Wenn eine Funktion w = f(z) in der Umgebung eines Punktes z = a analytisch ist, d.h. im Innern eines beliebig kleinen Kreises mit dem Mittelpunkt , ausgenommen a selbst, dann hat f eine Singularität in a. Es gibt drei Typen von Singularitäten:
Beispiel A |
Die Funktion |
Beispiel B |
Die Funktion w=e1/z besitzt im Punkt 0 einen wesentlich singulären Punkt (s. Abbildung). |