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Spline-Interpolation

Outline of methods

1. One-dimensional Splining A cubic and a linear spline

When a (rather large) set of |[is|
measurement points with argu-

ments Xx,,x,,...,X, ,,X, have

>n—1>"n
to be met and interpolated by a
curve the method of collocation (
= interpolation by a single poly-
nomial of degree at most ») often
runs into oscillation problems of
the error towards the boundaries
of the interval 0.5

{min x,, max x, }

i=0,1,....n "

This problem is called Runge
phenomenon. The concept of
splines avoids this phenomenon

0.1 0.2 0.3 04 0.5 0.6 0.7

by “patching” together many (n)
polynomial curves of low degrees on the n segments (“patches”) (x,,x,),(X,,X,),...,(x, ;,x,). Of

course, the low-degree polynomial curves meet one another at the measurement points with interior
arguments Xx,,...,X, , making the whole “patched” curve continuous (abbreviated by the symbol C’or

saying it is a C’-curve). But often more is required: The curve must fulfill so-called smoothness condi-
tions at the interior points meaning that it has to be continuously differentiable up to a certain given
order k (abbreviated by the symbol C* or saying it is a C* -curve).

A typical situation is the case where the maximum degree of the “patching” polynomials is d and the
“patched” curve must be a C*'-curve ((d -1) times continuously differentiable). It is assumed that
n >d -1. Each polynomial has d +1 coefficients giving a total of n(d + 1) undetermined coefficients. On
the other side we have the following sets of conditions:

# of conditions Description

2n Each “patching” polynomial curve meets the two measurement points cor-
responding to the endpoints of its segment (“patch”).

(d-1) (n-1) The derivatives of order 1, 2, ..., d-1 are continuous at the interior argu-
ments X,,..., X, .

Table 1.1: Conditions for a typical spline (it is assumed that n > d -1)

This gives a total of n(d —1 ) + 2n — (d —1) = n(d +1) — (d —1) conditions. Since this is smaller than the
number of undetermined coefficients a set of (d -1) further conditions may be met at the arguments

Xo,X|5-.4»X,_,X, . This makes the concept of splines rather flexible.

2 n—1°

A very important case for practical purposes is cubic splining: d = 3 and n > d -1. In cubic splining
there are 4n undetermined coefficients and 4n — 2 conditions at the interior arguments. Depending on
the nature of the “two further conditions” to be met at (two of) the arguments we may distinguish sev-
eral concepts of cubic splining.
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1.1 Cubic spline

For i=0,1,...,n—1 we define a cubic polynomial

Si(x):ai+bi('x_xi)+ci(x_xi)2+di(x_xi)3 (1.1)

belonging to the segment (“patch”) [xl.,xm]. Further we define %, = x,,, — x, = Ax,. By examining

the conditions mentioned in Table 1.1 above we get the following system of equations.

1. Since the spline curve has to meet the measurement points (x,,»,) (i =0.L,...,n) we get:

a,=y, (i=0,..,n-1)|. The argument x, has not been used yet.

¢, —c,
2. Since the spline is a C*-curve: [S,"'(x;)=S,,"(x,)=>d,, = l3h—’_l (@=1..,n-1) (1.2)
i1

1

The coefficient d, | will be computed later by using special conditions at the boundary arguments xy
and x,, respectively.

3. Since the spline curve is continuous:

a —a. 2c._, +c.
S;(x)=8_,(x)=>b,=— e h, (=L.,n-1) (1.3)
h,_, 3
The coefficient b, | will be computed later by using the argument x, and the coefficients d, , and
¢, » respectively.
—-a
b,, = % —c, by —=d, b, (1.3))
n—1
4. Since the spline is a C'-curve:
S'(x)=S8.,'"(x)=>b =b_,+2¢, h_, + 3d,>1h,>12 (i=1..,n-1) =
(1.4)

¢ h +2(h  +h)e, +c,h = 3[ “Mh_ 4 _ 4 ]; i j (i=1,..n—2)

i i-1

Here the equation (1.3) has been used to replace b, , and b, (i =1,..n—2).

The last n-2 equations (1.4) form a linear system with a tri-diagonal band matrix for the n coefficients
Cy,Cy5---,C,_; - The matrix has dimensions n-2 by n.
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hO 2(h0 +h1) hl
hy  2h+h) b
hy 2k +hy) hy

hn—S 2(h11—3 + hn—2 ) hn—2

€
3 Yin =Vi  Vi7 Vi
ho ok

1

Cn—Z

n-1

|

Table 1.2: Incomplete tri-diagonal system of n-2 equations for n coefficients for a cubic spline

1.2 Natural cubic spline

The natural cubic spline S fulfills the boundary conditions

S"(x,)=58"(x,)=0

. These conditions

have a physical (“natural”) interpretation: The natural cubic spline minimizes the mean total curvature

X,

J| f"(x)|*dx among all C>functions in the interval [x,,x, | that meet all the measurement points

Xo

(here it is assumed that xo and x, are minimal and maximal, respectively). This fact is called Holladay-

Theorem.

The development of the tri-diagonal system in Table 1.2 has not yet considered the additional (two)
conditions at the boundary arguments x, and x,, In the case of natural splining this means that

S,"(xy)=2¢,=0=>¢,=0

Snfl ”(xn) = 2cn,1 + 6dﬂ*1h"71 - 0 :> dﬂ*I B _;ln—_l
-1

n

Now we use the first equation of (1.4) for i = n-1 and (1.3’) as well as (1.2) and (1.3) to conclude that

h 2 yn_yn—l

b — yn — an—l —c h,,,l _d -
h

n—1 n-1

n-1

3 Cn—lhn—l

a4, 4,5 2c, ,+c

bn—l = bn—2 + zcn—Zhn—Z + 3dn—2hn—22 = -

n-2

3

-1
. hn—Z + 2cn—2hn—2 + (cn—l

- cn—2 )hn—Z

Subtraction of these two equalities yields a further condition on the c-coefficients:

cn—Zhn—Z + 2cn—1 (hn—Z + hn—l) = 3( y”l h_ yﬂ—l - y"—lh_ y”l—Z
n—-2

n—l1

|

Now the tri-diagonal system of equations of Table 1.2 takes the following regular form (n-1 equations

for the n-1 coefficients c¢,,...,c,_,):
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2hy+h) ¢

b 2Ahth) b ‘,

h2 2(h2+h3) h3 ¢ 3 Yin Vi Vi= Vi
g 3 = h, h
cn—2
hn—3 Z(hn—3 + hn—Z) hn—2
hn—Z 2(h/1—2 + hﬂ—l) Cnil i=l,..n-1

Table 1.3: Regular tri-diagonal system of n-1 equations for n-1 coefficients

From the c-coefficients we compute the d-coefficients by (1.2)

coefficients by (1.3) or (1.3"), respectively.

1.3 Complete cubic spline ("clamped")

(d

n—1

b Cn-1 ) and the b
y _— -
3h

n—1

In complete or clamped cubic splining there are two first order derivative conditions on the boundary

arguments:

S'(x))=yy S'(x,)=)",

with given values y'; and )', . The formulas (1.1) to (1.4) and the tri-diagonal linear system of equa-

tions in Table 1.2 hold for all cubic splines. The first order boundary conditions yield the following

equations:

S'(xo) = y'o = bo = y'o
S'(x )=y =b _ +2c, h _ +3d _h =)

n

(1.5)

We proceed as in the case of the natural spline and use equations (1.3), (1.3’) and (1.4) to derive fur-

ther equations for the c-coefficients.

From (1.3) we get that

_a,—a,

hy

_2¢, a, —a,

hy

; by = 2¢,hy + e hy = 3[

_y'

)

(1.6)

From (1.3’), (1.4) and (1.5) we conclude the following three equations:
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bn—l = y” ! _cn—lhn—] _dn—lhn—l2
hn—l
a,,—a 2c, _, +c
bn—l = bn—Z + 2cn—2hn72 + 3dn—2hn—22 = n_lh =2 ”_23 = hn—Z + 2cn—2hn—2 + (cn—l _cn—2 )hn—Z
n-2
bn—l = y'n _zcn—lhn—l - 3dn—lhn—lz

Multiplying the first equation by 3 and subtracting the third equation eliminates d,_,. The substitution

of b, , with the term in the second equation then yields a further condition on the c-coefficients:

2bn71 = 3% - cnflhnfl - y'n =

n—1

2 + -
2 a”*1 a”*2 - C”*Z C"*I hn—2 + 2cn—2hn—2 + (cn—] - Cn—2 )hn—2 = 3M - Cn—l hn—l - y'n =
hn—Z 3 n-1
— 2 + —
6 a”_] an_z - cn—2 c”_l hn—Z + 2cn—2hn—2 + (Cn—l - cn—2 )hn—Z = 9 y” a”’_l - 3cn—1hn—l - 3y'n =
hn—2 3 hn—l
- 4cn—2hn—2 - 2cn—1hn—2 + lzcn—Zhn—2 + 6cn—1hn—2 - 6cn—2hn72 =
9 yn B anfl _ 6 anfl B an72 _ 3Cn_|hn_1 _ 3yvn =
hn—l hn—Z
2¢ h  +4c h  +3c, h_ =92l T T 3y (1.7)
hn—l hn—Z
The system in Table 1.2 combined with (1.6) and (1.7) forms a complete linear system for the c-
coefficients:
%y hy . {alh-ao . y.oj
hy 2h+h) h : 0
b 2h+h) b . i
h2 2(h2+h3) h3 E — 3 yi+1 yi_.yi yi—l
. g . : h h
c i=l,.n-2
h,s 2h,_5+h,,) h, cH 9 Vo=l 6 A =0, 3y
2%,  4h_,+3h -l W W "

Table 1.4: Regular complete tri-diagonal system of n equations for n coefficients for a clamped cubic
spline

From (1.2) we get d, ...,d,_,, from (1.3) we get b, ...,b,_,, from (1.4) then we get b,_, and (finally)

from (1.3’) we compute d, .
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1.4 Other cubic spline methods

Hermite cubic spline: C'-curve patched from cubic polynomials with given first order derivatives at
the arguments x,,x,,...,X,_,,X, (n+1 conditions). This gives a total amount of exactly 4n conditions.

An elegant solution method is based on a linear combination of Hermite basis functions (cubic poly-
nomials) on the special interval [0,1] (“single special patch”). By linear transformations from the interval
[0,1] to the segments [x,.,xm] (i=0,1,...,n—1). it is rather easy to compute in a piecewise manner

a compound solution fulfilling the conditions on the derivatives at the arguments x,x,,...,X, ,,X,.

The Hermite cubic spline S allows for an application of the osculation error formula:

For any segment [xl ,le] we have an osculation error (!), thus

(4)(5)
YD) -S@) =T (- x ) (- x0)0 xEe(xx)
From this it follows by maximization that
4
=5 Fmax 2 Dmax | - v -x,7] xelnn)
Lh“
16
and thus
) 4
[y - 500 K max POy 2
4l 16 384 (1.8)

xe[xo,xn], H = max h,
i=0,...,n—1

Similar error formulas for other spline methods exist but their derivations generally are much more
difficult.

Periodic spline: C?-curve S patched from cubic polynomials with periodic properties (provided that
Yo=Y, = S(x,)=8(x,)): The two periodic standard conditions are S'(x,)=S"(x,) or

S"(x,) =S8"(x,), alternatively. This gives a total amount of exactly 4n conditions.

T Cf. C.A. Hall & W.W. Meyer: Optimal error bounds for cubic spline interpolation. Journal Approx.
Theory 16, p. 105-122 (1976). This paper gives a survey on error bounds and a main theorem, as well:
If y is a C*-function and S a cubic C*'spline interpolant that coincides with )’ or, alternatively, with " at

the boundary arguments {xo, } then

|y(4) (%) | 5H*? @ 5 4
-5 <max—————=max —H
| y(x) (x) | 41 16 |y (x) ] 334

4)
() =S (x) |< maxwé‘&m = max| ¥ ()| o7 LTE

()= 5" ()< max | ()| H xelvx,) H= max h
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"Not — a — Knot" — Spline: C2-curve S patched from cubic polynomials when the knots x, and x,_,

are ignored and not considered as interior arguments. The number of patches is reduced to n-2 and
the number of interior points to n-3. This yields 4(n-2) = 4n — 8 for the number of undetermined coeffi-
cients and 2(n-2) + (n-3)(d-1) = 4n — 10 for the number of conditions. Again there is an excess of 2
undetermined coefficients.

As the Hermite cubic spline described above also the Bézier-Spline or the Basis-Spline are composed
from a cleverly devised set of basis functions. These are discussed in the next section.
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2. Bernstein-Bézier Splines (B-B-Splines)

The methods described in the previ-
ous section led to rather efficient im-
plementations because of the tri- e
diagonal band structure of the linear .
systems in Table 1.2 and 1.3. On 7
the other side, the consideration of ¢
special, uncomplicated conditions like
“natural” or “clamped” at the boundary
arguments was not easily and generi- A
cally transformable into mathematical N
formulaes or algorithms despite the fact that a large portion of thes
linear system of a cubic spline was determined only by the interior ~
arguments (cf. Table 1.2). Moreover, the lack of genericity increases
when solving the problem of higher-order splines with higher de-
grees d and higher-order conditions on the smoothness at interior
points (cf. Table 1.1). Another disadvantage of the methods in sec-
tion 1 is that they refer to a set of measurement points and thus to a
set of points on a function graph. This is very restrictive.

Improvements with respect to these disadvantages are necessary
and — luckily — corresponding methods exist. Examples are Hermite
interpolation, Bernstein-Bézier splines (B-B-splines) and Basis
splines (B-splines). These methods have in common that they are
based on cleverly devised sets of basis functions called Hermite
basis polynomials, Bernstein polynomials or just Basis functions (in
the case of Basis splines).

2. 1 Bernstein-Polynomials

The set of basis functions for Bézier splines consists of the Bernstein polynomials:

n .
B, (1) :f](l—t)’”t’ telol] @=01,--,n) (2.1)
l

This elementary polynomials refer to the interval [0, 1]. By an affine transformation of [0, 1] into the
interval [a, b] we immediately get the transformed Bernstein polynomials which refer to [a, b]:

B, (u,a,b)= Bin(Z:Z) = o _la)n (’:](b —u)" " (u—a) ue [a,b] @=0,1,---,n) (2.1

The following properties of Bernstein polynomials are obvious or their proofs elementary:

Property 2.1: Some elementary facts on Bernstein polynomials.

a) The Bernstein polynomials of order n form a linear basis for the polynomials of order .

I
b) B,,(t) has a exactly one maximum at ¢ = —.
n

c) B, (t)has a zero at 0 of order i and a zero at 1 of order n-i.

d) Symmetry: B, (t)=B,_,(1-1)
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e) The Bernstein polynomials are bounded in [0,1]: 0< B, (¥)<1 te [0,1]

f) The Bernstein polynomials are a partition of unity: ZBm (t)=1.

i=0

Bis(x)=10x%(1. — 1. x)°

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1: The six Bernstein polynomials of order 5 with 82,5 highlighted.

For many formulas it is technically advantageous to define B, () identically 0 whenever i <0 or

i>n.

Property 2.2: Recurrence relations of the Bernstein polynomials for order n > 1:

Bin (t) = tBi—l,n—l (t) + (1 - t)Bi,n—l (t) (i = 1»' = 1)
BOn »=0- t)BO,n—l (?)
Bnn (t) = tanl,nfl (t)

This says how B, (¢) can be computed from lower order Bernstein polynomials. The proof of this is

n—1 n—1 n
based on the recurrence relation ( ] 1J+( ) j: ( J (i=1,---,n—1) for binomial coeffi-
i— i i

cients.

The recursion relation is crucial for the efficient evaluation of Bernstein polynomials. This will lead to
Casteljau’s algorithm for the evaluation of points lying on Bézier curves (cf. section below).

Property 2.3: Differentiation of the Bernstein polynomials:

%Bin (t) = n(Bi—l,n—l (t) - Bi,n—l (t)) =-n ABi—l,n—l (t)

L2
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dd73m () =n(n=1)(B,,,,()=2B,,,,(t) +B,,,())=n(n-1) A’B,_, ., (1)

O
-

Cz—kBm ) =D n(n=1)(n=2)(n—k+DAB_ (1)

()
~

The symbol [I* denotes the forward difference operator k-times iterated.

2.2 Simple Bézier curves

The Bernstein polynomials and their properties (cf. section above) allow for an elegant construction of
spline curves that are controlled by a set of d-dimensional control points (vectors)

f’o,ﬁl,---,f’n (n>2)in R“ . These spline curves of order n are named Bernstein-Bézier curves, B-
B-splines or Bézier curves and their definition is simple and elegant:

F)=3 BB, teo]

(2.2)

The Bernstein-Bézier polygon is generated by connecting P,PM with straight lines (i =0, 1, ..., n-1).

Example 2.1: The figure on the right shows a 2-dimensional cubic Bézier

spline with four control points in R? and corresponding Bernstein-Bézier
polygon.

The figure represents a part of an image encoded in .svg (scalable vector ‘\
graphics). The four control points are:

- 221.852 - 221.852

Po = > P1 = >
—222.566 —-257.911

N 228.191 - 237.743 o\

P, , B \
—-269.071 —-269.071 \

The vector formula for the Bézier curve is as follows: * -

F(6)=3 BB, (1)=

221.852(1—1) +3-221.852t(1—1)* +3-228.191¢>(1—¢)" +237.743¢ [0.1]
—222.566(1—1)° +3-(=257.91)¢t(1—1)* +3-(=269.071)¢* (1 -¢)' —269.071¢° ’
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Property 2.4: Convex hull property of Bézier curves
The Bézier curve lies in the convex hull of its control points. The convex hull is defined as the set of

all convex combinations {x € R’ | x = Z/I[é A Z/li =1A0<A <1}.

i=0 i=0

Property 2.5: Tangential directions and differential properties

For the Bézier curve (2.2) we have the following identities:

a)|7(0)=F,, F(1)=P,

b)[7'(0)=n(B - B), #'(I)=n(P,-P,_)

0F"(0) = n(n—1)(P, =25 + F,), 7'())=n(n—1)(P,~2F,, +F,.,)

d) i*(O) :n(n—l)---(n—k+1)Ak150,

- d F()=n(n-1)--(n—k+1)AP_,
dt

dt* :

n

P =Y BB, 0 =Y BB, (0= B, ()

(Bi—lﬂ—l ([) - B/g/;fl (f))

(BHJH (Z) - B,'_,H (f))

;1/17(()) = n(nfl)u-(nkarl)AAé,, ;{/F(l) :n(n71)"-(177k+1)A/‘1?77/\
at’ at

These identitites will be important to examine smoothness when several Bézier curves have to be
composed (cf. section below).

2.3 Casteljau recurrence

The Castelau recurrence is similar in its idea to the Neville-Aitken recurrence for polynomial interpola-
tion. It allows to compute a point on a Bézier curve -corresponding to control points

F,,P,---,P, (n=2) asaconvex linear combination of points of lower order Bézier curves.

Fopon O=(=0F, . o O+1-F, @) tel0)] (23)
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(r)_ZPBm(r) ZP(Z B, . ()+(1-0)B., ()=

i=0

‘- PB,1,11(1)+ (1—1)- ZPB,,,I(z)—z P O+(A=0F o o (1) te[01]

i=l i=0

The recurrence relation in (2.3) allows for an efficient computation of 7, 5 5 (f)forany e [0,1]. Be-
02512 %n

low, this is illustrated graphically for the case n = 3 with four control points:

’ — '\

| /. /

Figure 2.2: Graphical illustration of the Casteljau recurrence. He,re t = 0.25. The segments are subdi-
vided with ¢ = 0.25. .

7

In the first step four 0-order Bézier polynomials are computed (black control points), then these are
used to compute first order values using (2.3), then the first order values are used to compute the
second order values etc. Normally, this is written n)a  tableau; each picture in Fig. 2.2 corresponds to a
column in the tableau. The entries in the tablgau are vectors:

7’
s
z

() L
(O (=07, (0417, () =7, , (1)

Fol) (L=00F, () +1-F, (0=F, , () (L=00F, , () +1Fy , (=T, 5 , (O

(t) (l—t)r (t)+t- }7. ‘g(t) (l—t)ru(t)+t r~-(t) PPP(t) (l—t)ri,i,[,(t)+t PPP(t)

Ty 7y Fy 1y (D)

?l ot

I
\:1

5 ()
(®)
(®)

Table 2.1: The Casteljau tableau to compute a specific point 7 () on the Bézier curve.

"R .ABB
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2.4 Composite Bézier curves

In many applications (especially in design applica-
tions like font design for example) it is important
and common to compose simple Bézier curves.

The figure on the right shows the composition of
three simple cubic Bézier curves as a part of the

font design for the letter g The simple Bézier
curves meet at common control points. This is a
continuity condition (C’). Often higher order
(smoothness) conditions are required as common
tangent lines or even C’, C? etc. in the common
control points.

Property 2.5 will help to find the appropriate condi-
tions for different orders of smoothness. The next
theorems, e.g., are immediate consequences of
Property 2.5.

Figure 2.3: Three simple Bézier curves composed
with two common control points

Theorem 2.1: C’-smoothness condition

[\}

2 common con-
trol points

If 7, (¢) = ZP[BM (t) te [0,1] is a Bézier curve of order n [ 1 with respect to the control points

i=0

P,P,--,P and ry(t) = ZQBW (t) te [0,1] a Bézier curve of order m [ 1 for the control
i=0

points QO,Ql,---,Qm with common control point E = QO then the composite Bézier curve is con-

tinuously differentiable at the common control point if and only if 7'(l)=

n(P,—P_)=m(0,-0,)|=7,'(0).

C’-smoothness means that the curves have a common tangent vector (common in direction and

length) at the common control point. The condition

n(B,—P_)=m(Q,-0,) < nAP_, =mAQ,

implies that the three points E_l,pn,él must lie on a straight line.

Theorem 2.2: C’-smoothness condition

If 7,(¢) = ZEBM (t) te [0,1] is a Bézier curve of order n [ 2 with respect to the control points
i=0
P,B,---,P, and rp(t) = ZQ‘BW (t) tel0,1]] a Bézier curve of order m [ 2 for the control
i=0
points Qme"'an with common control point I3n = QO then the composite Bézier curve is twice
continuously differentiable at the common control point if and only if

r'(1)= n(l_jn _13n—1) = m(Ql _Qo) =,7Q'(0)




14 Numerical Analysis
OST
Dr. Bernhard Zgraggen

Ostschweizes

Fachhochachule

and 7"(1)=|n(n—1)(P, =2, + B, ;) =m(m-1)(0, - 20, + 0,)|=7,"(0).

The condition |n(n — 1)(3 - 21’3,,_1 + ]3"_2) =m(m— 1)(Q2 — 2Q1 + QO) implies that the second differ-
ence vectors P —P_ —(P_, —P_,) and Q2 - Ql - (Q1 - QO) are collinear.

Example 2.2: In Figure 2.3 we have n = m = 3 and the following sets of control points for the two first
spline curves:

- 221.852 - 221.852 - 228.191 — 237.743
B = , P= , B = , B =

—222.566 —-257911 —-269.071 —-269.071
- 237.743 ~ 246.216 - 253.634 ~ 256.285
Qo = 5 Ql = > Qz = > Q3 =

—-269.071 -269.071 -264.123 -259.777

- - - 9.552 8.473
The condition of Theorem 2.1 reads 3(A —P)=3(0, -0, < 0 = 0 and this is

obviously wrong. Thus the composite Bézier curve is not C’-smooth at the first common control
point E = QO. Nevertheless a common tangent direction exists at this control point (but not at the
second one).

The general smoothness conditions follows from Property 2.5d.

Theorem 2.3: C*-smoothness condition

If 7, (¢) = ZP[BM (t) te [0,1] is a Bézier curve of order n [ k with respect to the control points
i=0

m
F,R,--, b, and 7,(1)= ZQl.Bl.m () te [0,1] a Bézier curve of order m [ k for the control
i=0
points QO,QI,---,Qmwith common control point 13,1 =Q0 then the composite Bézier curve is k
times continuously differentiable at the common control point if and only if

7 ()= |a(n=D)--(n = j+ DAE,_ ) = m(m =1)--(m = j + DN Q)| =7, (0)

forj=0,1,2, ..., k.

For interpolation problems it is often desirable to parametrize a composite Bézier curve with one pa-
rameter interval [uo, u»] and a parameter u. The interval is subdivided into m “patches” [y, uj+;] (j =

0,1,2, ..., m-1) by m-1 interior knots: u, <u, <u, <---<u, , <u, . For each “patch” [u;, u;+/] (j =0,1,

m—1

int erior

2, ..., m-1) we have a Bézier curve of (the same) order n with n+1 control points 1311 @i=0,,---,n)

by the formulas
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ri(u) = Z%Bm(u,uj.um) ue [uj.uj+l] (j=0,1---,m—-1) (2.4)
i=0

Here the transformed Bernstein polynomials of (2.1°) are used. Continuity of the composite curve is
fulfilled if éy. = é) (j=0,1,---,m—2). There is a total of at most m(n+1)-(m-1)=mn+1 distinct

(j=01--m-2) .

,j+l
control points when taking into account the continuity conditions I3nj = 130,j+1

The smoothness conditions now read as follows.

Theorem 2.4: The composite Bézier curve (2.4) is C'-smooth if and only if

l’l(p;,j _13;1_1,]') _ n(é,ﬁl _130,1'4—1) (=0 ,m—2)
h‘ h 2% b

i j+1

where h, =u,, —u;.

d d U—u, d 1
—B, (u,u, ,,u,)=—B, (——)=—2B, (t)-— (j=0,1,---,m-2)
du (st 0,1) du (u/f —u, dt ( h, (

1

The condition in Theorem 2.4 can be formulated as

- h. — h. -
P j+1 P ' —JR

L =———F_;+ (j=0,1,---,m—2). This says that the the common control
Tohith,, 7 hi+hg,

,Jj+1

point must be an appropriate convex combination of the neighboured control points 7, , ; and £ .,

and that the line from IA’HJ to E_iH is subdivided by E]. in a ratio equal to —/—.

j+1

The generalization of Theorem 2.2 now is obvious.
Theorem 2.5: The composite Bézier curve (2.4) is C*>~smooth if and only if

nP -P_.) nP., —B.

( n,j I’l*l,j)z ( 1,j+1 0,j+1) (j:(),l,"',m_2) and
h./‘ hj+1
n(n— 1)(Pn,j - 21::1—1,1' + Pn—z,j) n(n— 1)(Pz,j+| - 2Pl,j+| + Po,j+1) .
5 = > (j=0,1,---,m—2)
h. h.
J j+1

where h, =u,, —u;.
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/ / u—u / 1
B,y u)=—— B, (—— )= B, (1) — (j=0.1,m=2)
—u, dt” /7/‘

du du” u

A rather general smoothness theorem is the following one. It is a consequence of Property 2.5d.

Theorem 2.6: The composite Bézier curve (2.4) is Ct-smooth (n [ k) if and only if

Aé]sn—kj A/j?o/#l .
= (0L m =2 =012,

i j+1

where h, =u,, —u;.

The conditions in Theorem 2.6 constitute a linear system of (k+1)(m-1) equations for the m(n+1) con-
trol points. This is the key to a generic solution to the interpolation problem in any dimension and with
smoothness conditions of any order.

If given m+l arguments u, <u, <u, <---<u,,<u, and corresponding  points
Qj (j=0,1,---,m) (,measurement vectors“) then Theorem 2.6 makes possible the following proce-

dure to find a C*-smooth composite Bézier curve interpolating Ql. (j=0,1,---,m) and being com-

posed of simple Bézier curves of order n. This procedure also covers the special cases of “natural” or
“clamped” splines.

Define a doubly indexed sequence of m(n+1) control points ]3U (i=0L---,n, j=0,1,---,m—1)

with }3,1]. :Qm :f’o,ﬁ] (j=0,1,---,m—2) and 16070 =0,, P :Qm. This gives a total of at

,m—1
most mn+1 distinct points. The points Qj (j=1,---,m—1) are interior points playing the role of
common control points. Then there are at most m(n-1) control points in the set
131]. (i=1---,n-1 j=0]l,---,m—1) different from all the measurement points
Ql. (j=0,1,---,m). If smoothness conditions of order k = n-1 are required for the composite contin-

uous curve we get a linear system of (n-1)(m-1) equations for the (n-1)m control points

B, (i=1---,n-1, j=0,1,---,m—1) by Theorem 2.6:
Afpn—é‘ j A(/é) j+1 .
L= = (j=0L-,m-2 (=12,---,n—1) (2.5)
hj hj+1

This is in accordance with the second condition in Table 1.1. The difference of the number of equa-
tions and the number of control points é] (i=1---,n—1, j=0,1,---,m—1)is n-1. This allows for
a set of n-1 additional conditions on the composite Bézier curve.
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Example 2.3: Interpolation of y =sin(x) from the four points {Q/ |j =0, -,m} =

{(00) (7r \/_ 27r \/_

3 ) (m 0)} Herem=n=3and h, =h =§. Formula (2.5) gives (n-1)(m-

1) = 4 equations for (n-1)m =6 unknown control points }31] (i=1,-,n-1, j=0]l,---,m-1):

0-P,=F,-0
0,-PB,=E,-0,
0, -2P,+B,=P,-2F,+0,
0,-2B,+B,=P,-2P,+0,

Since there are 4 equations for 6 unknown points two conditions can be met in addition. The natu-
ral spline, e.g., requires that the second derivatives at the boundary arguments 0 and [, respective-
ly, are 0. By Theorem 2.5 it follows for the “natural” boundary conditions that:

P, _213;0"'@0:#
Q 2P22+ 12 =

Ol

The solution for this system of 6 linear equations in 6 unknown vectors (control points) is:

T 3 2m 243 am 343 57 34/3 T 243 am 3
(T, Y2y, (30, 235 (47 3Ny gsm 3NB 77 2NE G gET NE g

The figure below shows the 10 distinct control points together with the sine-curve (dashed) and the

composite Bézier curve. The red points are the common (interior) control points or boundary con-
trol points, respectively.

1.0

0.5

s -05+

Figure 2.4: 10 distinct control points (two of them as common) for the sine-curve in the interval [0,
(] and the composite Bézier curve of order 3. The difference between the sine-curve (dashed) and

the Bézier curve is rather small. The computations could be reduced by using symmetries for the
sine-curve, of course.
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[ o @
1‘07 A
I . °
0.8

[ J
0.6+
0.4]
02!
s 10 1520

Figure 2.5: The first 7 control points and their composite Bézier spline of order 3. Its vector formu-
las 7, (¢) and 7,(¢), respectively, for ¢ I [0,1] are

1 L 2 L 1 L
EfBl,Elﬂ + E fBj,Elﬂ + EfBlElﬂ
| f 2 L 1 L
gv’?Bl,gm + gﬁﬂgjlrj o V3 Basi)
and
1 o, 4 R i) R 2 o
EfBDjl“ + afBl,ElI’] + afBlElﬂ + EfBjjlﬂ
1 . 3 . 3 . 1 o
EﬁBujlrj + 5\./?131,31_:! +3 V3 Bzslt) + Eﬁﬁg,gqrj
0 0
The second derivative of 7, (¢) is ~33 B, (¢) |which yields 0 for 7 =0 and ~343 |fore=1.
Vs V5
0 0
The second derivative of 7, (t)is —3\/§(Bo,l(t)+Bu(t)) which yields ~343 again
V5 V5

fort=0.
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2.5 Bézier surfaces as tensor splines

Bézier surfaces can be generated rather easily by combining Bézier curves with a tensor product of
Bernstein polynomials. The formula for a Bézier surface on the parameter range [0,1]x[0,1] is:

Z(s,0) = Zn:if}Bm (s)B,,(t)  s,tel0]] (2.6)

i=0 j=0

Here }3” denotes a matrix of (n+1)(m+1) control points (in R?), also called Bézier points.

Figure 2.6: A Bézier tensor spline with m = n = 3 and sixteen control points in R’ . The four highlight-
ed boundary curves are Bézier curves with corresponding boundary control points. On the boundary
we have s =0 or 1 and ¢= 0 or 1, respectively.

The following properties for a Bézier surface follow immediately from (2.6) and the properties of Bézier
curves.

Property 2.6: Elementary properties for the Bézier tensor spline (2.6)

a) Corner points: 7(0,0)=F,,,Z(0,)=5,,, ,Z2(1,0)=P,, , Z(L)=P,,

20.)=3 BB, (1), Z(lt)= > B,B, (1)
b) Boundary curves: J=0 =0

7(5,0)=Y BB, (s), Z(s))=>.P,B,(s)
i=0 i=0
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c) Convex hull: The set of points of the Bézier surface Z = {*
convex hull of the control points.

[O,l]x [0,1]} lies in the

From Property 2.3 we get derivative formulas for the Bézier surface at the boundary.

Property 2.7: First and second order partial derivatives:

6 n=1 _m .
—Z(S n=n).> (B, ;—F B, \(5)B,,(1)
a) i=0 j=0
—z(s 0=m3 (B, ~P B (5)B,, @) s.r<fo]
i=0 j=0
b)
62 n-2 m .
_zf(sﬂt) = n(n - I)ZZ( i+2 j 1+1 N E,j)Bi,n72(s)Bjm(t)
aS i=0 j=0 5%
AP, ;
82 n m—2 .
yf(s,t) =m(m—1) Z( i j+2 z]+1 Baj)Bi,n (S)B.i,m—Z(t)
0= A'F;
2 n—1 m—1 .
OtOs Z(s:) = nmlzo j=0 (B — By E ga T P DB (B, ()
82 n—1 m—1
Z(S,t):ngZ( +l]+1 l]+l B+1/+P )Bln I(S)Bjm l(t) S,ZE[O,I]
Osot 20 120

There is, of course, also a scheme for higher order partial derivatives but this is neither handsome nor
very often used. The following property is important for smooth composition of Bézier surfaces along
common boundary control points. It is a consequence of Property 2.7.

Property 2.8: First and second order partial derivatives at boundary curves

m

CHON=nY(B, B )BL0 - E0= DXUIESANLND

a _ n_o_ . _ . .
EZ(S’O) = mZ(Pi,l - Pi,O)Bm (S) EZ(S’I) = mz (B,m - Pi,m—l )Bm (S)
i=0 i=0
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—z(o £)=n(n— 1)2(};, ,+B B, 0)
ARy
62
a—z(l ) =n(n— 1)2(13,/ 2P +P_, )B,. (1)
NP, ,,
b1)
Z(s 0) = m(m — 1)2(13 —2P,+P)B,,(s)
l %f—/
’ AP,
Z(S 1) m(m l)z( i, lm 1 lm Z)Bln(s)
NB s
_;,j+1 _P Poj+1 +130,j)Bj,m_1(t)
8t8 Z(l t) an(Pn]-H n,j_P l/+1+P lj)Bjm l(t)
b2)
= an( i1 B, 0 ‘,1 + R,O)Bi,n—l(s)
81‘8 Z(S 1) HMZ( i+1,m - - Eﬂ,m—l + é,m—l)B[,n—l (S)

2.6 Composite Bézier surfaces and bi-cubic interpolation

As Bézier curves also Bézier surfaces can be composed. Thereby Properties 2.7 and 2.8 have to be
applied to guarantee smoothness conditions along the common boundary curves. A typical case is the
composition of cubic splines in order to interpolate values on a rectangular grid. This is bi-cubic Bézier

spline interpolation.

Example 2.4: Bi-cubic Bézier interpolation in R’

Given four points {(xo,yo),(xo +h,v0),(xg + By, v +hy), (X0, 0 + hz)} in the corners of a square
grid one has to find a bi-cubic polynomial p(s, ¢) with (s, £) 0 [0,1]0[0,1] with the following conditions:

(1) The polynomial p takes given values z,,z,,,2,,,Z2,, at the

four corner points: This gives a number of 4 conditions.

(2) The surface Z(s,t) = (s,t,p(s,t)) (s,t e [0,1]) has slopes

Zg 'o,o 5 Zg '1,0 s Z '1,1 s Zg '0,1 and z, '0,0 2, ‘1,0 52, '1,1 »Z,'0.1» respec-
tively, for its partial first order derivative vectors at the corner
points. The index s or ¢, respectively, refer to whether the par-
tial derivatives is with respect to s or ¢, respectively. This, ad-
ditionally, gives 2*4 conditions by using Property 2.8a.
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Figure 2.7: Uniform grid of 16 projected control points (z = 0).
(3) Mixed partial derivative conditions: The surface Z(s,t) == (s,t,p(s,t)) (s,t e [0,1]) has slope

0
" " " " H H H - H H
values z ' 1,2, 0,2, 152, o, for the partial derivatives _Gt Z(s,t) at the corner points. This

gives 4 additional conditions by using Property 2.8bz).

The conditions (1) to (3) give a total of 16 conditions for the 16 control points. The projections (z =
0) of the control points subdivide the square grid uniformly as indicated in Figure 2.7. The bi-cubic
Bézier polynomial is defined by (2.6). Because conditions on function values, partial derivatives
and mixed partial derivatives at the corners are met it is possible to compose bi-cubic Bézier sur-
faces for neighboured square grids such that values, partial derivatives and mixed partial deriva-
tives coincide at the common corner points.

3.00 o o Q . . o
2.5¢ |
208 e . ? . . .
1.5¢ :
1.0s . . ° . . .
05: :

i VD D S D S S U

1 2 3 4 5 6

Figure 2.8: Two neighboured square grids sharing two common corner points on the red dashed
line.

Example 2.5: Composition of bi-cubic Bézier surfaces in R?

R e L)

Figure 2.9: Scheme representation of two matrices of control points. The n+1 = 4 control points in
the red column are common. The composite Bézier surface is continuous along the Bézier curve
belonging to the common n+1 = 4 control points. When the (m+1)(n+1) = 16 control points
B,
is defined by (2.6). Denoting the points in the second (right side) matrix by
Q. (i=0,.,n, j=0,.,m) we have that O, =P

im

(i=0,..,n, j=0,..,m) of the first (left side) matrix are given their Bézier surface Z,(s,?)

(i=0,...,n) (four common control
points indicated by the red dashed Iline). The Bézier surface to be defined by
Q.. (i=0,..,n, j=0,..,m) is denoted by Z,(s,t). We have that Z(s,l) = Z,(s,0) (com-

mon Bézier curve according to four common control points).
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0 _ 0 .
First-order conditions: a—z1 (s,]) :8_22 (s,0). By Property 2.8a we get the following n+1 linear
t t

equations:

o

é,m - j,m—1 = Q[,l - Q[,O (l = Oa"'an) (27)

82 - 2 ~
Second-order conditions: ¥Z1(Svl) = yzz(s,O). By Property 2.8b1 we get the following n+1

linear equations:

ﬁi,m - 2}é,m—l + é,m—Z = Qi,2 - 2Qi,1 + Q[,O (l = 07"'5”) (28)
2 82
Mixed second-order conditions: Z,(s,l) = ﬁfz (5,0) . By Property 2.8b2 we get the follow-
tos
ing n linear equations:
Bo,—FB,—Ba,.+E,.= Qi+l,1 - Qi+1,0 - Qi,l + Qi,O (@=0,.,n-1 (2.8)

Thus there is a total of 2(n+1)+n = 11 equations in the 2(n+1) = 8 unknown variable control points
Qu (i=0,..,n, j=1,...,2). Generally, the n mixed second-order conditions (2.8’) are dropped.
On the other side the control points Q/. (i=0,....,n j=3,...,m) do not occur in the linear equa-

tions (2.7) and (2.8). Thus,e.g., the boundary curve Zz, (s,1) may be defined freely as a Bézier curve
or subject to other contraints than (2.7 or 2.8).



