Banach-Steinhaus-Satz, Prinzip der gleichmäßigen Beschränkheit

Der Satz charakterisiert die punktweise Konvergenz einer Folge von linearen stetigen Operatoren zu einem linearen stetigen Operator durch die beiden Bedingungen:

  1. Für jedes Element aus einer überall dichten Teilmenge  hat die Folge {Tnx} einen Grenzwert in .
  2. Mit einer Konstanten C gilt