -1; second order, ~, -l; third order, -l,

1 - 2x + ~x(x - 1) - lx(x - l)(x - 4)

First order, ~, 0, - l; second order, - t l; third order, -l.

8,22,

8.23.

8.24.

8,25.

8.26.

8.27.

-1
16x + 8x(x - 1) - 3x(x -l)(x - 2) - x(x - l)(x - 2)(x - 4); y(3) = 84

CHAPTER 9
9.22. Co = C4 = 0, Cl = C3 = ,!, C2 = - J.

9,23, S2(X) = (2 - X)3 /6 - 7(x '- 1)3/12 - (2 - x )/6 + 19(x - 1)/12;

S3(X) = -7(3 - x?/12 + (x - 2)3/6 + 19(3 - x)/12 - (x - 2)/6
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9,24. The d¡ are all ze.ro.

9.25. The di are six times the second divided difference of Y, which is a constant, All equations except the end

conditions reduce to 3C = d¡.

CHAPTER 10
10.8. 2x2 - x3

10,9, x4 - 4x3 + 4x2

10.10. 3x5 - 8x4 + 6x3

10,11 Pi(X) = lx2, P2(X) = 2 - l(4 - x?

10,12, Pi(X) = x3(4 - x)/16, piCx) = 2 - (4 - xfx/16
10,15, x4 - 2x2 + 1

10,16, 2x4 - x + 1

10.17, x3 - x2 + 1

CHAPTER 11
11.20. sinx =x -x3/3! +x5/5! -x7/7! +'" to odd degree n;

cosx = 1 -x2/2! +x4/4! -x6/6! +'" to even degree n.

:t sin ç . xn+I/(n + I)! for both functions.

n =7
n = 8, n = 12

11,21.

11.22.

11.23.

11.24, ¿; Dili!
i=l

11,27, 0 + !02 + l03 - 11805 + 1¿24 07 + ' . ,

CHAPTER 12
12.31. 1.0060, 1.0085, no

12.32. 1.0291

12.33. 1.01489

12.34. 1.2250

12.35. 1.05830

12.36. ,12451559

12.37. ,1295

12.38. 1.4975

12.39. 1.4975

12.40. ,1714, .1295, ,0941

12.41. ,02

12.42. .006

12.43. .25, ,12
12.45. About i

12.48. About h = ,15 for x ? 1.
12,49, ~

12.51. 15,150

12.52. .841552021

12.54. 1.6190, 1.8327, 1.20419,

the'last being 3 units off.

12.55. 1.20419, 1.22390,

both being somewhat in error,

12.56. Erior = x4 - 7x2 + 6x;

ç = 0 explains the zero error,

12.57. Fortunate value of ç,

12,58. 0

12,59. 24

12,60, 0 and 1

CHAPTER 13
f" ( I) 2 6e - 6k + 1 3 4k3 - 6e - 2k + 2 4 5e - 10e + 5k - 1 513.22. hp = UY1I2 + k - 2 rio Y1I2 + 12 0 Y1I2 + 24 rio Yl/2 + 120 0 Y1I2

2 (2) _ "2 ( 1 3 12e - 12k .c 2 4 4k3 - 6e + 1 5h P - riu Y1I2 + k - 2)0 Y1I2 + 24 rio Y1I2 + 24 0 Y1I2

h3(p )(3) = 03Y1I2 + (k - Dri04Y1/2 + He - k)(¡5YI/2

h4p(4) = ri04Y1I2 + (k - !)05yl12 h5p(5) = 05Y1I2

1323, .4714, -.208, .32

13,24. Predicted error approx, 10-9; actual error ,000038,

13.25. Max. r.o. error is about 2,5E/h; for Table 13.1 this becomes ,00025.
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13.28. Exact result is x = n12, y = 1.
13.29, 1.7
13,31, hS = 3E18A; h =.11

CHAPTER 14

14.41. h = \//100

14.42. A2 = .69564, Ai = .69377, (4AI - A2)/3 = .69315

14,43, .69315

14,44, .6931, no corrections needed.

14.45. h = .14

14.46. \//104 trapezoidal, .014 Simpson.

14.52. Exact value is nl4 =.7853982.

14,53. Correct value is 1.4675.

14.58. .36422193

14.60. 9.68848

14.62. a_i=ai=rs, ao=+t bo=O, b_i= -b1=-&
14,67, .807511

CHAPTER 15
15.56. 1.0000081

15,57. 1.5

15.61. Lo=l, LI=l-x, L2=2-4x+x2, L3=6-18x+9x2-x3,'
L4 = 24 - 96x + 72x2 - 16x3 + x4, Ls = 120 - 600x + 600x2 - 200x3 + 25x4 - XS

15.68, Exact value is .5.

15.69. Correct value to five places is .59634.

15.71. Ho = 1, Hi = 2x, H2 = 4x2 - 2, H3 = 8x3 - 12x, H4 = 16x4 - 48x2 + 12, Hs = 32xs - 160x3 + 120x

15,73. (yn/6)(y( - yr) + y(yr) + 4y(0)); 3yn/4

15,77. 2.128

15,78, .587

15.80 2.404

15,81. 3.82

CHAPTER 16
16.13. .5 and - .23, compared with the exact values .5 and - .25

16.15, 1.935

16,18. -.797

CHAPTER 17
17.50. n(n - l)(n - 2)/3
17,51, (n + 1)2n2(2n2 + 2n - 1)/12

17,52, ~ _ 2n + 3
4 2(n + l)(n + 2)
11 1( 1 1 1)17,55, --- -+-+-
18 3 n + 1 n + 2 n + 3

17,57, .6049

17,61, About x = .7.

17,62,

17.63.

At most eight.

About x = .7.
2n+l~. (2n+2)2

(2n + I)! (2n + 2)2 _ x2; ab 

out x = 10.

.798

.687

.577

1.285

17.64.

17,65,

lí,66,

17,67,

17.68,
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17,73. Qi =xi
17,78, After four terms; this method yields C = ,5769.

. 17,86, After seven terms,

CHAPTER 18

( 1 Jk k 118.31. Yk = A + (1 _ r)2 r + 1 _ r - (1 _ r)2' except when r = 1.

18.32, 1, 3, 1, 3, etc,; 2 - (- l)k; (Yo - 2)( - l)k + 2

18.35. Let Yk = (k - I)! A(k) to obtain Yk = (k - I)! (2k - 1) for k;: 0,
18.36. III

18.37.

18,40,

18.41.

((.((~- 1) ~+ 1) ~- 1) ~+ l)X9,8 7,6 5,4 3.2
1/(k -1)!

1l(3)(0) = 3! n4/90, 1l(3)(n) = 3! (;; - t1 :4 J

18.42. ~

18,43, n2/ 12 - *

18.44. 1lG) = ,0365, 1l(Ð = ,7032, 1l( -!) = 1.9635

18,45, It take~ arbitrarily large negative values,
18.46. ~1l(0) - l1l(VI) - l1l( - VI)
18,47. l1l(0) - g1l(ýf) - g1l( - ýf)
18,50, 5( - ll- 3( - 2l

18.52, A + B( -'l)k
18,53, A4k + B3k + (a cos k + b sin k)/(a2 + b2),

where a = cos 2 - 7 cos 1 + 12, b = sin 2 - 7 sin 1

A = (3a - a cos 1 - b sin 1)/(a2 + b2)

B = ( - 4a + a cos 1 + b sin 1)/(a2 + b2)

18.54. (- 4( -!l + 2k( _!)k + 3e - 8k + 4J/27

18.56. U2k - GlJ

18,57, W( -cos kO - ~ sin k()) + 2kJ/41, cos 0 = -t sin () = ~

18.59. a ~O
18,60, i(3k) - M - ll- ie --b

18,61. Oscilatory, linear, exponentiaL.

18.65. Hi - (- llJ

CHAPTER 19

19.76. Exact value is 1.

19.77. 1.4060059

19.78. Exact solution is x3y4 + 2y = 3x.

19,79. Exact solution is x2y + xeY = 1.

19,80, Exact solution is log (x2 + y2) = arctany/x,

19.81. 4 days, 18 hours, 10 minutes

19.82. 4

19.83. Exact value is l arctan!,
19.84. Exact solution is x = - VI - y2 + log (1 + VI _ y2)/y,
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CHAPTER 20
20.16. See Problem 19,87.

20.19. ao = a1 = 1, eak - (2k - 1)ak_1 + ak-2 = 0 for k ? 1

20.20. Fourth-degree Taylor approximation to e-21h is 6.2374 compared with the correct ,014996,

CHAPTER 21
21.57. y = .07h + 4,07

21.58, 4.49,4,63,4.77,4,91,5,05,5.19,5,33,5.47,5.61,5.75

21,59. ,07,

21,60, No,

21.62. Very little,
21.63. They alternate,
21.65. A = 84,8, M = - .456

21,67. Five-point formula does better here,

21.69. Results are almost the same as from five-point formula,

21.85. p(x) = l
21,86, p(x) = 3x/5

21.87, p(x) = 3x/5

21,88, p(x) = .37 + ,01x - . 225(3x2 - 1)/2

21,90, p(x) = !
21,91, p(x) = 3x/4

21.92, Drop two terms and have 1. 2660 Ta - 1. 1303Ti + ,2715I; - ,04447; + ,0055T4 - .00051;.

21,102. (81 + 72x )/64; over (- 1, 1) this is only slightly worse than the quadratic.21.106. 3x/4 2 4
21.107. Min, integral parabola is p = - + -3 (2x2 - 1),ir ir
21.109. .001, .125, .217, .288, ,346, .385, .416, .438, .451, .459, .466

21.110. -.8,19.4,74.4,143,9,196,6,203.9,108.2,143.4,126.7, 118.4, 112.3,97.3,87.0,73,3,56.5,41.8,33.4,
26,5, 15,3, 6,6, 1,2

21.111. 5,045 - 4,043x + 1.009x2

CHAPTER 22
22.34. P = 4.44e.4SX

5-3\Í 3( 1) 9 1-\Í 2
22.37, p = ./ +~ \Í -Z x + ir2' i-x

22,38, p = (1 - 18x + 48x2)/32; h = li

22,41, (IOTa + 15I; + 6'4)/32; li

22,42, Ta + Ti +I;; 1
22.43, ~~8¡ Ta - ?ffi6 I; + 3~O '4; 1/23,040

22,44, P = 2x/ir - 1.0525
22.45, Method fails, X2 becoming the point of discontinuity.

22.46. p = - 2x/ir + 1.05
.22,50. 1.6476 + .4252x + ,0529x2; .0087

22,51, Degree four.

22.52. Not more than .000005.

22.53. Degree four.

22.54. Degree two.
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CHAPTER 23
23.18. 3/x; nò, the method produces 4 - x,

23.19, 90/(90 + 97x -7x2); no, the method pro duces (20 + 7x)/(20 + 34x),

23.20. (x2 - 1)/(x2 + 1)

23.21, x2/(1 + x)
23.22. (x + l)/(x + 2)
23.24. 1/(2 - x2)
23,25. -!

23.28, 4(1-x +x2)/(1 +x)
23.29, 12(x+1)/(4-x2)
23.30, (x2 + x + 2)/(x2 + x + 1)

23.31, l/(sin 1 °30') = 38.201547

23.32. (1680 - 2478x + 897x2 - 99x3)/(140 + 24x -' 17x2)

23.33. (24 + 18x + 6x2 + x3)/(24 - 6x)

23.34, (24 + 6x)/(24 - 18x + 6x2 - x3)

CHAPTER 24
24.40. ao = 1.6, ai = - .8472, a2 = ,0472, b1 = ,6155, b2 = - .1454

24.42, ao = 2, ai = - 1, a2 = a3 = 0, b1 = 0/3, b2 = 0
24.43. ,8; ,8 - ,8472 cos (2nx/5) + ,6155 sin (2nx/5)

24.45, To(x) = 1; Ti(x) = 1 - cos (nx/3) + (0/3) sin (nx/3) = y(x)
24.46. ((0 + 2)/2) sin (nx/4) + ((0 - 2)/2) sin (3nx/4)
24,47. 1 - cos (nx/2)
24.49, n2/12 and n2/6

24.50, n2/8

24.52, n3/32

24,56. 1- ()2, 0, 1 - ()
24,57. VT = (3, -4,,0, - 1, 0, -2)
24,58. VT = (5, 1, 5, 1, -3, 1, -3, 1)

CHAPTER 25

25.51. About 1.839.
25.52. Two; three; .567143

25.53. 1.83929

25.54. 1.732051

25.55. 1.245731

25.60. 1.618034

25.69. x = .772, Y = .420

25,72, 3 and -2.

25.74. x2 + 1.9413x + 1.9538

25,75. 4.3275

25,76: 1.23106 and 1.21320

25.77. 1.79632

25.78. .44880

25.79. 1.895494267

25.80. - .9706 :I 1. 0058i

25.81. x = 7.4977, y = 2,7687

25,82, x = 1. 8836, Y = 2.7159

25,83. .94775

25.84, x = 2,55245

25,85. 1. 4458

25.86, x = 1.086, Y = 1.944

25.87, 1.85558452522

25.88, .58853274

25.89, (x2 + 2.90295x - 4,91774)(x2 + 2,09705x + 1.83011)

25.90. 1.497300

25.91. 7.87298, -1., .12702

25.92. 1.403602

25.93. 1.7684 and 2.2410
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CHAPTER 26

26.86. Exact solution is ,8, ,6, .4, .2,

26.88. Exact solution is given in Problem 26,55,

26.91. Exact solution is 5, - 10, 10, - 5, 1.

5 -10
-10 30

26.92. Exact inverse is I 10 -35

-5 19
_ 1 -4

( 25 -41

. , -41 6826.96. Exact Inverse IS 10 _ 17

-6 10
26.101. 216m3 - 3312À 2 + 38B - 1 = 0

26,109, (0, - i, i)

( 0 i 1J
26.110, -i - 1 i

1 -i 0
26.119, 2.18518, -.56031, 2.00532, -,36819

26,12, 1.62772, 3, 7.37228

26.121, 8.3874, C(,8077, .7720, 1);4.4867, C(,2170, 1, -.9473); 2,1260, C(1, -.5673, -.3698); C being any
constant,

5 -10 10 -5 1

-10 30 -35 19 -4
26.122. I 10 -35 46 -27 6

-5 19 -27 17 -4
1 -4 6 -4 1

( 15 -70 63 J

26.123. ~: -70 588 -630
63 -630 735

26.12. ! ( 6 - 8i -2 + 4iJ

6 -3+10i 1 - 5i

26,125. 98,522

26,12. 12,054; (1, .5522i, ,0995(3 + 2i)J

26.127, 19,29, -7.08
26.129. .625,1.261,1.977,4,136
26.130. ,227 = smallest À

26.131. No

10 -5 1

-35 19 -4
46 -27 6

-27 17 -4
6 -4 1

10 -6)
-17 10

5 -3
-3 2

CHAPTER 27
27.18. (0,0), (0,1), G, j), (2,1), (3,0); min, of -~ at (t j); max, of 3 at (3,0),

27.19. See Problem 27.18,

27.20. - 4Y1 - Y2 - 3Y3 = max.; Yi, Y2, Y3 nonnegative; -Yi + Y2 - Y3;§ 1, -2Y1 - Y2 - Y3;§ -2.

27,21, See Problem 27,18,
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27.22. 4yi + Y2 + 3Y3 = min.; Y1, Y2, Y3 nonnegative; Yi - Y2 + Y3 ~ 1, 2Y1 + Y2 + Y3 ~ -2;

. solution at (0,0,1),

27.23. See Problems 27.18 and 27,20.

27.24. Xi=tX2=~
27,25, Extreme solution points are (0, 1) and ß, n.
27.27. Payoff is 2,5; RG, D, C(t ~).
27,30, ~ + Hx + Jtx2 + fzx3; 1.125; -2, - 1, 0, 1, 2
27.31, 1.04508 - 2.472lOx + 1.2784x2; .04508; 0, ,08, .31, .73, 1

27.32, Same result; five positions of maximum error.

27.33. Max. = 4.4 for x= (4.4,0,0, .6),
27,34, Min, (5yl + 2Y2) = 4.4.

27.35.
A 0 3 6 9 12

Max. 0 2 2" 10 10

27.36. ti
27.37. R(l, ~), C(t n

CHAPTER 28

28.11. Xl = 3.90, Xi = 5.25, error = .814

28.12. P = .814, Iplmax = 1.5

28.16. X i = -,3278 = X2, error = .3004

28.17. Xi = - ~ =Xi

28.18, 3.472, 2.010; 1.82; .426

28.19. The average 0: a¡)/N.

28,20. X = (A + C + D)/3, Y = (B - C + D)/3
28,21, Xi = Ai + ~(.i ~ Ai - A2 - A3)
28,22, Lî=A2- D, L~ = B2- D, H2= C2 + D

where D = ~(A2 + B2 - C2)

CHAPTER 29
29.46. Co = fs, Ci = i

29,52, .2,.5
29,53, T(x, y, z) = g(T(x + h, y, z) + T(x - h, y, z) + T(x, y + h, z) + etc.)
29.54. y = (x - 1Y

29,55, A near-singularity at x = O.
29.56. Y = (1 - e-nx)/(l - e-n)
29.57, A near-singularity at x = O.

. rXiVi29,58, Exact solution is 1 - ý2 Jo (cos (u2) + sin (u2)) du.

CHAPTER 30
30.10. Theoretical values are 2, 3, 4, and 5 step lengths.
30.11. Exact value is 2.

30.14. Theoretical values are 16, fõ, -&.

30,15. Theoretical values are .2401, .4116, .2646, .0756, .0081.

30.17, For N~x the theoretical value is l/e.
30,18, Theoretical values are l, t ~.
30.19. y = - log (1 - x) or equally. well y = - log x.
30,20. Theoretical values are .3413, .1359, .0215, .0013.



Acceleration of convergencè, 115, 126, 163,

167-169,326,350,374-377
Adams method, 198, 212, 213, 220-223, 228
Adaptive methods:

for differential equations, 224-225, 238
for integration, 119, 128, 129

Aitken's 02 process, 332, 333, 350

Algorithm, 1

Analytic function, 90

Approximation:
collocatioÌ1, 17-21, 43-47, 62-65, 120
continued fractions, 292-299
least-squares, 241-274, 420-422, 305-316
min-max, 275-291, 299, 300
osculating, 80-85, 138-140
polynomial, 17, 64-70
rational, 292-304
Taylor, 86-93
trigonometric, 305-325

Asymptotic series, 158, 164, 178-180

Back substitution, 354
Backward error analysis, 11, 12, 362, 369-

370, 401-402
Bairstow's method, 329, 343, 349, 350
Bernoulli numbers, 87, 91, 92, 163, 172, 181
Bernoulli polynomials, 163, 170-173
Bernoulli's method, 327
Bernstein polynomials, 50, 54, 275, 283
Bessel functions, 272

Bessel's formula, 51, 61, 70: 94,99, 105, 106,

117
Bessel's inequality, 244, 262
Binomial coeffcients, 22, 23, 25, 30, 32, 33,

37,57
Binomial series, 86, 91, 93, 167
Binomial theorem, 52, 170, 282
Blow-up, 219, 222
Boundary value problems:

for difference equations, 196

for differential equations, 427-449

Calculus of variations, 428, 432

Canonical forms, 356, 387-395
Cardano, 353

INDEX

Cauchy inequality, 12
Characteristie equation, 190, 193, 336

Characteristie polynomial, 355, 381-383
Chebyshev:

formulas, 138, 154

Gauss quadrature, 138, 154, 157
inequality, 282
line, 276-280
polynomials, 138, 154, 191, 244, 245, 263-

269,273-276,287,288
series, 273, 287

Christoffel identity, 143-144
Coin-tossing problem, 41
Collocation, 17-21, 43-47, 62-65, 293, 305,

308
Completeness, 244

Composite formulas, 118
Condition, 7, 367

Continued fractions, 292, 294-299, 302
Convergence:

of collocation polynomials, 20
in the mean, 307
methods for differential. equations, 198,

200-208, 215-218
of quadrature formulas, 120, 125, 152

of root-finding algorithms, 326, 330-335,

337-338, 340-342
Cotes formulas, 121

Data smoothing (see Smoothing)
Deflation, 327

Desert-crossing problem, 175

Determinant, 62, 65, 294-296, 299, 381, 400
Difference:

backward, 50, 52
central, 50, 54

divided, 62-70
equations, 184-196, 336, 337

formulas, 22, 23, 28-32
forward, 22-29
of polynomials, 31, 36, 37

table, 22-28, 63
Differential equations, ordinary:

boundary value problems, 427
Euler method, 200, 201, 216

initial value problems, 199-202,225-226

467



468

Differential equations, ordinary (Cant.):
method of isoclines, 197, 199
predictor-corrector methods, 198,208-218
Runge-Kutta methods, 197, 201-208, 210,

222-225,232-235,238
stiff, 226-227, 236-237
systems, 232-240

Differential equations, partial, 434-438
Differentiation, approximate:

by difference methods, 108-114
by Fourier methods, 307, 317-318
with smoothing, 242-243, 252-254
using splines, 114

Diffsion equation, 434

Digamma function, 184, 187-190, 195
Divergent series (see Asymptotic series)
Division algorithm, 17, 18

Dual problems, 405, 413

Duck-river problem, 239

Economization, 244, 266, 273
Eigenvalue problems:

Cayley-Hamilton theorem, 383

characteristic polynomial, 381
Gerschgorin theorem, 383

Givens method, 388, 400
inverse iteration, 387

inverse power method, 386
Jacobi method, 387, 396, 400
power method, 384, 400
QR method, 393
Rayleigh quotient, 384

Ellptie integral, 133

Equal-error property, 244, 264-265, 273-280
Equations, roots of (see Roots)
Equidistant data, 22

Error, 1-2,5
algorithm, 94, 126

of collocation polynomial, 17-21,64
detection of isolated, 27, 28
input, 1,94-97, 102, 112, 123,246

least-squares, 242, 251, 252, 258
magnification, 102, 103, 108,368
monitoring, 199,224
and norms, 367-371

of osculating polynomial, 82
probable, 6, 14

relative, 5, 7, 9-11, 15, 198-199, 215,

219-222,229, 367, 371

roundoff, 1, 2, 6, 7, 10, 14, 26, 94, 103,

112-114, 117, 120, 126, 198, 201, 212-
213, 221-225, 228-229 .

INDEX

Error (Cant,):
of Taylor polynomials, 86-90
truncation, 6, 20, 94, 100-101, 104, 106,

111-115, 117-124, 127, 128, 132-136,

139, 147, 152, 166, 178, 198, 208, 210,

219-222, 436

Error function, 130

Euclidean algorithm, 327

Euler method (see Differential equations)
Euler transformation, 87, 91, 163, 167, 181,

187
Euler's constant, 174-175, 182, 184, 187

Euler-Maclaurin formula, 87, 92, 129, 164,

173-177, 181, 182

Everetts formula, 51, 58, 61, 94, 97-99, 101,
102, 105-106, 117

Exchange method, 275, 278-281, 288, 289,
292, 303, 378~379, 408

Extrapolation to the limit, 115-116,331

Factorial polynomials, 30-38, 40
Factor theorem, 17, 19,338
False position (see Regula falsi)
Feasible point, 405-407
Fibonacci matrix, 403

Fibonacci numbers, 185, 193, 339, 341, 383,
395,403

Finite differences (see Differences)
Finite elements, 428, 433-434, 440-446
Finite integration, 39, 40, 42

Floating-point, 2, 3, 8-12, 15
Forward error analysis, 11,362
Forward substitution, 354, 362, 364
Fourier analysis:

coeffcients, 306, 315, 318, 325

complex forms,"307-308, 318-323, 325
differentiation, 307, 317-318
fast Fourier transförms, 308, 319-325
series, 312-315
smoothing, 307, 316-318, 324, 325

Fundamental theorem of linear algebra, 364,
368

Game theory, 405, 414-417, 419
Gamma function, 185, 190
Garden hose method, 428, 431-432
Gauss:

elimination method (see Linear systems)
formulas, 50, 51, 55-58, 60-61
quadrature methods, 137-157, 159, 162

Seidel iteration (see Linear systems)



Gear's method, 226-227, 236-237
Geometrie sum, 41, 42
Givens method, 388, 400
Gradient methods, 329, 346-349
Gregory's formula, 119, 129

Hermite formula, 80-85, 117, 136, 138-139

Hermite polynomials, 138, 152, 156
Hermite-Gauss quadrature, 138, 152, 156
Hermitian matrices, 396-397
Hessenberg matrix, 390-395, 404
Hilbert matrix, 254, 255, 366, 368, 389, 398,

400
Horner's method, 187, 195

Ignoring the singularity, 158-159
Il-conditioning, 241, 247, 255, 355

Indefinite summation, 87
Infinite product, 175-176
Information, 1

Initial value problems:
for difference equations, 186, 192, 194-195
for differential equations, 199-202, 225-

226
Inner product, 15

Integration, approximate, 118-162
by Gaussianmethods, 136-157

by Monte Carlo methods, 450-455
of singular integrals, 158-162

Interpolation, 94-107
historie al place, 94
inverse, 99

Inversion of matrices, 368, 376-380, 396
Iterative methods, 326, 371-375
Iterative refinement, 371

Jacobi's method, 387, 396, 400

Knot,71

Lagrange multipliers, 62, 64, 80-82, 136,

139-140
Lagrange's formula, 62, 64-65, 68-69, 94,

98-99, 102-106, 117

Laguerre polynomials, 138, 156

Laguerre-Gauss quadrature, 138, 150-152,
156

Lanczos error estimate, 137, 149

INDEX 469

Laplace equation, 437

Least-squares:
polynomial approximation, 241, 274

solution of overdetermined systems, 420-
422

trigonometric approximation, 305, 307, 310,
315-316

Legendre polynomials, 141-145, 154-155,

195, 196, 258, 259
shifted, 243, 260-261

Legendre-Gauss quadrature, 137-150
Leibnitz series, 167

Leonardo of Pisa, 330
Linear programming, 405-419, 422-424
Linear systems:

Choleski method, 365, 377

complex, 396-397
Crout method, 365

Doolittle method, 365
eigenvalues (see Eigenvalue problems)
errors and norms, 367-371
factorizations, 354, 360-366
Gauss-Jordan, 359

Gauss-Seidel, 354, 371-374, 399, 438, 440

Gaussian elimination, 354, 356-364, 376,

380, 398, 422
iterative methods, 354, 371-375
relaxation methods, 375, 399

Lipschitz condition, 207, 215, 216, 218

Lpss of significant digits, 4

Mean value theorem, 86
Midpoint formula, 84, 228-229
Milne's method, 198, 210-212, 217-218, 224,

228
Min-max:

polynomial approximation, 276-291
rational approximation, 292, 299-300
solution of overdetermined systems, 420-

425
Modular multiplication, 450-454
Monte Carlo methods, 450-456

Nearly-singular (see Il-conditioning)
Newton:

collocation formulas, 43-60, 67-68, 94-97,
104, 108-111, 118, 120,212,226,298

Cotes,121
iteration, 227, 326-329, 332-335, 345, 349-

350,431
method, damped, 329



470

Node,71
Nonlinear equations, roots of, 326-353
Norm, 3, 4, 12-16
Normal equations, 241, 247-248, 255, 259,

421-422
Normalized, 8, 358
Nuclear reactor problem, 451-452

Operators, 48-61, 86-87, 89-93
Optimization, 328, 329, 432-434
Orthogonal functions, 139, 305, 308, 315, 319
Orthogonal polynomials, 142, 241-242, 245,

254-260
Orthogonal projection, 241, 248, 267, 422
Osculating polynomial, 94, 138-140
Overdetermined systems, 406, 420-426
Overflow, 8, 15

Over-relaxation, 375

Oversmoothing, 272

Padé approximations, 292, 301-302
Parasitie solutions, 221

Partial differential equations, 434-448
Partial fractions, 69, 189

Pascal matrix, 403

Perturbation matrix, 361-363, 378, 383

Phase plane, 235

Pivot, 357-358, 363, 376, 409-412
Pole, 298-303
Polynomial:

collocation, 17-21
factorial,.30-38
osculating, 80-85
Taylor, 86-93

Positive definite matrix, 374
Power method, 356, 384-387
Prediction, 104-105
Predictor-corrector methods, 198, 208-218
Probable error, 6, 14
Pseudo-random numbers, 450

Quadratic convergence, 326, 333

Quadrature (see Integration)
Quotient-difference algorithm, 327, 339-343

Random numbers, 450-454
Random walk, 450, 453-454
Rational approximation, 292-304

INDEX

Rayleigh quotient, 356

Reciprocal differences, 292, 294-299
Recurrence relations, 30, 31, 143, 144, 202,

263
Regula falsi, 335, 431
Relative error (see Error)
Relaxation methods, 375, 389

Remainder theorem, 17, 18
Representation of numbers:

binary,2-16
conversion, 2

floating-point, 2, 3, 8-15
normalized, 8, 10, 15

Rolle's theorem, 19, 82
Romberg's method, 119, 126-127
Roots of equations, methods:

Bairstow, 349

Bernoull, 336

deflation, 338
descent, 346
interpolation, 335

iterative, 330, 346
Muller's,336
Newton's 332, 345
QD,339
Regula falsi, 335
Steffensen's, 332
Sturm sequences, 343

Roundoff error (see Error)
Runge-Kutta methods (see Differential

equations)

Saddle point, 348

Sampling, 450, 452

Series:
accelerating convergence of, 6-7, 167-169
asymptotie, 177-180
rapidly convergent, 163, 166-167
telescoping, 164-165, 188-189
(See also Taylor series)

Significant digits, 1

Simplex method, 405, 407-412, 415-418
Simpson's rule, 71, 118-119, 123-128, 131-

132, 158-159, 162,210,272
Simulation, 450-451
Siinultaneous equations:

differential, 232
linear algebraic, 354
nonlinear algebraic, 328, 345

Singular integrals, 158-162
Smooth and unsmooth functions, 148, 156,

313-316



Smoothing:
by differences, 27
by Fourier methods, 307, 316-318, 324-325
by least-squares polynomials, 119, 242, 246,

249-254, 274

by min-max methods, 300

by moving averages, 271
Speed of computation, 1,5, 7

Splines, 71-79, 114
Square cìrcles, 16
Square root, 1,334
Stability, 7, 199~ 218-223, 228, 436
Steepest descent, 329

Steffensen's method, 332
Stiff equations, 226-227, 236-237
Stirling's formula, 51, 57, 61, 70, 94, 105-106,

108, 110-111
Stirling's numbers, 30, 31, 34-36, 40, 42, 109
Stirling's series, 164, 176-177, 179, 183
Sturm sequence, 327, 389
Successive approximations (see Iterative

methods)
Summation, 30-33, 39-42, 156, 158, 163-165,

167, 172-173, 180, 181, 187

Superposition principle, 185

Supporting theory, 2, 14

Symmetric functions, 67
Symmetry of divided differences, 63-67
Synthetic division, 17, 18, 21

Taylor polynomial, 86-94, 197, 202

Taylor series, 86, 87, 90, 91, 93,103-104, 107,
118, 127, 129-130, 132-133, 149, 166-

167, 197,203,228,345
Taylor's theorem, 119
Telescoping SUrrS, 39, 144, 165, 172, 180
Trapezoidal rule, 71, 118, 122-123, 125, 132,

315

INDEX 471

Triangle inequality, 3, 12

Triangular matri, 360-366, 382

Trigonometrie approximation, 305-325
Tripie diagonal matrix, 73, 76, 395

Truncation error (see Error)
Tschebycheff (see Chebyshev)
Two-person games, 405, 414-417, 419

UndeIfow, 8, 15
Undetermined coeffcìents, 80, 83, 131, 134
Unequally-spaced arguments, 62

Uniform approximation, 244, 275
Unit error function, 23-27

Van der Pol equation, 234-235
Variable order, 225

Varia1Jle step size, 224
Variation al equation, 432
Variations, calculus of, 428, 432
Vector space, 241, 248-249, 257, 259, 262,

267,421

Walls' product, 164, 175-176
Wave equation, 446
Weddle's rule, 134
Weierstrass approximation theorem, 275,

281-283
Weight function, 243-244, 261-262, 265
Wilson's matrix, 400

Wronskian determinant, 192, 193

Zeros of polynomials:
methods for finding (see Roots of

equations)
number of, 17, 19, 142,291
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