- 17.1
- AFRAIMOVICH, V.S.; ILYASHENKO, YU.S.; SHILNIKOV, L.P.: Bifurcations.
In: Dynamical Systems, 5. Springer-Verlag 1991.
- 17.2
- ARGYRIS, J.; FAUST, G.; HAASE, M.: Die Erforschung des Chaos.
Verlag Vieweg 1994.
- 17.3
- ARROWSMITH, D.K.; PLACE, C.M.: An Introduction to Dynamical Systems.
Cambridge University Press 1990.
- 17.4
- BOICHENKO, V.A.; LEONOV, G.A.; REITMANN, V.: Dimension Theory for Ordinary Differential Equations.
B.G. Teubner 2005.
- 17.5
- BRÖCKER, TH.: Analysis III.
Wissenschaftsverlag Zürich 1992.
- 17.6
- DE MELO, W.; VAN STRIEN, S.: One-Dimensional Dynamics.
Springer-Verlag 1993.
- 17.7
- EDGAR, G.A.: Measure, Topology and Fractal Geometry.
Springer-Verlag 1990.
- 17.8
- FALCONER, K.: Fractal Geometry.
Wiley 1990.
- 17.9
- GREBOGI, C.; OTT, E.; PELIKAN, S.; YORKE, J.A.: Strange attractors that are not chaotic.
Physica 13 D 1984.
- 17.10
- GUCKENHEIMER, J.; HOLMES, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.
Springer-Verlag 1990.
- 17.11
- HALE, J.; KOÇAK, H.: Dynamics and Bifurcations.
Springer-Verlag 1991.
- 17.12
- KANTZ, H.; SCHREIBER, T.: Nonlinear Time Series Analysis.
Cambridge University Press 1997.
- 17.13
- KIRCHGRABER, U.: Chaotisches Verhalten in einfachen Systemen.
Elemente der Mathematik 1992.
- 17.14
- KUZNETSOV, YU., A.: Elements of Applied Bifurcation Theory, 112. In: Applied Mathematica Series.
Springer-Verlag 1995.
- 17.15
- LEONOV, G.A., REITMANN, V.; SMIRNOVA, V.B.: Non-Local Methods for Pendulum-Like Feedback Systems
B. G. Teubner 1987.
- 17.16
- LEVEN, R.W.; KOCH, B.-P.; POMPE, B.: Chaos in dissipativen Systemen.
Akademie-Verlag 1994.
- 17.17
- MAREK, M.; SCHREIBER, I.: Chaotic Behaviour of Deterministic Dissipative Systems.
Cambridge University Press 1991.
- 17.18
- MEDVED', M.: Fundamentals of Dynamical Systems and Bifurcations Theory.
Adam Hilger 1992.
- 17.19
- PERKO, L.: Differential Equations and Dynamical Systems.
Springer-Verlag 1991.
- 17.20
- PESIN, YA.B.: Dimension Theory in Dynamical Systems. Contemporary Views and Applications. Chicago Lectures in Mathematics. The University of Chicago Press 1997.
- 17.21
- PILYUGIN, S. YU.: Introduction to Structurally Stable Systems of Differential Equations.
Birkhäuser 1992.
- 17.22
- REITMANN, V.: Reguläre und chaotische Dynamik.
B. G. Teubner 1996.
- 17.23
- SAUER, T.; YORKE, J. A.; CASDAGLI, M.: Embedology.
J. Stat. Phys.. 65 (3/4) (1991) 579-616.
- 17.24
- TAKENS, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Editors: RAND, D. A.; YOUNG, L. S. Lecture Notes in Mathematics 898. - Springer-Verlag 1981, 366-381.