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Acubic and a linear spline

Spline-Interpolation  
 
Outline of methods 
 
1. One-dimensional Splining 
When a (rather large) set of 
measurement points with argu-
ments nn xxxx ,,,, 110 −  have 
to be met and interpolated by a 
curve the method of collocation ( 
= interpolation by a single poly-
nomial of degree at most n) often 
runs into oscillation problems of 
the error towards the boundaries 
of the interval  
{ } niii xx ,,1,0max,min

= .  

This problem is called Runge 
phenomenon. The concept of 
splines avoids this phenomenon 
by “patching” together many (n) 
polynomial curves of low degrees on the n segments (“patches”) ),(,),,(),,( 12110 nn xxxxxx − . Of 
course, the low-degree polynomial curves meet one another at the measurement points with interior 
arguments 11 ,, −nxx   making the whole “patched” curve continuous (abbreviated by the symbol C0 or 
saying it is a C0-curve). But often more is required: The curve must fulfill so-called smoothness condi-
tions at the interior points meaning that it has to be continuously differentiable up to a certain given 
order k (abbreviated by the symbol Ck or saying it is a Ck -curve). 
 
A typical situation is the case where the maximum degree of the “patching” polynomials is d and the 
“patched” curve must be a Cd-1-curve ((d -1) times continuously differentiable). It is assumed that  
n > d -1. Each polynomial has d +1 coefficients giving a total of n(d + 1) undetermined coefficients. On 
the other side we have the following sets of conditions: 
 
# of conditions Description 
2 n Each “patching” polynomial curve meets the two measurement points cor-

responding to the endpoints of its segment (“patch”). 
(d-1) (n-1) The derivatives of order 1, 2, …, d-1  are continuous at the interior argu-

ments 11 ,, −nxx  . 

Table 1.1: Conditions for a typical spline (it is assumed that n > d -1) 
 
This gives a total of n(d –1 ) + 2n – (d –1) = n(d +1) – (d –1) conditions. Since this is smaller than the 
number of undetermined coefficients a set of (d -1) further conditions may be met at the arguments 

nn xxxx ,,,, 110 − . This makes the concept of splines rather flexible. 

A very important case for practical purposes is cubic splining: d = 3 and n > d -1. In cubic splining 
there are 4n undetermined coefficients and 4n – 2 conditions at the interior arguments. Depending on 
the nature of the “two further conditions” to be met at (two of) the arguments we may distinguish sev-
eral concepts of cubic splining. 
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1.1 Cubic spline 

For 1,,1,0 −= ni   we define a cubic polynomial  

 
32 )()()()( iiiiiiii xxdxxcxxbaxS −+−+−+=   (1.1) 

 

belonging to the segment (“patch”) [ ]1, +ii xx . Further we define iiii xxxh ∆=−= +1 . By examining 
the conditions mentioned in Table 1.1 above we get the following system of equations. 
 

1. Since the spline curve has to meet the measurement points ),...,1,0(),( niyx ii =  we get:   

 )1,...,0( −== niya ii  . The argument xn has not been used yet. 

 

2. Since the spline is a C2-curve:  )1,...,1(
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The coefficient 1−nd  will be computed later by using special conditions at the boundary arguments x0 
and xn, respectively. 
 

3. Since the spline curve is continuous:  
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The coefficient 1−nb  will be computed later by using the argument xn and the coefficients 1−nd  and 

1−nc , respectively. 
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4. Since the spline is a C1-curve:   
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Here the equation (1.3) has been used to replace 1−ib  and )2,...1( −= nibi .  

 

The last n-2 equations (1.4) form a linear system with a tri-diagonal band matrix for the n coefficients 

110 ,...,, −nccc . The matrix has dimensions n-2 by n. 
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Table 1.2: Incomplete tri-diagonal system of n-2 equations for  n  coefficients for a cubic spline 

 

 
1.2 Natural cubic spline 

The natural cubic spline S fulfills the boundary conditions 0)('')('' 0 == nxSxS . These conditions 
have a physical (“natural”) interpretation: The natural cubic spline minimizes the mean total curvature 

dxxf
nx

x
∫

0

2|)(''|   among all C2-functions in the interval [ ]nxx ,0  that meet all the measurement points  

(here it is assumed that x0 and xn are minimal and maximal, respectively). This fact is called Holladay-
Theorem. 

 

The development of the tri-diagonal system in Table 1.2 has not yet considered the additional (two) 
conditions at the boundary arguments x0 and xn. In the case of natural splining this means that 
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Now we use the first equation of (1.4) for i = n-1 and (1.3’) as well as (1.2) and (1.3) to conclude that 
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Subtraction of these two equalities yields a further condition on the c-coefficients: 
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Now the tri-diagonal system of equations of Table 1.2 takes the following regular form (n-1 equations 
for the n-1 coefficients 11,..., −ncc ): 
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Table 1.3: Regular tri-diagonal system of n-1 equations for  n-1 coefficients  
 

From the c-coefficients we compute the d-coefficients by (1.2)  ( 1−nd  by 
1

1

3 −

−−
n

n

h
c

) and the b-

coefficients by (1.3) or (1.3'), respectively. 
 
 
1.3 Complete cubic spline ("clamped") 

In complete or clamped cubic splining there are two first order derivative conditions on the boundary 
arguments:  
    

nn yxSyxS ')('')(' 00 ==   

 

with given values 0'y  and ny' . The formulas (1.1) to (1.4) and the tri-diagonal linear system of equa-
tions in Table 1.2 hold for all cubic splines. The first order boundary conditions yield the following 
equations: 
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We proceed as in the case of the natural spline and use equations (1.3), (1.3’) and (1.4) to derive fur-
ther equations for the c-coefficients.  
 
From (1.3) we get that 
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From (1.3’), (1.4) and (1.5) we conclude the following three equations: 
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Multiplying the first equation by 3 and subtracting the third equation eliminates 1−nd . The substitution 

of 1−nb  with the term in the second equation then yields a further condition on the c-coefficients: 
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The system in Table 1.2 combined with (1.6) and (1.7) forms a complete linear system for the c-
coefficients: 
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Table 1.4: Regular complete tri-diagonal system of n equations for  n coefficients for a clamped cubic 
spline 

 

From (1.2) we get 2,.0 ..., −ndd , from (1.3) we get 2,.0 ..., −nbb , from (1.4) then we get 1−nb  and (finally) 

from (1.3’) we compute 1−nd . 
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1.4 Other cubic spline methods 

Hermite cubic spline: C1-curve patched from cubic polynomials with given first order derivatives at 
the arguments nn xxxx ,,,, 110 −  (n+1 conditions). This gives a total amount of exactly 4n conditions. 
An elegant solution method is based on a linear combination of Hermite basis functions (cubic poly-
nomials) on the special interval [0,1] (“single special patch”). By linear transformations from the interval 
[0,1] to the segments [ ]1, +ii xx  ( 1,,1,0 −= ni  ). it is rather easy to compute in a piecewise manner 

a compound solution fulfilling the conditions on the derivatives at the arguments nn xxxx ,,,, 110 − . 

 
The Hermite cubic spline S allows for an application of the osculation error formula: 
 

For any segment [ ]1, +ii xx  we have an osculation error (!), thus  
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Similar error formulas for other spline methods exist but their derivations generally are much more 
difficult1. 
 
Periodic spline: C2-curve S patched from cubic polynomials with periodic properties (provided that 

⇒= nyy0 )()( 0 nxSxS = ): The two periodic standard conditions are )(')(' 0 nxSxS =  or 

)('')('' 0 nxSxS = , alternatively. This gives a total amount of exactly 4n conditions.  

 
 

                                                           
1 Cf. C.A. Hall & W.W. Meyer: Optimal error bounds for cubic spline interpolation. Journal Approx. 
Theory 16, p. 105-122 (1976). This paper gives a survey on error bounds and a main theorem, as well: 
If y is a C4-function and S a cubic C2-spline interpolant that coincides with y’ or, alternatively, with y’’ at 
the boundary arguments { }nxx ,0  then  
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"Not – a – Knot" – Spline: C2-curve S patched from cubic polynomials when the knots 1x  and 1nx −  
are ignored and not considered as interior arguments. The number  of patches is reduced to n-2 and 
the number of interior points to n-3. This yields 4(n-2) = 4n – 8 for the number of undetermined coeffi-
cients and 2(n-2) + (n-3)(d-1) = 4n – 10 for the number of conditions. Again there is an excess of 2 
undetermined coefficients. 
 
As the Hermite cubic spline described above also the Bézier-Spline or the Basis-Spline are composed 
from a cleverly devised set of basis functions. These are discussed in the next section. 
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2. Bernstein-Bézier Splines (B-B-Splines) 

 
The methods described in the previ-
ous section led to rather efficient im-
plementations because of the tri-
diagonal band structure of the linear 
systems in Table 1.2 and 1.3. On 
the other side, the consideration of 
special, uncomplicated conditions like 
“natural” or “clamped” at the boundary 
arguments was not easily and generi-
cally transformable into mathematical 
formulaes or algorithms despite the fact that a large portion of the 
linear system of a cubic spline was determined only by the interior 
arguments (cf. Table 1.2). Moreover, the lack of genericity increases 
when solving the problem of higher-order splines with higher de-
grees d and higher-order conditions on the smoothness at interior 
points (cf. Table 1.1). Another disadvantage of the methods in sec-
tion 1 is that they refer to a set of measurement points and thus to a 
set of points on a function graph. This is very restrictive. 
 
Improvements with respect to these disadvantages are necessary 
and – luckily – corresponding methods exist. Examples are Hermite 
interpolation, Bernstein-Bézier splines (B-B-splines) and Basis 
splines (B-splines). These methods have in common that they are 
based on cleverly devised sets of basis functions called Hermite 
basis polynomials, Bernstein polynomials or just Basis functions (in 
the case of Basis splines). 
 
2. 1 Bernstein-Polynomials 
The set of basis functions for Bézier splines consists of the Bernstein polynomials: 
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This elementary polynomials refer to the interval [0, 1]. By an affine transformation of [0, 1] into the 
interval [a, b] we immediately get the transformed Bernstein polynomials which refer to [a, b]: 
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The following properties of Bernstein polynomials are obvious or their proofs elementary: 
 
Property 2.1: Some elementary facts on Bernstein polynomials. 

a) The Bernstein polynomials of order n form a linear basis for the polynomials of order n. 

b) )(tBin has a exactly one maximum at 
n
it = . 

c) )(tBin has a zero at 0 of order i and a zero at 1 of order n-i. 

d) Symmetry: )1()( , tBtB ninin −= −  



  Numerical Analysis  
 Dr. Bernhard Zgraggen 
 
 

9 

e) The Bernstein polynomials are bounded in [0,1]:  [ ]1,01)(0 ∈≤≤ ttBin  

f) The Bernstein polynomials are a partition of unity: 1)(
0

=∑
=

n

i
in tB . 

 

 

Figure 2.1: The six Bernstein polynomials of order 5 with 5,2B  highlighted. 

 

For many formulas it is technically advantageous to define )(, tB ni  identically 0 whenever 0<i  or 

ni > . 

Property 2.2: Recurrence relations of the Bernstein polynomials for order 1≥n : 
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This says how )(tBin can be computed from lower order Bernstein polynomials. The proof of this is 

based on the recurrence relation )1,,1(
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The recursion relation is crucial for the efficient evaluation of Bernstein polynomials. This will lead to 
Casteljau’s algorithm for the evaluation of points lying on Bézier curves (cf. section below). 

 

Property 2.3: Differentiation of the Bernstein polynomials: 

a) )())()(()( 1,11,1,1 tBntBtBntB
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d
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b) )()1())(  )(2)()(1()( 2,2
2

2,2,12,22 tBnntBtBtBnntB
dt
d

ninininiin −−−−−−− ∆−=+−−=  

 
 

c) )()1()2)(1()1()( , tBknnnntB
dt
d

knki
kk

ink −−∆+−−−−=   

The symbol � k denotes the forward difference operator k-times iterated. 

( Proof: a) is an elementary consequence of the product differentiation rule. Then b) and c) are iter-
ated applications of a)  �  ) 

 

2.2 Simple Bézier curves 
The Bernstein polynomials and their properties (cf. section above) allow for an elegant construction of 
spline curves that are controlled by a set of d-dimensional control points (vectors) 

)2(,,, 10 ≥nPPP n







 in dR . These spline curves of order n are named Bernstein-Bézier curves, B-
B-splines or Bézier curves and their definition is simple and elegant: 
 

[ ]1,0)()(
0

∈= ∑
=

ttBPtr in

n

i
i





 (2.2) 

 

The Bernstein-Bézier polygon is generated by connecting 1, +ii PP


 with straight lines (i = 0, 1, …, n-1). 

 

Example 2.1: The figure on the right shows a 2-dimensional cubic Bézier 
spline with four control points in 2R  and corresponding Bernstein-Bézier 
polygon. 
The figure represents a part of an image encoded in .svg (scalable vector 
graphics). The four control points are: 

 









−

=







−

=









−

=







−

=

071.269
743.237

,
071.269

191.228

,
911.257

852.221
,

566.222
852.221

32

10

PP

PP





 

 
The vector formula for the Bézier curve is as follows:  

[ ]1,0
071.269)1()071.269(3)1()911.257(3)1(566.222

743.237)1(191.2283)1(852.2213)1(852.221

)()(

31223

31223

0

∈








−−−⋅+−−⋅+−−
+−⋅+−⋅+−

== ∑
=

t
tttttt

tttttt

tBPtr in

n

i
i




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Property 2.4: Convex hull property of Bézier curves 
The Bézier curve lies in the convex hull of its control points. The convex hull is defined as the set of 

all convex combinations }101|{
00
∑∑
==

≤≤∧=∧=∈
n

i
ii

n

i
ii

d PxRx λλλ


. 

( Proof: This follows immediately from (2.2) and Property 2.1e and f (partition of unity)  �  ) 

 

Property 2.5: Tangential directions and differential properties 

For the Bézier curve (2.2) we have the following identities: 
 

a) nPrPr








== )1(,)0( 0  

 

b) )()1('),()0(' 101 −−=−= nn PPnrPPnr








 

 

c) )2)(1()1(''),2)(1()0('' 21012 −− +−−=+−−= nnn PPPnnrPPPnnr








 

 

d) kn
k

k
k

k Pknnnr
dt
dPknnnr

dt
d

−∆+−−=∆+−−=










 )1()1()1(,)1()1()0( 0  

 

( Proof: a) follows from (2.2). Part b) follows from (2.2) and Property 2.3: 

 1, 1 , 1
0 0

'( ) '( ) ( ( ) ( ))
n n

i in i i n i n
i i

r t PB t n P B t B t− − −
= =

= = ⋅ −∑ ∑
 



.  

Setting t = 0: The expressions 1, 1 , 1( ( ) ( ))i n i nB t B t− − −−  are 0 except for i = 0 and i = 1, where they 

evaluate to (0 – 1) and (1 – 0), respectively. Therefore, the sum simplifies to 1 0( )P P−
 

. 

Setting t = 1: The expressions 1, 1 , 1( ( ) ( ))i n i nB t B t− − −−  are 0 except for i = n and i = n–1 , where 

they evaluate to (1 – 0) and (0 – 1), respectively. This time, the sum simplifies to 1( )n nP P −−
 

. The 
proposition in c) is proved similarly. In general we have the differential identity  

0(0) ( 1) ( 1) , (1) ( 1) ( 1)k k
n kk k

d dr n n n k P r n n n k P
dt dt −= − − + ∆ = − − + ∆

 

 

   �  ) 

 

These identitites will be important to examine smoothness when several Bézier curves have to be 
composed (cf. section below). 

 

2.3 Casteljau recurrence 
The Castelau recurrence is similar in its idea to the Neville-Aitken recurrence for polynomial interpola-
tion. It allows to compute a point on a Bézier curve corresponding to control points 

)2(,,, 10 ≥nPPP n







 as a convex linear combination of points of lower order Bézier curves.  
 

[ ]1,0)()()1()( ,,,,,,,,, 2111010
∈⋅+−=

−
ttrttrttr

nnn PPPPPPPPP
















 (2.3) 
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( Proof: This follows from the recursion identities of the Bernstein polynomials in Property 2.2: 

[ ]

0 1

1 2 0 1 1

1, 1 , 1, , ,
0 0

1

1, 1 , 1 , , , , , ,
1 0

( ) ( ) ( ( ) (1 ) ( ))

( ) (1 ) ( ) ( ) (1 ) ( ) 0,1

n

n n

n n

i in i i n i nP P P
i i

n n

i i n i i n P P P P P P
i i

r t PB t P t B t t B t

t PB t t PB t t r t t r t t
−

− − −
= =

−

− − −
= =

= = ⋅ + − =

⋅ + − ⋅ = ⋅ + − ∈

∑ ∑

∑ ∑

  



     

 

 



 

 

    

�  ) 

 

The recurrence relation in (2.3) allows for an efficient computation of )(,,, 10
tr

nPPP








for any [ ]1,0∈t . Be-

low, this is illustrated graphically for the case n = 3 with four control points: 
 

   

 

Figure 2.2: Graphical illustration of the Casteljau recurrence. Here t = 0.25. The segments are subdi-
vided with t = 0.25.  

In the first step four 0-order Bézier polynomials are computed (black control points), then these are 
used to compute first order values using (2.3), then the first order values are used to compute the 
second order values etc. Normally, this is written in a tableau; each picture in Fig. 2.2 corresponds to a 
column in the tableau. The entries in the tableau are vectors: 

 

  





















)(

,,,,,,,,,

,,,,,

,

3,2,1,0

321210321322132323

210211021212

10101

0

)()()1()()()()1()()()()1()(
)()()()1()()()()1()(

)()()()1()(
)(

tr

PPPPPPPPPPPPPPPPPP

PPPPPPPPPPPP

PPPPP

P

PPPP

trttrttrtrttrttrtrttrttr
trtrttrttrtrttrttr

trtrttrttr
tr

⋅+−=⋅+−=⋅+−
=⋅+−=⋅+−

=⋅+−

Table 2.1: The Casteljau tableau to compute a specific point )(
3,2,1,0

tr PPPP


 on the Bézier curve. 
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2 common con-
trol points 

2.4 Composite Bézier curves 
In many applications (especially in design applica-
tions like font design for example) it is important 
and common to compose simple Bézier curves. 

The figure on the right shows the composition of 
three simple cubic Bézier curves as a part of the 

font design for the letter  . The simple Bézier 
curves meet at common control points. This is a 
continuity condition (C0). Often higher order 
(smoothness) conditions are required as common 
tangent lines or even C1, C2 etc. in the common 
control points. 
Property 2.5 will help to find the appropriate condi-
tions for different orders of smoothness. The next 
theorems, e.g., are immediate consequences of 
Property 2.5. 
 

 
Figure 2.3: Three simple Bézier curves composed 

with two common control points 
 
 
Theorem 2.1: C1-smoothness condition 

If [ ]1,0)()(
0

∈= ∑
=

ttBPtr in

n

i
iP





  is a Bézier curve of order n �  1 with respect to the control points 

nPPP






,,, 10  and  [ ]1,0)()(
0

∈= ∑
=

ttBQtr im

m

i
iQ





  a Bézier curve of order m �  1 for the control 

points mQQQ






,,, 10 with common control point 0QPn



=  then the composite Bézier curve is con-

tinuously differentiable at the common control point if and only if )1('Pr


= 

)()( 011 QQmPPn nn



−=− −  = )0('Qr


. 

 
C1-smoothness means that the curves have a common tangent vector (common in direction and 

length) at the common control point. The condition 01011 )()( QmPnQQmPPn nnn



∆=∆⇔−=− −−  

implies that the three points 11 ,, QPP nn



−  must lie on a straight line. 

 
Theorem 2.2: C2-smoothness condition 

If [ ]1,0)()(
0

∈= ∑
=

ttBPtr in

n

i
iP





  is a Bézier curve of order n �  2 with respect to the control points 

nPPP






,,, 10  and  [ ]1,0)()(
0

∈= ∑
=

ttBQtr im

m

i
iQ





  a Bézier curve of order m �  2 for the control 

points mQQQ






,,, 10 with common control point 0QPn



=  then the composite Bézier curve is twice 
continuously differentiable at the common control point if and only if  

 

)1('Pr


= )()( 011 QQmPPn nn



−=− −  = )0('Qr

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and   )1(''Pr


= )2)(1()2)(1( 01221 QQQmmPPPnn nnn



+−−=+−− −−  = )0(''Qr


.  

 

The condition )2)(1()2)(1( 01221 QQQmmPPPnn nnn



+−−=+−− −−  implies that the second differ-

ence vectors )( 211 −−− −−− nnnn PPPP


 and )( 0112 QQQQ


−−− are collinear. 

 
Example 2.2: In Figure 2.3 we have n = m = 3 and the following sets of control points for the two first 

spline curves: 
 









=








=








=








−

=









−

=







−

=







−

=







−

=

259.777- 
256.285 

,
264.123-
253.634 

,
269.071- 

246.216 
,

071.269
743.237

071.269
743.237

,
071.269

191.228
,

911.257
852.221

,
566.222

852.221

3210

3210

QQQQ

PPPP





 

 

The condition of Theorem 2.1 reads 







=








⇔−=−

0
473.8

0
552.9

)(3)(3 0123 QQPP


 and this is 

obviously wrong. Thus the composite Bézier curve is not C1-smooth at the first common control 
point .03 QP



= Nevertheless a common tangent direction exists at this control point (but not at the 
second one). 

 
The general smoothness conditions follows from Property 2.5d. 
 
Theorem 2.3: Ck-smoothness condition 

If [ ]1,0)()(
0

∈= ∑
=

ttBPtr in

n

i
iP





  is a Bézier curve of order n �  k with respect to the control points 

nPPP






,,, 10  and  [ ]1,0)()(
0

∈= ∑
=

ttBQtr im

m

i
iQ





  a Bézier curve of order m �  k for the control 

points mQQQ






,,, 10 with common control point 0QPn



=  then the composite Bézier curve is k 
times continuously differentiable at the common control point if and only if  

 

   )1()( j
Pr


= ))(1()1())(1()1( 0QjmmmPjnnn j
jn

j






 ∆+−−=∆+−− −  = )0()( j
Qr


  

 
for j = 0,1, 2, …, k. 

 
 
For interpolation problems it is often desirable to parametrize a composite Bézier curve with one pa-
rameter interval [u0, um] and a parameter u. The interval is subdivided into m  “patches” [uj, uj+1]  (j = 
0,1, 2, …, m-1) by m-1 interior knots: m

erior

m uuuuu <<<<< −
  



int

1210 . For each “patch” [uj, uj+1]  (j = 0,1, 

2, …, m-1) we have a Bézier curve of (the same) order n with n+1 control points ),,1,0( niPij 



=  

by the formulas 
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[ ] )1,,1,0(.).,()( 11
0

−=∈= ++
=
∑ mjuuuuuuBPur jjjjin

n

i
ijj 





 (2.4) 

 
Here the transformed Bernstein polynomials of (2.1’) are used. Continuity of the composite curve is 
fulfilled if )2,,1,0(1,0 −== + mjPP jnj 



. There is a total of at most m(n+1)-(m-1)=mn+1 distinct 

control points when taking into account the continuity conditions )2,,1,0(1,0 −== + mjPP jnj 



 . 
The smoothness conditions now read as follows. 
 
Theorem 2.4: The composite Bézier curve (2.4) is C1-smooth if and only if 
 

)2,,1,0(
)()(

1

1,01,1,1, −=
−

=
−

+

++− mj
h

PPn
h

PPn

j

jj

j

jnjn




  

 

where jjj uuh −= +1 . 

( Proof: This follows from Theorem 2.1 by differentiating with the chain rule since we have  

1
1

1( , , ) ( ) ( ) ( 0,1, , 2)j
in j j in in

j j j

u ud d dB u u u B B t j m
du du u u dt h+

+

−
= = ⋅ = −

−
  �  ) 

 
The condition in Theorem 2.4 can be formulated as  

)2,,1,0(1,1
1

,1
1

1
, −=

+
+

+
= +

+
−

+

+ mjP
hh

h
P

hh
h

P j
jj

j
jn

jj

j
jn 



. This says that the the common control 

point must be an appropriate convex combination of the neighboured control points jnP ,1−



 and 1,1 +jP


 

and that the line from jnP ,1−



 to 1,1 +jP


 is subdivided by njP


 in a ratio equal to 
1+j

j

h
h

. 

 
The generalization of Theorem 2.2 now is obvious. 
 
Theorem 2.5: The composite Bézier curve (2.4) is C2-smooth if and only if 
 

)2,,1,0(
)()(

1

1,01,1,1, −=
−

=
−

+

++− mj
h

PPn
h

PPn

j

jj

j

jnjn




  and 

 

)2,,1,0(
)2)(1()2)(1(

2
1

1,01,11,2
2

,2,1, −=
+−−

=
+−−

+

+++−− mj
h

PPPnn
h

PPPnn

j

jjj

j

jnjnjn




 

 

where jjj uuh −= +1 . 

( Proof: As in Theorem 2.4 this follows from Theorem 2.2 by differentiating with the chain rule since 
we have  
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12 2 2 2
1

1( , , ) ( ) ( ) ( 0,1, , 2)j
in j j in in

j j j

u ud d dB u u u B B t j m
du du u u dt h+

+

−
= = ⋅ = −

−
   

�  ) 
 
A rather general smoothness theorem is the following one. It is a consequence of Property 2.5d. 
 
Theorem 2.6: The composite Bézier curve (2.4) is Ck-smooth (n �  k) if and only if 
 

),,2,1,02,,1,0(
1

1,0, kmj
h
P

h
P

j

j

j

jn














=−=
∆

=
∆

+

+−
 

 

where jjj uuh −= +1 . 

 
 
The conditions in Theorem 2.6 constitute a linear system of (k+1)(m-1) equations for the m(n+1) con-
trol points. This is the key to a generic solution to the interpolation problem in any dimension and with 
smoothness conditions of any order. 

If given m+1 arguments mm uuuuu <<<<< −1210   and corresponding points  

),,1,0( mjQj 



=  („measurement vectors“) then Theorem 2.6 makes possible the following proce-

dure to find a Ck-smooth composite Bézier curve interpolating ),,1,0( mjQj 



=  and being com-
posed of simple Bézier curves of order n. This procedure also covers the special cases of “natural” or 
“clamped” splines.  

Define a doubly indexed sequence of m(n+1)  control points )1,,1,0,,,1,0( −== mjniPij 



 

with 1 0, 1 ( 0,1, , 2)nj j jP Q P j m+ += = = −
 

  and 00,0 QP


= , mmn QP


=−1, . This gives a total of at 

most mn+1 distinct points. The points )1,,1( −= mjQj 



are interior points playing the role of 
common control points. Then there are at most m(n-1) control points in the set 

)1,,1,0,1,,1( −=−= mjniPij 



 different from all the measurement points 

),,1,0( mjQj 



= . If smoothness conditions of order k = n-1 are required for the composite contin-
uous curve we get a linear system of (n-1)(m-1)  equations for the (n-1)m  control points  

)1,,1,0,1,,1( −=−= mjniPij 



 by Theorem 2.6: 

 

)1,,2,12,,1,0(
1

1,0, −=−=
∆

=
∆

+

+− nmj
h
P

h
P

j

j

j

jn














 (2.5) 

 
This is in accordance with the second condition in Table 1.1. The difference of the number of equa-
tions and the number of control points )1,,1,0,1,,1( −=−= mjniPij 



is n-1. This allows for 
a set of n-1 additional conditions on the composite Bézier curve. 
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Example 2.3: Interpolation of )sin(xy =  from the four points { }mjQj ,,1,0 



=  =  









)0,(),
2
3,

3
2(),

2
3,

3
(),0,0( πππ

. Here m = n = 3 and 
3
π

== hhj . Formula (2.5) gives (n-1)(m-

1) = 4 equations for (n-1)m  = 6 unknown control points )1,,1,0,1,,1( −=−= mjniPij 



: 

 

   

22,12,21,11,22

11,11,20,10,21

22,11,22

11,10,21

22

22

QPPPPQ

QPPPPQ

QPPQ

QPPQ









+−=+−

+−=+−

−=−

−=−

 

 
Since there are 4 equations for 6 unknown points two conditions can be met in addition. The natu-
ral spline, e.g., requires that the second derivatives at the boundary arguments 0 and �, respective-
ly, are 0. By Theorem 2.5 it follows for the “natural” boundary conditions that: 

 

   
02

02

2,12,23

00,10,2




=+−

=+−

PPQ

QPP
 

  

The solution for this system of 6 linear equations in 6 unknown vectors (control points) is: 

 
The figure below shows the 10 distinct control points together with the sine-curve (dashed) and the 
composite Bézier curve. The red points are the common (interior) control points or boundary con-
trol points, respectively. 
 

0.5 0.5 1.0 1.5 2.0 2.5 3.0

0.5

0.5

1.0

 
Figure 2.4: 10 distinct control points (two of them as common) for the sine-curve in the interval [0, 
�] and the composite Bézier curve of order 3. The difference between the sine-curve (dashed) and 
the Bézier curve is rather small. The computations could be reduced by using symmetries for the 
sine-curve, of course. 
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Figure 2.5: The first 7 control  points and their composite Bézier spline of order 3. Its vector formu-
las  )(1 tr  and )(2 tr , respectively, for t �  [0,1] are  
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The second derivative of )(1 tr is 
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2.5 Bézier surfaces as tensor splines 
Bézier surfaces can be generated rather easily by combining Bézier curves with a tensor product of 
Bernstein polynomials. The formula for a Bézier surface on the parameter range [0,1]x[0,1] is: 
 

[ ]∑∑
= =

∈=
n

i

m

j
jminij tstBsBPtsz

0 0
1,0,)()(),(





  (2.6) 

 

Here ijP


 denotes a matrix of (n+1)(m+1) control points (in dR ), also called Bézier points. 

 
Figure 2.6: A Bézier tensor spline with m = n = 3 and sixteen control points in 3R . The four highlight-
ed boundary curves are Bézier curves with corresponding boundary control points. On the boundary 
we have s = 0 or 1 and t = 0 or 1, respectively. 
 
The following properties for a Bézier surface follow immediately from (2.6) and the properties of Bézier 
curves. 
 
Property 2.6: Elementary properties for the Bézier tensor spline (2.6) 
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
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c) Convex hull: The set of points of the Bézier surface [ ] [ ]{ }1,01,0,),( ×∈= tstszZ 

 lies in the 
convex hull of the control points. 

 
From Property 2.3 we get derivative formulas for the Bézier surface at the boundary. 
 
Property 2.7: First and second order partial derivatives: 
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There is, of course, also a scheme for higher order partial derivatives but this is neither handsome nor 
very often used. The following property is important for smooth composition of Bézier surfaces along 
common boundary control points. It is a consequence of Property 2.7. 
 
Property 2.8: First and second order partial derivatives at boundary curves 
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2.6 Composite Bézier surfaces and bi-cubic interpolation 
As Bézier curves also Bézier surfaces can be composed. Thereby Properties 2.7 and 2.8 have to be 
applied to guarantee smoothness conditions along the common boundary curves. A typical case is the 
composition of cubic splines in order to interpolate values on a rectangular grid. This is bi-cubic Bézier 
spline interpolation. 
 

Example 2.4: Bi-cubic Bézier interpolation in 3R  

Given four points { }),(),,(),,(),,( 200201001000 hyxhyhxyhxyx ++++  in the corners of a square 
grid one has to find a bi-cubic polynomial p(s, t) with (s, t) �  [0,1]� [0,1] with the following conditions:  

 

(1) The polynomial p takes given values 1,01,10,10,0 ,,, zzzz  at the 
four corner points: This gives a number of 4 conditions. 

(2) The surface ( ) [ ])1,0,(),(,,:),( ∈= tstsptstsz  has slopes 

1,01,10,10,0 ',',',' ssss zzzz  and 1,01,10,10,0 ',',',' tttt zzzz , respec-
tively, for its partial first order derivative vectors at the corner 
points. The index s or t, respectively, refer to whether the par-
tial derivatives is with respect to s or t, respectively. This, ad-
ditionally, gives 2*4 conditions by using Property 2.8a. 
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Figure 2.7: Uniform grid of 16 projected control points (z = 0). 

(3) Mixed partial derivative conditions: The surface ( ) [ ])1,0,(),(,,:),( ∈= tstsptstsz   has  slope 

values 1,01,10,10,0 '','','','' ssss zzzz  for the partial derivatives ),( tsz
t


∂
∂

 at the corner points. This 

gives 4 additional conditions by using Property 2.8b2). 

 

The conditions (1) to (3) give a total of 16 conditions for the 16 control points. The projections (z = 
0) of the control points subdivide the square grid uniformly as indicated in Figure 2.7. The bi-cubic 
Bézier polynomial is defined by (2.6). Because conditions on function values, partial derivatives 
and mixed partial derivatives at the corners are met it is possible to compose bi-cubic Bézier sur-
faces for neighboured square grids such that values, partial derivatives and mixed partial deriva-
tives coincide at the common corner points. 

 

1 2 3 4 5 6

0.5
1.0
1.5
2.0
2.5
3.0

 

Figure 2.8: Two neighboured square grids sharing two common corner points on the red dashed 
line. 

 

 

Example 2.5: Composition of bi-cubic Bézier surfaces in dR  

 

 
 

Figure 2.9: Scheme representation of two matrices of control points. The n+1 = 4 control points in 
the red column are common. The composite Bézier surface is continuous along the Bézier curve 
belonging to  the common n+1 = 4  control points. When the (m+1)(n+1) = 16 control points 

),...,0,,...,0( mjniPij ==


 of the first (left side) matrix are given their Bézier surface ),(1 tsz  
is defined by (2.6). Denoting the points in the second (right side) matrix by  

),...,0,,...,0( mjniQij ==


 we have that ),...,0(0 niPQ imi ==


 (four common control 
points indicated by the red dashed line). The Bézier surface to be defined by 

),...,0,,...,0( mjniQij ==


 is denoted by  ),(2 tsz .  We have that )0,()1,( 21 szsz  =  (com-
mon Bézier curve according to four common control points). 
 



  Numerical Analysis  
 Dr. Bernhard Zgraggen 
 
 

23 

First-order conditions:  )0,()1,( 21 sz
t

sz
t



∂
∂

=
∂
∂

. By Property 2.8a we get the following n+1 linear 

equations: 
 

   ),...,0(0,1,1,, niQQPP iimimi =−=− −



 (2.7) 

 

Second-order conditions:  )0,()1,( 22
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=
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. By Property 2.8b1 we get the following n+1  

linear equations: 
 

   ),...,0(22 0,1,2,2,1,, niQQQPPP iiimimimi =+−=+− −−



 (2.8) 

 
 

Mixed second-order conditions:  )0,()1,( 2

2

1

2

sz
st

sz
st



∂∂
∂

=
∂∂
∂

. By Property 2.8b2 we get the follow-

ing n  linear equations: 
 

   )1,...,0(0,1,0,11,11,1,1,,1 −=+−−=+−− ++−−++ niQQQQPPPP iiiimimimimi



 (2.8’) 

 
 
Thus there is a total of 2(n+1)+n = 11 equations in the 2(n+1) = 8 unknown variable control points 

)2,...,1,,...,0( == jniQij



. Generally, the n mixed second-order conditions (2.8’) are dropped. 

On the other side the control points ),...,3,...,0( mjniQij ==


 do not occur in the linear equa-

tions (2.7) and (2.8). Thus,e.g., the boundary curve )1,(2 sz may be defined freely as a Bézier curve 
or subject to other contraints than (2.7 or 2.8). 
 

 


